
NASA/TP-2016-218604

Normalization and Implementation of Three Gravitational

Acceleration Models

Revision A, Final

Randy A. Eckman1

Aaron J. Brown2

Daniel R. Adamo3

Reviewed by Robert G. Gottlieb4

March 4, 2014

1 Aerospace engineer, NASA Johnson Space Center, Mail Code DM33

2 Aerospace engineer, NASA Johnson Space Center, Mail Code DM46

3 Independent astrodynamics consultant

4 Technical fellow, Odyssey Space Research

National Aeronautics and

Space Administration

Johnson Space Center

Houston, Texas 77058

June 2016

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA scientific and technical

information (STI) program plays a key part in

helping NASA maintain this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information

Officer. It collects, organizes, provides for

archiving, and disseminates NASA’s STI. The

NASA STI program provides access to the NASA

Aeronautics and Space Database and its public

interface, the NASA Technical Report Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world.

Results are published in both non-NASA channels

and by NASA in the NASA STI Report Series,

which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers but has

less stringent limitations on manuscript length

and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies

that contain minimal annotation. Does not

contain extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored

by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to

NASA’s mission.

Specialized services also include creating

custom thesauri, building customized databases,

and organizing and publishing research results.

For more information about the NASA STI

program, see the following:

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help

Desk at 443-757-5803

 Phone the NASA STI Help Desk at

443-757-5802

 Write to:

NASA Center for AeroSpace Information

7115 Standard Drive

Hanover, MD 21076-1320

NASA/TP-2016-218604

Normalization and Implementation of Three Gravitational

Acceleration Models

Revision A, Final

Randy A. Eckman1

Aaron J. Brown2

Daniel R. Adamo3

Reviewed by Robert G. Gottlieb4

March 4, 2014

1 Aerospace engineer, NASA Johnson Space Center, Mail Code DM33

2 Aerospace engineer, NASA Johnson Space Center, Mail Code DM46

3 Independent astrodynamics consultant

4 Technical fellow, Odyssey Space Research

National Aeronautics and

Space Administration

Johnson Space Center

Houston, Texas 77058

June 2016

Available from:

NASA Center for AeroSpace Information National Technical Information Service

7115 Standard Drive 5301 Shawnee Road

Hanover, MD 21076-1320 Alexandria, VA 22312

Available in electric form at http://ston.jsc.nasa.gov/collections/TRS

Contents

Introduction vii

1 Gravitational Potential and Acceleration 1
1.1 History . 1
1.2 Derivation . 1

1.2.1 Conservative Forces and Potential . 1
1.2.2 Properties of Potential Functions . 2
1.2.3 Defining the Gravitational Potential . 3
1.2.4 Power Series Expansion . 3
1.2.5 Spherical Harmonic Expansion . 4

1.3 Coordinates . 6
1.3.1 The Gravitational Acceleration . 6
1.3.2 Trigonometric Relationships . 7

2 Normalization 9
2.1 The Normalization Factor . 9
2.2 Recursive Mass Coefficient Normalization . 10
2.3 Normalization Ratios . 11
2.4 The Recursion Normalization Parameter . 11

3 The Three Singularity-Free Algorithms 13
3.1 Pines Algorithm . 13

3.1.1 Basis of the Pines Approach . 13
3.1.2 Pines Algorithm Implementations . 13

3.2 Lear Algorithm . 13
3.2.1 Basis of the Lear Approach . 13
3.2.2 Normalized Lear Algorithm . 14
3.2.3 Example of Normalized Lear Recursions . 15

3.3 Gottlieb Algorithm . 21
3.3.1 Basis of the Gottlieb Approach . 21
3.3.2 Normalized Gottlieb Algorithm . 21

4 Verifications and Conclusions 25
4.1 Implementation Notes . 26

4.1.1 Pines Unnormalized . 26
4.1.2 Gottlieb Unnormalized . 26

4.2 Preliminary Testing . 26
4.3 Increasing Degree and Order Trend Study . 27
4.4 Trend Study with Unstable Associated Legendre Function Generators 28
4.5 Conclusions . 32
4.6 Recommendations . 32

i

A Legendre Polynomials as a Maclaurin Series Expansion 35

B Preliminary Results 37

C MATLAB Code 39
C.1 test sh.m . 39
C.2 test2.m . 44
C.3 load sha.m . 46
C.4 pines.m . 46
C.5 pinesnorm.m . 48
C.6 lear.m . 49
C.7 learnorm.m . 51
C.8 gottlieb.m . 53
C.9 gottliebnorm.m . 54

Nomenclature 57

Bibliography 59

ii

List of Tables

2.1 Normalization Factors Through 4× 4 . 9
2.2 Reciprocal of Normalization Factors Neighboring 1/N86,85 . 10
2.3 Recursions for Generating Recursions of Normalization Factors 10

3.1 Normalization Parameters λ for a Normalized Lear Algorithm 14
3.2 Normalization Parameters λ Needed for a Normalized Gottlieb Algorithm 21

iii

THIS PAGE IS INTENTIONALLY LEFT BLANK.

iv

List of Figures

1.1 Definition of vectors, angle, and differential mass. 3
1.2 Body-fixed coordinates and spherical coordinates illustrated. 7
1.3 Orthogonal spherical coordinates and central-body-fixed coordinates 8

4.1 Acceleration error magnitude for normalized models at equator (φ = 0◦). 26
4.2 Acceleration error magnitude for unnormalized models (intentionally unstable Gottlieb) at

equator (φ = 0◦). 28
4.3 Acceleration error magnitude for normalized models (intentionally unstable Gottlieb) at equa-

tor (φ = 0◦). 29
4.4 Acceleration error magnitude for unnormalized models (intentionally unstable Gottlieb) at

equator (φ = 0◦) with degree and order 60–85. 30
4.5 Acceleration error magnitude for unnormalized models (intentionally unstable Pines) at south

pole (φ = −90◦). 30
4.6 Acceleration error magnitude for normalized models (intentionally unstable Pines) at south

pole (φ = −90◦). 31

v

THIS PAGE IS INTENTIONALLY LEFT BLANK.

vi

Introduction

Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the
real universe is that gravitational fields are sensitive to the asphericity of their generating central bodies.
The gravitational potential of an aspherical central body is typically resolved using spherical harmonic
approximations. However, attempting to directly calculate the spherical harmonic approximations results in
at least two singularities that must be removed to generalize the method and solve for any possible orbit,
including polar orbits. Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3] developed three unique
algorithms to eliminate these singularities.

This paper documents the methodical normalization of two1 of the three known formulations for singu-
larity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a
general method for defining normalization parameters used to generate normalized Legendre polynomials and
Associated Legendre Functions (ALFs) for any algorithm. A treatment of the conventional formulation of the
gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical
differences between the three known singularity-free algorithms.

