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CAUTION:
• If a Linear detector…
• (Estimated)    

est. ΔE = true ΔE 



What is “nonlinearity”? the “nonlinear-model”…
field “nonlinear dynamics”  

Nonlinear  Everything Else  (a very ∞ set ;-)

• Nonlinearity ubiquitous in nature: 
– e.g. 60 Hz harmonics pickup at 120 Hz, 180 Hz,....     

requires nonlinearity in the system.

• Linearity ubiquitous in our mathematical description 
of nature: 
– often a good approximation to real physical systems.
– It is mathematically easier
– Linear Tools:

• Superposition Principle
• Transform methods,  transfer functions etc.



What is “nonlinearity”? the “nonlinear-model”…
field “nonlinear dynamics”  

Nonlinear  Everything Else  (a very ∞ set ;-)

• If our thermistor TES sensor…
– If R(T)  R(T,J).

– Then Nonlinear system of Diff Eqs.
– (Can approximate by a linearized system of Diff Eqs.)

• “Nonlinear” if
– R(T)  anything other than a single straight line

– R(T,J)  “ “ “      a single plane.

– R(T,J,B)  “ “ “     a single hyperplane.

Known or 
Expected
Nonlinearities
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“Unexpected 
Nonlinearities”

In steady state with standard DC biased TES operation. 
The TES current is wildly oscillating in time at high 
frequencies and we only measure (and are only aware 
of) the time averaged current in the TES.



Conclusions: …Paradigm Shifting
• In steady state with standard DC biased TES operation. The TES current is wildly oscillating in 

time at high frequencies and we only measure (and are only aware of) the time averaged 
current in the TES.

• The equations governing this time response is nonlinear time-dependent diff eqs.  
– KEY POINT: This time dependent current exists when the TES is only DC biased, NO time dependent inputs what 

so ever.  It comes about from the intrinsic physics governing the superconducting state of the TES. 

• The measured resistive transition surface is not simply a function of R(T,J,B). But is also a 
function of the electric circuit. R(T,J,B,L,Rsh).

–  Problem compartmentalizing:  Same TES measured in slightly different circuits will appear to have a different 
resistive transition surface.       TEST in real setup early!!!

• Circuit and TES parameters can have values such that these time dependent solutions 
become multivalued in time.

– What does that mean? Can mean excess noise or fine structure of the time averaged resistive transition surface.

• The biased TES waiting to detect a photon (μ-calorimeter) or flux of photons (μ-bolometers) 
can itself act as a radiation source.

– Tricky when an array of exquisitely sensitive micro-wave radiation detectors are themselves sources of microwave 
radiation.

– This can lead to radiation resistance and fine structure in the resistive transition.

– Possible cross talk between pixels in an array.

– The time dependence of the current can take on pure sin waves and also very nonsinusoidal forms (variable 
harmonic content)

– The fundamental frequency of these oscillations changes with bias voltage.

– Makes the prospects of FDM TES arrays with an AC-biased TES challenging.  Structure, sensitivity, and cross-talk.
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Does changing Rsh and L have any direct impact on the TESs R(T,j,B)?

Of course changing Rsh and L impacts:
- bias stability conditions 
- time constants
- the jin needed to get the the same R etc.

Can we separate the TES transition from the bias circuit?
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(1) j(t)=?
What is the time 
dependence of the 
current j?

(2) <j(t)> vs jin =?
What is the shape 
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averaged IV curve?



J-TES model

Increasing bias jjin=jin/jc

L = 0 limit

Rescaled time [periods/2]

Time rescaled so we can compare shape in time (harmonic content).



J-TES model

Bias jjin:
Small: 

slow spikes (+jc to -jc)

Large: 
fast sinusoidal (+jc to -jc)

Red Dashed: time averaged TES current

Green: TES current versus time

Movie rescales time as the bias is 
increased so two periods are contained in 
time
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time

Movie evolves with increasing bias current 
jjin.

L = 0 limit



J-TES model
Finite Inductance Effect

Large jjin

Increasing L

Rescaled time [periods/2]

*Closed form solution found!
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J-TES model
Finite Inductance Effect

Large jjin Small jjin

Increasing L Increasing L

Multivalued j[t]

Rescaled time [periods/2] Rescaled time [periods/2]



Current becomes multivalued with 
sufficiently large L 

Increasing L Increasing L

Red: solution



J-TES model
Large L behavior

Large L ~ Sawtooth j[t]

Allowed current states 
become very close together 
in the large L limit.
Current jump between levels


2 level system noise



Test my claim

J = Jc sin ϕ(t)

Vn = n  Φ0 f 

ϕ’(t) = 2π V / Φ0

First Josephson Equation:

Second Josephson Equation:

Shapiro voltage steps:
(voltage to frequency transducer)
Fundamental:
1. Gauge Invariance
2. Energy Conservation.

Ψ = |Ψ| ei ϕ(r,t)Quantum wave function of the 
superconducting condensate

Vb = Vb DC + v sin (2π f t)
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TES Bias Voltage

Phase Locking
Vb = Vb DC + v sin (2π f t)

Voltage Steps 
Observed from 
f=200 kHz to 
f=30 MHz



Vn = n  Φ0 f 

n=1
n=2

n=3
n=4



Measuring a 200 
μOhm resistor to 
better than 1/1000 
!

Rsh vs current 
is flat down to 
5μAOhmic!

Rsh value Histogram

Rsh vs Jsh
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value.
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All similar in size 



Conclusions: …Paradigm Shifting
• In steady state with standard DC biased TES operation. The TES current is wildly oscillating in 

time at high frequencies and we only measure (and are only aware of) the time averaged 
current in the TES.

• The equations governing this time response is nonlinear time-dependent diff eqs.  
– KEY POINT: This time dependent current exists when the TES is only DC biased, NO time dependent inputs what 

so ever.  In comes about from the intrinsic superconductivity physics governing TESs. 

• The measured resistive transition surface is not simply a function of R(T,J,B). But is also a 
function of the electric circuit. R(T,J,B,L,Rsh).

–  Problem compartmentalizing:  Same TES measured in slightly different circuits will appear to have a different 
resistive transition surface.       TEST in real setup early!!!

• Circuit and TES parameters can have values such that these time dependent solutions 
become multivalued in time.

– What does that mean? Can mean excess noise or fine structure of the time averaged resistive transition surface.

• The biased TES waiting to detect a photon (μ-calorimeter) or flux of photons (μ-bolometers) 
can itself act as a radiation source.

– Tricky when an array of exquisitely sensitive micro-wave radiation detectors are themselves sources of microwave 
radiation.

– This can lead to radiation resistance and fine structure in the resistive transition.

– Possible cross talk between pixels in an array.

– The time dependence of the current can take on pure sin waves and also very nonsinusoidal forms (variable 
harmonic content)

– The fundamental frequency of these oscillations changes with bias voltage.

– Makes the prospects of FDM TES arrays with an AC-biased TES challenging.  Structure, sensitivity, and cross-talk.



THE 
END



jj(tt)

vv={0.01, 0.1, 1, 5}

vv

jj

tt

βL

0.001

0.1

0.5

1.0

2.0

10.0

0.01 0.1 1.0 5.0

sawtooth



Power for 
relationship holds for: 
λ>> antenna length

Blue: Δell/λ<0.1 
(satisfied)

Red: Δell/λ>0.1 
Actual radiated 
power is larger than 
red surface

Δell/λ<0.1

Δell/λ>0.1 

jc=1nA

Jc=1uA
jc=1mA