1The Pines algorithm (Section 3.1) has been previously normalized and thoroughly investigated by Lundberg and Schutz [4]
and subsequently implemented by DeMars [5]. See Section 3.1.2.

vii

THIS PAGE IS INTENTIONALLY LEFT BLANK.

viii

Chapter 1

Gravitational Potential and
Acceleration

1.1 History

In 1782, Adrien-Marie Legendre authored a report entitled Recherches sur l’attraction des sphéröıdes ho-
mogènes. This report examined the problem of the attraction on a particle due to homogeneous spheroids
in two dimensions. As part of Legendre’s approach to the problem, he introduced a family of functions that
eventually became known as Associated Legendre Functions (ALFs).

Twenty years after Legendre’s groundbreaking work, Pierre-Simon de Laplace published Volume 3 of his
magnum opus Mécanique céleste in 1802. In it, Laplace provides a complete treatment on the attraction
of a spheroid on a particle by expanding on the work of Legendre (and, notably, providing no credit to
Legendre whatsoever). By extending Legendre’s approach to three dimensions, Laplace first developed
and introduced the concept of spherical harmonics, which provides the foundation for modern-day gravity
modeling algorithms as well as applications in many other fields of research.

1.2 Derivation

1.2.1 Conservative Forces and Potential

Gravity is a conservative field force, which has both qualitative and quantitative implications. Work done
by conservative forces is path-independent. Additionally, mechanical energy E, which is the sum of kinetic
energy T and potential energy V , is conserved (constant) in conservative fields, as seen in Eq. 1.1.

T1 + V1 = T2 + V2 = E (1.1)

To relate these two seemingly unrelated concepts, a quantity is defined called simply the potential U . Po-
tential is always the opposite of potential energy1 as shown in Eq. 1.2.

U = −V (1.2)

Scalar functions of position (and time for time-varying fields) that describe the potential are called potential
functions. By substituting Eq. 1.2 into Eq. 1.1, we arrive at the relation shown in Eq. 1.3.

T1 − U1 = T2 − U2 (1.3)

1It should be noted that convention is to use U and V for potential and potential energy, but not necessarily respectively.
The convention used in this document represents the rough consensus of sources cited in this document, but care should be
taken when reading literature to determine and distinguish which variable is used to symbolize the quantities of potential and
potential energy.

1

Finally, by rearranging Eq. 1.3, we arrive at the unique conclusion for conservative field forces that the
change in T is exactly that of a change in U per Eq. 1.4

∆T = ∆U (1.4)

Work is defined as the change in the kinetic energy due to a force ~F acting over a path with position
vector ~r, as shown in Eq. 1.5.

W = ∆T =

∫
~F · d~r (1.5)

For a conservative force, since ∆T = ∆U , the work done by the force is also equal to the change in the
potential. Substituting ∆U into Eq. 1.5 and rewriting in differential form, Eq. 1.6 arises.

∂U = ~F · ∂~r (1.6)

Rearranging, Eq. 1.7 thus shows that any conservative force is defined by the gradient of its potential.

~F =
∂U

∂~r
= ∇U (1.7)

The divergence of a vector field is a measure of the presence of sources or sinks. In the case of gravity,
each particle with mass acts as a sink, giving ∇ · ~F 6= 0 at each point where matter is located. Elsewhere in
space in the absence of matter at that point, ∇ · ~F = 0. Locations outside of the central body are typically
the only ones considered in astrodynamic applications, and the assumption can be made that the solution
to ∇ · ~F = 0 is the only one of interest in this document.

1.2.2 Properties of Potential Functions

Substituting Eq. 1.7 in the divergence of a conservative field (in empty space for gravity) results in Eq. 1.8.

∇ · ~F = ∇ · ∇U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= ∇2U = 0 (1.8)

Eq. 1.8 is called Laplace’s equation. The symbol ∇2 is commonly called the Laplacian operator. Solutions
to Laplace’s equations are harmonic functions, thus potential functions for conservative fields are harmonic
functions2. Since harmonic functions are also analytic functions, potential functions can also be expressed
as a convergent power series.

Harmonic functions, also called “harmonics,” exhibit the property of superposition. Therefore, a solution
to Laplace’s equation can be decomposed using a set of harmonics that are convenient for the solution.

From Newton’s Second Law of Motion, we know that ~Fnet = m~a, where m is an arbitrary mass. Com-
bining this definition with Eq. 1.7, Eq. 1.9 arises.

m~a = ∇U (1.9)

Solving for the acceleration ~a and using the property of superposition for gradients, we define a new potential
function u, which is the gravitational potential per unit mass as shown in Eq. 1.10.

~a = ∇
(
U

m

)
= ∇u (1.10)

Using u (rather than U) for the remainder of the derivation allows us to compute the gravitational acceleration
directly and independently of a satellite mass.

2The study of harmonic functions is called potential theory since many of their properties were historically discovered through
the study of gravitational potential functions.

2

Figure 1.1: Definition of vectors, angle, and differential mass.

1.2.3 Defining the Gravitational Potential

According to Newton, the gravitational potential u at a given point p due to the point mass M is defined
in Eq. 1.11, where G is the Newtonian gravitational constant and µ = GM is the gravitational parameter of
the central body.

u =
GM

|~rp − ~rM |
=
µ

r
(1.11)

The gravitational potential at point p due to a non-uniform central body can be found by integrating Eq. 1.11
over differential masses dm as shown in Eq. 1.12.

u =

∫
G dm

|~rp − ~rdm|
(1.12)

Figure 1.1 illustrates the geometry of the vectors relative to an arbitrary coordinate frame outside the central
body. The subtraction of the two position vectors in Eq. 1.12 can be replaced with the law of cosines using
the angle γ between the two position vectors and ratio R = rdm/rp according to Eq. 1.13

|~rp − ~rdm| =
√
r2p + r2dm − 2rprdm cos γ = rp

√
1 +R2 − 2R cos γ (1.13)

Substituting Eq. 1.13 into Eq. 1.12 gives Eq. 1.14.

u =
G

rp

∫
1√

1 +R2 − 2R cos γ
dm (1.14)

1.2.4 Power Series Expansion

The definition of a power series is shown in Eq. 1.15.

f(x) =

∞∑
n=0

anx
n (1.15)

The ratio 1/
√

1 +R2 − 2R cos γ from Eq. 1.14 is a common form that can be expanded using a power series.
Because this is a simplified expression of a potential function, the power series will be convergent. The
resulting power series from expanding this ratio, derived in Appendix A, is shown in Eq. 1.16.

1√
1 +R2 − 2R cos γ

=

∞∑
n=0

Pn(cos γ)Rn (1.16)

3

The power series coefficients Pn(cos γ) are called the Legendre polynomials with argument cos γ. Substituting
back into Eq. 1.14, the potential is now effectively in polar coordinates of rp and γ in Eq. 1.17 (R is a function
of rp).

u =
G

rp

∫ ∞∑
n=0

Pn(cos γ)Rn dm (1.17)

1.2.5 Spherical Harmonic Expansion

To find acceleration in three dimensions, a potential needs to be defined in three dimensions. By defining
γ as a function of two spherical angles, it can be decomposed using spherical triangles and used to redefine
the potential in three dimensions. Geocentric latitude φ and longitude θ are typically used in this case.
By substituting this decomposition into Eq. 1.17, gathering like terms, and using properties of Legendre
polynomials to expand, Eq. 1.18 arises.

u =
µ

rp

{
1−

∞∑
n=1

(
aeq
rp

)n [
JnPn(sinφ)−

n∑
m=1

(Cn,m cosmθ + Sn,m sinmθ)Pn,m(sinφ)

]}
(1.18)

An alternate formulation [6, Pg. 52] shown in Eq. 1.19 can also be used to increase computational efficiency
by using a common form for all three of the fundamental harmonics.

u =
µ

rp

{
1 +

∞∑
n=1

n∑
m=0

(
aeq
rp

)n
(Cn,m cosmθ + Sn,m sinmθ)Pn,m(sinφ)

}
(1.19)

The three fundamental harmonics are named after the coefficients used in the respective terms in Eq. 1.19.
The coefficients and their names are described in Section 1.2.5.

Constants, Coefficients, and Nomenclature

Certain variables have specific names commonly used in the literature to describe the equations. The degree
of a term in a sum use the subscript n while the order of a term uses the subscript m.

Jn, Cn,m, and Sn,m are known in the literature as the spherical harmonic mass coefficients of the central
body, which we will refer to simply as the mass coefficients. Certain subsets of the mass coefficients are
given special names.

• Jn = −Cn,0 = zonal coefficients

• Cn,n, Sn,n = sectorial coefficients (n = m)

• Cn,m, Sn,m = tesseral coefficients (n 6= m)

The Jn nomenclature is mostly of historical use in satellite geodesy; most modern notation consists solely of
references to Cn,m and Sn,m. In parallel with the nomenclature for the coefficient each term contains, the
terms in Eq. 1.18 are referred to as zonal, sectorial, and tesseral terms.

Tables of mass coefficients are usually provided with the specific gravitational parameter µ and scaling
(or reference) radius aeq for which the coefficients are calibrated. These model-specific values must be used
with the corresponding tables of coefficients to obtain correct results.

The phrase “gravity model” typically refers exclusively to the tables of coefficients and their constants.
The potential functions are the same for all central bodies; the model (coefficients and constants) for a desired
central body is simply plugged into the potential function to approximate the gravitational potential.

If the origin of the coordinate system used to derive the model is coincident with the center of mass of
the central body, all of the coefficients with a degree of one (1) become exactly zero. It will thus be assumed
for the rest of the paper that the C1,0, S1,1, and C1,1 coefficients are all zero and thus sums will begin with
degree two (2).

4

Legendre Polynomials and Associated Legendre Functions

The various functions denoted P in this paper are the Legendre polynomials and the ALFs. Legendre
polynomials of the first kind are denoted Pn. With the exception of the equations in Section 1.2.4, the
Legendre polynomials for the remainder of the paper always have an argument of sinφ. ALFs of the first
kind are similarly denoted Pn,m also with argument sinφ. Legendre polynomials and ALFs have subscripts
n and m, which are the degree and order of the polynomial, respectively. ALFs with m > n are defined as
zero. The Legendre polynomials are equivalent to the ALF of the same degree and with m = 0.

For the remainder of this document, the argument of sinφ will be assumed and omitted for brevity for
all Legendre polynomials and ALFs.

Square Gravity Models

The Sn,m, Cn,m, and Pn,m values can be used to form lower triangular matrices, where the terms above the
diagonal are all zero, n is the row, and m is the column.

Models where maximum degree and order are equal are referred to as square models. Let nd be the
desired maximum degree and order of the gravity model. Then

u =
µ

rp

{
1 +

nd∑
n=2

n∑
m=0

(
aeq
rp

)n
Pn,m (Sn,m sinmθ + Cn,m cosmθ)

}
(1.20)

With the zonal terms separated out, Eq. 1.20 becomes

u =
µ

rp

{
1 +

nd∑
n=2

(
aeq
rp

)n
PnCn,0

+

nd∑
n=2

n∑
m=1

(
aeq
rp

)n
Pn,m (Sn,m sinmθ + Cn,m cosmθ)

}
(1.21)

Non-Square Gravity Models

Whereas Eqs. 1.20 and 1.21 assume square models, it is also possible to approximate the gravitational
potential using non-square models. This can be accomplished by changing the bounds of the sums in
Eqs. 1.20 and 1.21 to nd and md, the desired degree and desired order, respectively. The outcome of a
non-square model can then be written as

u =
µ

rp

1 +

nd∑
n=2

n∑
m=0
m≤md

(
aeq
rp

)n
Pn,m (Sn,m sinmθ + Cn,m cosmθ)

 (1.22)

resembling Eq. 1.20, or separating out zonal terms,

u =
µ

rp

{
1 +

nd∑
n=2

(
aeq
rp

)n
PnCn,0

+

nd∑
n=2

n∑
m=1
m≤md

(
aeq
rp

)n
Pn,m (Sn,m sinmθ + Cn,m cosmθ)

 (1.23)

resembling Eq. 1.21.
Because most algorithms for generating the Legendre polynomials and ALFs are optimized to generate

values for square models, it is best to pass only the desired degree of the non-square gravity model to these

5

function-generating subroutines. In calculating a non-square potential, the excess ALFs beyond the desired
order are then simply unused.

The fact that Eqs. 1.20 and 1.21 (and thus Eqs. 1.22 and 1.23) are orthogonal expansions of u means
that any lower-order expansion is merely a truncated higher-order expansion. No refit of the coefficients is
necessary [2].

1.3 Coordinates

Gravitational potential u is typically resolved using equatorial central-body-centered, central-body-fixed

Cartesian coordinates
[
xb yb zb

]T
, where

• xb is the coordinate positive along a line from the center of mass to the intersection of the equator and
prime meridian of the central body

• zb is the coordinate positive along the north polar axis of the central body

• yb is the coordinate positive along the vector that completes the right-handed triad (yb is positive in
the eastern hemisphere)

Spherical coordinates
[
r θ φ

]T
can then be defined in terms of the central-body-fixed coordinates

• r =
√
x2b + y2b + z2b = magnitude of satellite position vector (previously rp)

• θ = arctan2(yb, xb) = (positive east) longitude

• φ = arcsin(zbr) = (positive north) latitude or declination

If xb = yb = 0, then θ may be set to any value. For convenience, it is typically set to θ = 0 in this case.
The relationship between central-body-fixed and spherical coordinates is shown in Figure 1.2. The

spherical coordinate angles themselves are rarely used directly since they typically appear as arguments
in trigonometric functions. See Section 1.3.2 for more information.

1.3.1 The Gravitational Acceleration

The gradient of the gravitational potential u is the force of gravity per unit mass, which is the acceleration.

The gravitational acceleration at the central-body-fixed Cartesian coordinates
[
xb yb zb

]T
is thus

a =
[
axb

ayb azb
]T

= ∇bu =
[

∂u
∂xb

∂u
∂yb

∂u
∂zb

]T
(1.24)

where ∇b is the gradient with respect to the central-body-fixed coordinates.
Taking the gradient with respect to a central-body-fixed coordinate system means that we must include

the Coriolis, centripetal, tangential, and relative acceleration terms [6, pg. 54-55]. To eliminate the com-
plication of including these terms, an alternative coordinate system centered in the central body (frame
rotationally fixed with respect to satellite) is used to compute the gradient.

Consider a displacement ∆θ of the position vector in spherical coordinates in the direction of increasing θ
(away from the xb axis). While displacement of θ is actually the arc of a circle, a limit is approached as ∆θ → 0
when taking the gradient in spherical coordinates and thus the displacement arc becomes arbitrarily close
to its subtending chord. The instantaneous positive displacement of θ for a vector in spherical coordinates
is thus perpendicular to the radial vector in the direction of increasing θ. This logic can be similarly applied
for φ. The directions of increasing θ and φ form the basis of the new coordinate system [7, pg. 143].

The new x axis is parallel to the position vector and is defined as the ro axis. The new y axis is located
on the central-body-fixed xbyb plane at a right-angle to the ro axis in the direction of increasing θ and is
defined as the θo axis. The new z axis completes the right-handed triad and is defined as the φo axis. The

6

�
�
�

�
�
��	

-

6

body center

xb

yb

zb

��
��

�
��

�*
r

H
H
H
H
H

√
x2b + y2b

θ

φ

Figure 1.2: Body-fixed coordinates and spherical coordinates illustrated.

φo axis forms the angle φ with the zb axis in the direction of increasing φ (away from the zb axis). The

coordinates along these new axes are referred to as the orthogonal spherical coordinates
[
ro θo φo

]T
,

not to be confused with the conventional spherical coordinates
[
r θ φ

]T
. The relationship between

central-body-fixed coordinates and orthogonal spherical coordinates is shown in Figure 1.3.
The transformation matrix from the orthogonal spherical coordinates to the central-body-fixed coordi-

nates is [2] xb
yb
zb

 =

 cosφ cos θ − sin θ − sinφ cos θ
cosφ sin θ cos θ − sinφ sin θ

sinφ 0 cosφ

 ro
θo
φo

 (1.25)

All of the trigonometric functions in the transformation can be precomputed using the trigonometric rela-
tionships outlined in Section 1.3.2.

The gravitational acceleration in the orthogonal spherical coordinate system is [6, pg. 54]

a =
[
aro aθo aφo

]T
= ∇u =

[
∂u
∂r

1
r cosφ

∂u
∂θ

1
r
∂u
∂φ

]T
(1.26)

The result of Eq. 1.26 can then be transformed back to central-body-fixed coordinates via Eq. 1.25.

1.3.2 Trigonometric Relationships

Instead of solving for the spherical coordinate angles φ and θ, it is more efficient to pre-compute the values
of trigonometric functions of these angles given by the definitions of sine and cosine.

sin θ =
yb√

x2b + y2b
(1.27)

cos θ =
xb√
x2b + y2b

(1.28)

sinφ =
zb
r

(1.29)

cosφ =

√
x2b + y2b
r

(1.30)

A logical check should be included prior to computing these values to identify the cases xb = yb = 0 or r = 0.
If xb = yb = 0, then the equations sin θ = 0 and cos θ = 1 are typically substituted.

7

�
�
�

�
�
��	

-

6

body center

xb

yb

zb

�
��

�
��

�
�*

ro

H
H
H
H
H

H
H
H
H
H

H
H
H
H
H

H
H
H
H
H �

�
�
�
�
�3θo

H
H

H

A
A
A
A
A
A
A
AK

φo

�
AA

��AA

θ

φ

φ

Figure 1.3: Orthogonal spherical coordinates
[
ro θo φo

]T
and central-body-fixed coordinates[

xb yb zb
]T

shown with the roφo plane.

8

Chapter 2

Normalization

2.1 The Normalization Factor

Using a normalization factor allows mass coefficients to be electronically represented as tractable values well
within the valid range for IEEE-754 double-precision floating point variables, even when degree n and order
m are relatively large. The mass coefficients of a central body are “normalized” when they are divided by
this normalization factor Nn,m, typically defined as [8, pg. 544]

Nn,m =

√
(n−m)!(2n+ 1)(2− δ0,m)

(n+m)!
, Nn = Nn,0 (2.1)

where δ0,m is the Kronecker delta function that returns one if m = 0 and zero otherwise. Table 2.1 lists the
normalization factors through degree and order of four.

Historically, normalized mass coefficients were “unnormalized” by the end user of the model by multiply-
ing the mass coefficients with their corresponding normalization factor. This was done because conventional
gravitational potential algorithms required unnormalized coefficients in their formulations. A fundamental
problem encountered by attempting to unnormalize mass coefficients with very high degrees and orders is
that the normalization factors become prone to overflow or underflow in modern computers. This is due to
the factorial in the denominator of Eq. 2.1, (n + m)!. The user is restricted to nd + md < 171 using IEEE
754 double-precision floating point variables to calculate normalization factors because computing such a
factorial expression outside of Eq. 2.1 alone would overflow beyond this boundary (see Section 2.2).

It was later established that the additional work of unnormalizing mass coefficients becomes unnecessary
by “normalizing” ALFs in gravitational potential formulations. Legendre polynomials and ALFs are said to
be “normalized” when multiplied by Nn,m. This normalization scheme is ideal because the product of an
ALF and its corresponding coefficient is equal to the product of the normalized ALF and its corresponding

Table 2.1: Normalization Factors Through 4× 4

m→
n ↓ 0 1 2 3 4

0 1 0 0 0 0

1
√

3
√

3 0 0 0

2
√

5
√

5
3

1
2

√
5
3 0 0

3
√

7
√

7
6

1
2

√
7
15

1
6

√
7
10 0

4 3 3
√

1
10

1
2

√
1
5

1
2

√
1
70

1
8

√
1
35

9

normalized coefficient. In this paper, an overbar will be used to indicate normalized quantities; i.e. C̄n,m
and P̄n,m. By the aforementioned normalization conventions, Eq. 2.2 shows that the product of the ALF
and corresponding coefficient holds true for normalized quantities.

P̄n,mC̄n,m = (Pn,mNn,m)

(
Cn,m
Nn,m

)
= Pn,mCn,m (2.2)

This eliminates the restrictions imposed by requiring unnormalized mass coefficients for gravitational poten-
tial formulations. The relationship from Eq. 2.2 can be seen with Sn,m and S̄n,m as well.

2.2 Recursive Mass Coefficient Normalization

Gravity models evaluating spherical harmonic associated Legendre functions at high degree n and order
m require normalized Legendre coefficients to accurately compute terms ranging over hundreds of orders of
magnitude. The standard normalization scheme is to multiply the unnormalized coefficients by the reciprocal
of the normalization factor Nn,m, defined in Eq. 2.1. If 1/Nn,m is calculated directly, computation difficulties
arise when n + m > 170 because 171! triggers an overflow condition in IEEE-754 double-precision (64-bit)
real numbers. The overflow limit is ±1.797693134862316e+3081.

Suppose 1/Nn,m values are directly calculated and grouped as elements in a lower-triangular matrix, as
is customary, by incrementing m from 0 until m = n before n is incremented to begin another matrix row. In
performing this task, the first (n+m)! overflow will be encountered for 1/N86,85. Table 2.2 provides 1/Nn,m
values neighboring the 1/N86,85 element. In Table 2.2, 1/Nn,m values that can be computed are nowhere
near an overflow condition because they are quotients with large denominators. This suggests a recursive
computation will succeed in generating accurate 1/Nn,m values far beyond element 1/N86,85. The recursion
will only fail when the 1/Nn,m quotient overflows.

Table 2.2: Reciprocal of Normalization Factors Neighboring 1/N86,85

Order m
Degree n 84 85 86

85 1.117258027e+151 1.456726244e+152 N/A
86 1.024089587e+152 Overflow Overflow
87 Overflow Overflow Overflow

To document the recursion, suppose the value of 1/Nn′,m′ is given as x. Assuming n′ − m′ > 0 for
“upward” or “rightward” recursion2, Table 2.3 supplies recursive formulae for adjacent elements in terms of
x and its associated degree n′ and order m′.

Table 2.3: Recursions for Generating Recursions of Normalization Factors

Order
Degree m′ − 1 m′ m′ + 1

n′ − 1 x
√

(n′−m′)(2n′+1)
(n′+m′)(2n′−1)

n′ x
√

2−δ0,m′
(n′+m′)(n′−m′+1) x = 1/Nn′,m′ x

√
(n′+m′+1)(n′−m′)

2−δ0,m′

n′ + 1 x
√

(n′+1+m′)(2n′+1)
(n′+1−m′)(2n′+3)

1This number was obtained from the realmax(‘double’) command in MATLAB.
2These forbidden recursions would otherwise step outside lower-triangular matrix limits if x corresponded to a diagonal

element with n′ −m′ = 0.

10

Each formula has been verified using the three finite 1/Nn,m elements appearing in Table 2.2. An example
of invoking the “downward” recursion is shown in Eq. 2.3.

N86,84 = N85,84

√
170 · 171

2 · 173
≈ 9.16609737241N85,84 (2.3)

Most gravity models are formally published with normalized coefficients. Those wishing to use normalized
coefficients at n+m > 170 in an unnormalized model will find the Table 2.3 recursions useful in their work.
At n + m ≤ 170, the Table 2.3 recursions offer computational efficiencies over the reciprocal of Eq. 2.1
evaluations, but these will be of little consequence if coefficients are to be unnormalized in a single pass with
the results stored for all subsequent use.

2.3 Normalization Ratios

Consider a recursion formula for Legendre polynomials [9, pg. 114, sec. 3]

Pn =
1

n
[(2n− 1) sinφPn−1 − (n− 1)Pn−2] (2.4)

The corresponding normalized Legendre polynomial P̄n is found by multiplying Eq. 2.4 by the normalization
factor Nn.

P̄n = NnPn =
1

n
[(2n− 1) sinφNnPn−1 − (n− 1)NnPn−2] (2.5)

Because Eq. 2.5 returns normalized polynomials and must recur over its own inputs, the equation needs
to be written as a function of normalized polynomials by replacing the conventional polynomials with their
normalized equivalents. By substituting

Pn =
P̄n
Nn

(2.6)

Eq. 2.5 becomes

P̄n =
1

n

[
(2n− 1) sinφ

Nn
Nn−1

P̄n−1 − (n− 1)
Nn
Nn−2

P̄n−2

]
(2.7)

Eq. 2.7 now contains ratios of normalization factors, namely Nn

Nn−1
and Nn

Nn−2
.

2.4 The Recursion Normalization Parameter

The ratios of the normalization factors, which are referred to as the normalization parameters and denoted by
λ, can be pre-computed since many ratios will be needed more than once while normalizing the algorithms.
The ratios of Eq. 2.7 are written as λn−1 and λn−2, where the subscripts of the parameters refer to the
subscript of the corresponding polynomial that they normalize in Eq. 2.7.

When n = 2, λn−1 = λ1. However, when n = 3, λn−2 6= λ1. For this reason, the parameters are written
as functions of the current values of n and m, such as λn−1(n) and λn−2,m(n,m), and ignore the actual value
of the subscripts of the parameters. The subscripts are merely notation used to identify a specific parameter
for normalizing the ALF with the same subscripts.

This notation is used in Eq. 2.7 to obtain

P̄n =
1

n
[(2n− 1) sinφλn−1(n)P̄n−1 − (n− 1)λn−2(n)P̄n−2] (2.8)

An equation for the parameter λn−1 can be found by substituting the definition of the normalization
factors (Eq. 2.1) in the ratio and simplifying.

λn−1(n) =
Nn
Nn−1

=

√
2n+ 1√

2(n− 1) + 1
=

√
2n+ 1

2n− 1
(2.9)

11

The Lear algorithm (Section 3.2) requires five normalization parameters to recursively compute normal-
ized Legendre polynomials and ALFs. Each of these parameters can similarly be derived by simplifying the
definition of the normalization factor for each of the corresponding ratios.

12

Chapter 3

The Three Singularity-Free
Algorithms

By inspection, we can identify two potential singularities in Eq. 1.26. They can occur when cosφ = 0 (such
as in a polar orbit) or when taking the partial derivative of ALFs with m = 1. Three unique algorithms have
been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3].

3.1 Pines Algorithm

3.1.1 Basis of the Pines Approach

Pines approached the problem by first transforming a position vector to central-body-fixed coordinates. By
reallocating factors in each term of the potential, he defined a series of special functions in terms of the unit
position vector components, which can then be solved recursively without singularities. A set of polynomials
he referred to as the derived ALFs were created by modifying the conventional definition of ALFs. The
derived ALFs have similar recursive behaviors to their conventional counterparts but have no discontinuities
in their partial derivatives.

3.1.2 Pines Algorithm Implementations

The Pines acceleration algorithm has previously been normalized by Lundberg and Schutz [4]. Within the
normalized algorithm, Pines’ derived ALFs can be recursively generated in a number of ways. To evaluate
the various approaches, Lundberg and Schutz developed seven different recursions algorithms and then
performed numerical analyses of the stability of normalized and unnormalized versions of each recursion
algorithm. Lundberg and Schutz concluded that a simple row-wise or column-wise recursion provides the
most stability of all the algorithms, normalized or unnormalized. In this analysis, the normalized and
unnormalized versions of the column-wise recursion by Lundberg and Schutz [4, Recursion I] are utilized
for implementations of Pines. The implementations used here are based on a normalized implementation
provided by DeMars [5].

3.2 Lear Algorithm

3.2.1 Basis of the Lear Approach

Lear transformed the position vector to the orthogonal spherical coordinate system. This results in several
secφ factors that emerge in the equations for the acceleration. Lear found that stable recursions could be
developed by assimilating the secφ factors in the ALF recursion equations. Lear utilized the conventional

13

(unmodified) ALFs and thus used traditional recursion equations for ALFs, across which he simply dis-
tributed the secφ factors. Terms in the potential that include an ALF but no secφ could easily eliminate
the secant (which has been combined in the value of the ALF) by multiplying the term by cosφ, a value
with no discontinuity.

3.2.2 Normalized Lear Algorithm

Each of the recursion equations of the Lear algorithm is now normalized using the normalization parameters
of Section 2.4. The parameters required in the Lear algorithm are defined in Table 3.1.

Table 3.1: Normalization Parameters λ for a Normalized Lear Algorithm

λn−1(n) =
Nn
Nn−1

=

√
2n+ 1

2n− 1
(3.1)

λn−2(n) =
Nn
Nn−2

=

√
2n+ 1

2n− 3
(3.2)

λn−1,n−1(n) =
Nn,n

Nn−1,n−1
=

1

2n− 1

√
2n+ 1

2n
(3.3)

λn−1,m(n,m) =
Nn,m
Nn−1,m

=

√
(n−m)(2n+ 1)

(n+m)(2n− 1)
(3.4)

λn−2,m(n,m) =
Nn,m
Nn−2,m

=

√
(n−m)(n−m− 1)(2n+ 1)

(n+m)(n+m− 1)(2n− 3)
(3.5)

Each of the original equations can be found in Ref. [2]. Only the normalized equations are presented
here and should replace their analogues in the original algorithm. The added normalization parameters are
denoted with an underbrace or overbrace to bring attention to the changes from the equations in the original
document.

In each of the following recursions, let nd be the desired degree and order of the gravity model.

Recursion for Zonal Legendre Polynomials P̄n

This recursion utilizes Parameters 3.1 and 3.2. For n = 2 through nd

P̄n =
1

n
[(2n− 1) sinφ λn−1(n)︸ ︷︷ ︸

3.1

P̄n−1 − (n− 1)λn−2(n)︸ ︷︷ ︸
3.2

P̄n−2] (3.6)

where P̄0 = 1 and P̄1 = N1P1 =
√

3 sinφ.

Recursion for Zonal Legendre Polynomial Derivatives P̄ ′n

This recursion utilizes Parameter 3.1. For n = 2 through nd

P̄ ′n = λn−1(n)︸ ︷︷ ︸
3.1

[sinφ P̄ ′n−1 + nP̄n−1] (3.7)

where P̄ ′1 =
√

3.

14

Recursion for Sectorial ALFs (secφ P̄n,n)

This recursion utilizes Parameter 3.3. For n = 2 through nd

(secφ P̄n,n) = (2n− 1) cosφ λn−1,n−1(n)︸ ︷︷ ︸
3.3

(secφ P̄n−1,n−1) (3.8)

where (secφ P̄1,1) =
√

3.

Recursion for Tesseral ALFs (secφ P̄n,m)

This recursion utilizes Parameters 3.4 and 3.5. For n = 2 through nd and (inner loop) m = 1 through n− 1

(secφ P̄n,m) = [(2n− 1) sinφ

3.4︷ ︸︸ ︷
λn−1,m(n,m)(secφ P̄n−1,m)

− (n+m− 1)λn−2,m(n,m)︸ ︷︷ ︸
3.5

(secφ P̄n−2,m)]
1

n−m
(3.9)

where (secφ P̄n−1,n) = 0 for n = 1 through nd.

Recursion for Sectorial ALF Derivatives (cosφ P̄ ′n,n)

This recursion has no normalization parameters because the input and output are the same degree and order.
For n = 1 through nd

(cosφ P̄ ′n,n) = −n sinφ (secφ P̄n,n) (3.10)

Recursion for Tesseral ALF Derivatives (cosφ P̄ ′n,m)

This recursion utilizes Parameter 3.4. For n = 2 through nd and (inner loop) m = 1 through n− 1

(cosφ P̄ ′n,m) = −n sinφ (secφ P̄n,m)

+ (n+m)λn−1,m(n,m)︸ ︷︷ ︸
3.4

(secφ P̄n−1,m) (3.11)

3.2.3 Example of Normalized Lear Recursions

This section analytically demonstrates using normalized recursion relationships to generate Legendre polyno-
mials and ALFs for a gravity model with a degree and order of four. Each of the final answers are written first
simplified and then with its normalization factored out to demonstrate equivalence with its unnormalized
value. These can be found in the examples outlined in Ref. [2].

Zonal Legendre Polynomials

P̄2 =
1

2

[
3 sinφλn−1(2)P̄1 − λn−2(2)P̄0

]
=

1

2

[
3 sinφ

√
5

3

√
3 sinφ−

√
5

]

=
3

2

√
5 sin2 φ− 1

2

√
5 =
√

5

(
3

2
sin2 φ− 1

2

)
P̄3 =

1

3

[
5 sinφλn−1(3)P̄2 − 2λn−2(3)P̄1

]
15

=
1

3

[
5 sinφ

√
7

5

(
3

2

√
5 sin2 φ− 1

2

√
5

)
− 2

√
7

3

√
3 sinφ

]

=
1

3

[
5 · 3

2

√
7 sin3 φ− 5

2

√
7 sinφ− 2

√
7 sinφ

]
=

5

2

√
7 sin3 φ− 3

2

√
7 sinφ =

√
7

(
5

2
sin3 φ− 3

2
sinφ

)
P̄4 =

1

4

[
7 sinφλn−1(4)P̄3 − 3λn−2(4)P̄2

]
=

1

4

[
7 sinφ

√
9

7

(
5

2

√
7 sin3 φ− 3

2

√
7 sinφ

)

− 3

√
9

5

(
3

2

√
5 sin2 φ− 1

2

√
5

)]

=
1

4

[
7 · 5 · 3

2
sin4 φ− 7 · 3 · 3

2
sin2 φ− 3 · 3 · 3

2
sin2 φ+

3 · 3
2

]
=

105

8
sin4 φ− 90

8
sin2 φ+

9

8
= 3

(
35

8
sin4 φ− 30

8
sin2 φ+

3

8

)

Zonal Legendre Polynomial Derivatives

P̄ ′2 = λn−1(2)
[
sinφP̄ ′1 + 2P̄1

]
=

√
5

3

[
sinφ

√
3 + 2

√
3 sinφ

]
= 3

√
5 sinφ =

√
5 (3 sinφ)

P̄ ′3 = λn−1(3)
[
sinφP̄ ′2 + 3P̄2

]
=

√
7

5

[
sinφ

(
3
√

5 sinφ
)

+ 3

(
3

2

√
5 sin2 φ− 1

2

√
5

)]
= 3

√
7 sin2 φ+

3 · 3
2

√
7 sin2 φ− 3

2

√
7

=
15

2

√
7 sin2 φ− 3

2

√
7 =
√

7

(
15

2
sin2 φ− 3

2

)
P̄ ′4 = λn−1(4)

[
sinφP̄ ′3 + 4P̄3

]
=

√
9

7

[
sinφ

(
15

2

√
7 sin2 φ− 3

2

√
7

)
+ 4

(
5

2

√
7 sin3 φ− 3

2

√
7 sinφ

)]
=

3 · 15

2
sin3 φ− 3 · 3

2
sinφ+

3 · 4 · 5
2

sin3 φ− 4 · 3 · 3
2

sinφ

=
105

2
sin3 φ− 45

2
sinφ = 3

(
35

2
sin3 φ− 15

2
sinφ

)
Sectorial (Diagonal) ALFs

(secφ P̄2,2) = 3 cosφλn−1,n−1(2)(secφ P̄1,1)

16

= 3 cosφ
1

3

√
5

4

√
3

=
1

2

√
15 cosφ =

1

2

√
5

3
(3 cosφ)

(secφ P̄3,3) = 5 cosφλn−1,n−1(3)(secφ P̄2,2)

= 5 cosφ
1

5

√
7

6

(
1

2

√
15 cosφ

)
=

1

2

√
35

2
cos2 φ =

1

6

√
7

10

(
15 cos2 φ

)
(secφ P̄4,4) = 7 cosφλn−1,n−1(4)(secφ P̄3,3)

= 7 cosφ
1

7

√
9

8

(
1

2

√
35

2
cos2 φ

)

=
3

8

√
35 cos3 φ =

1

8

√
1

35

(
105 cos3 φ

)
Tesseral ALFs: Row 2 (n = 2)

(secφ P̄2,1) = 3 sinφλn−1,m(2, 1)(secφ P̄1,1)− 2λn−2,m(2, 1)(secφ P̄0,1)

= 3 sinφ

√
5

3 · 3
√

3− 2
√

0 · 0

=
√

15 sinφ =

√
5

3
(3 sinφ)

Tesseral ALFs: Row 3 (n = 3)

(secφ P̄3,1) =
[
5 sinφλn−1,m(3, 1)(secφ P̄2,1)− 3λn−2,m(3, 1)(secφ P̄1,1)

] 1

2

=
1

2

[
5 sinφ

√
2 · 7
4 · 5

(√
15 sinφ

)
− 3

√
2 · 7

4 · 3 · 3
√

3

]

=
5

2

√
7 · 3

2
sin2 φ− 1

2

√
7 · 3

2

=
5

2

√
21

2
sin2 φ− 1

2

√
21

2
=

√
7

6

(
15

2
sin2 φ− 3

2

)
(secφ P̄3,2) = 5 sinφλn−1,m(3, 2)(secφ P̄2,2)− 4λn−2,m(3, 2)(secφ P̄1,2)

= 5 sinφ

√
7

5 · 5

(
1

2

√
15 cosφ

)
− 4
√

0 · 0

=
5

2

√
7 · 5 · 3

5 · 5
sinφ cosφ

=
1

2

√
105 sinφ cosφ =

1

2

√
7

15
(15 sinφ cosφ)

17

Tesseral ALFs: Row 4 (n = 4)

The example in the Lear document that corresponds to the following example contains a typographical error.
The final result for the ALF should be

(secφP4,1) =
35

2
sin3 φ− 15

2
sinφ

(secφ P̄4,1) =
[
7 sinφλn−1,m(4, 1)(secφ P̄3,1)− 4λn−2,m(4, 1)(secφ P̄2,1)

] 1

3

=
7

3
sinφ

√
3 · 9
5 · 7

(
5

2

√
21

2
sin2 φ− 1

2

√
21

2

)

− 4

3

√
3 · 2 · 9
5 · 4 · 5

(√
15 sinφ

)
=

7 · 5
3 · 2

√
3 · 9 · 7 · 3

5 · 7 · 2
sin3 φ− 7

3 · 2

√
3 · 9 · 7 · 3

5 · 7 · 2
sinφ

− 4

3

√
3 · 2 · 9 · 3 · 5

5 · 4 · 5
sinφ

=
21

2

√
5

2
sin3 φ− 9

2

√
5

2
sinφ

= 3

√
1

10

(
35

2
sin3 φ− 15

2
sinφ

)
(secφ P̄4,2) =

[
7 sinφλn−1,m(4, 2)(secφ P̄2,2)− 5λn−2,m(4, 2)(secφ P̄2,2)

] 1

2

=
7

2
sinφ

√
2 · 9
6 · 7

(
1

2

√
105 sinφ cosφ

)
− 5

2

√
2 · 9

6 · 5 · 5

(
1

2

√
15 cosφ

)
=

7

4

√
2 · 3 · 3 · 3 · 5 · 7

2 · 3 · 7
sin2 φ cosφ− 5

4

√
2 · 3 · 5 · 3 · 3

2 · 3 · 5 · 5
cosφ

=
21

4

√
5 sin2 φ cosφ− 3

4

√
5 cosφ

=
1

2

√
1

5

(
105

2
sin2 φ cosφ− 15

2
cosφ

)
(secφ P̄4,3) = 7 sinφλn−1,m(4, 3)(secφ P̄1,1)− 6λn−2,m(4, 3)(secφ P̄2,3)

= 7 sinφ

√
9

7 · 7

(
1

2

√
35

2
cos2 φ

)
− 6
√

0 · 0

=
7

2

√
3 · 3 · 5 · 7

2 · 7 · 7
sinφ cos2 φ

=
3

2

√
35

2
sinφ cos2 φ =

1

2

√
1

70

(
105 sinφ cos2 φ

)
Sectorial (Diagonal) ALF Derivatives

(cosφ P̄ ′1,1) = − sinφ (secφ P̄1,1)

18

= −
√

3 sinφ =
√

3 (− sinφ)

(cosφ P̄ ′2,2) = −2 sinφ (secφ P̄2,2)

= −2 sinφ

(
1

2

√
15 cosφ

)
= −

√
15 sinφ cosφ =

1

2

√
5

3
(−6 sinφ cosφ)

(cosφ P̄ ′3,3) = −3 sinφ (secφ P̄3,3)

= −3 sinφ

(
1

2

√
35

2
cos2 φ

)

= −3

2

√
35

2
sinφ cos2 φ =

1

6

√
7

10

(
−45 sinφ cos2 φ

)
(cosφ P̄ ′4,4) = −4 sinφ (secφ P̄4,4)

= −4 sinφ

(
3

8

√
35 cos3 φ

)
= −3

2

√
35 sinφ cos3 φ =

1

8

√
1

35

(
−420 sinφ cos3 φ

)
Tesseral ALF Derivatives: Row 2 (n = 2)

(cosφ P̄ ′2,1) = −2 sinφ (secφ P̄2,1) + 3λn−1,m(2, 1)(secφ P̄1,1)

= −2 sinφ
(√

15 sinφ
)

+ 3

√
5

3 · 3
√

3

= −2
√

15 sin2 φ+
√

15 =

√
5

3

(
−6 sin2 φ+ 3

)
Tesseral ALF Derivatives: Row 3 (n = 3)

(cosφ P̄ ′3,1) = −3 sinφ (secφ P̄3,1) + 4λn−1,m(3, 1)(secφ P̄2,1)

= −3 sinφ

(
5

2

√
21

2
sin2 φ− 1

2

√
21

2

)
+ 4

√
2 · 7
4 · 5

(√
15 sinφ

)
= −15

2

√
21

2
sin3 φ+

3

2

√
21

2
sinφ+

√
2 · 7 · 4 · 3 sinφ

= −15

2

√
21

2
sin3 φ+

11

2

√
21

2
sinφ

=

√
7

6

(
−45

2
sin3 φ+

33

2
sinφ

)
(cosφ P̄ ′3,2) = −3 sinφ (secφ P̄3,2) + 5λn−1,m(3, 2)(secφ P̄2,2)

= −3 sinφ

(
1

2

√
105 sinφ cosφ

)
+ 5

√
7

5 · 5

(
1

2

√
15 cosφ

)
= −3

2

√
105 sin2 φ cosφ+

1

2

√
105 cosφ

19

=
1

2

√
7

15

(
−45 sin2 φ cosφ+ 15 cosφ

)
Tesseral ALF Derivatives: Row 4 (n = 4)

The example in the Lear document that corresponds to the following example contains a typographical error.
The final result for the ALF should be

(cosφP ′4,1) = −70 sin4 φ+
135

2
sin2 φ− 15

2

(cosφ P̄ ′4,1) = −4 sinφ (secφ P̄4,1) + 5λn−1,m(4, 1)(secφ P̄3,1)

= −4 sinφ

(
21

2

√
5

2
sin3 φ− 9

2

√
5

2
sinφ

)

+ 5

√
3 · 9
5 · 7

(
5

2

√
21

2
sin2 φ− 1

2

√
21

2

)

= −21
√

10 sin4 φ+ 9
√

10 sin2 φ+
5 · 5

2

√
3 · 9 · 7 · 3

2 · 5 · 7
sin2 φ

− 5

2

√
3 · 9 · 7 · 3

2 · 5 · 7

= −21
√

10 sin4 φ+
81

2

√
5

2
sin2 φ− 9

2

√
5

2

= 3

√
1

10

(
−70 sin4 φ+

135

2
sin2 φ− 15

2

)
(cosφ P̄ ′4,2) = −4 sinφ (secφ P̄4,2) + 6λn−1,m(4, 2)(secφ P̄3,2)

= −4 sinφ

(
21

4

√
5 sin2 φ cosφ− 3

4

√
5 cosφ

)
+ 6

√
2 · 9
6 · 7

(
1

2

√
105 sinφ cosφ

)
= −21

√
5 sin3 φ cosφ+ 3

√
5 sinφ cosφ

+ 3

√
9 · 3 · 5 · 7

3 · 7
sinφ cosφ

= −21
√

5 sin3 φ cosφ+ 12
√

5 sinφ cosφ

=
1

2

√
1

5

(
−210 sin3 φ cosφ+ 120 sinφ cosφ

)
(cosφ P̄ ′4,3) = −4 sinφ (secφ P̄4,3) + 7λn−1,m(4, 3)(secφ P̄3,3)

= −4 sinφ

(
3

2

√
35

2
sinφ cos2 φ

)
+ 7

√
9

7 · 7

(
1

2

√
35

2
cos2 φ

)

= −3
√

70 sin2 φ cos2 φ+
3

2

√
35

2
cos2 φ

=
1

2

√
1

70

(
−420 sin2 φ cos2 φ+ 105 cos2 φ

)

20

3.3 Gottlieb Algorithm

3.3.1 Basis of the Gottlieb Approach

Mueller [10] developed an efficient algorithm for solving the gravitational potential function which, like Pines,
defined special functions by reallocating the factors in each term of the potential function. Gottlieb [3] then
defined the gradient of Mueller’s potential function in terms of the partial derivatives with respect to these
special functions. Recursions for the partial derivatives of the special functions were then developed to
resolve the gravitational acceleration.

Gottlieb’s approach was originally documented in Ref. [11], but the use of an unstable ALF recursion
limits its applicability to low degrees and orders. An updated algorithm was subsequently published in
Ref. [3] including a more stable ALF generator. It should be noted, however, that the Ada code in Ref. [3]
only features the stable ALF recursion in the normalized implementation. It is hereby recommended that
any unnormalized implementation of the Gottlieb algorithm be based on the update in Ref. [3] with the
careful inclusion of the stable ALF generator featured in the normalized implementation. Such a revised
version of the unnormalized code was used in the current study and can be found in Section C.8.

3.3.2 Normalized Gottlieb Algorithm

Each of the recursion equations of the Gottlieb algorithm have been normalized in Ref. [3] using analogs to the
normalization parameters of this document. The equations in the original normalized derivation have been
reconfigured in this document to thus illustrate their use of the conventional normalization parameters in
Section 2.4. Each of the original equations can be found in Ref. [3]. The added normalization parameters are
denoted with an underbrace or overbrace to bring attention to the changes from the unnormalized equations
in the original document.

Normalizing the Gottlieb recursions requires a few new normalization parameters in addition to the
parameters derived for a normalized Lear implementation. The new normalization parameters are outlined
in Table 3.2.

Table 3.2: Normalization Parameters λ Needed for a Normalized Gottlieb Algorithm

λn,m+1(n,m) =
Nn,m
Nn,m+1

=

√
(n+m+ 1)(n−m)(2− δ0,m)

2
(3.12)

λn,m+1(n, 0) =
Nn,0
Nn,1

=

√
(n+ 1)n

2
(3.13)

(3.14)

In this section, sinφ has been replaced by ε to keep a consistent notation with the original document.

Recursion for Sectorial ALFs P̄nn

This recursion utilizes Parameter 3.3. For n = 2 through nd

P̄nn = λn−1,n−1(n,m)︸ ︷︷ ︸
3.3

P̄n−1n−1 (2n− 1) (3.15)

where P̄ 1
1 =
√

3.

21

Recursion for Tesseral ALFs P̄n−1n

This recursion utilizes Parameter 3.12. For n = 2 through nd

P̄n−1n = λn,m+1(n, n− 1)︸ ︷︷ ︸
3.12

εP̄nn (3.16)

Recursion for Zonal Legendre Polynomials P̄ 0
n = P̄n

This recursion utilizes Parameters 3.1 and 3.2. For n = 2 through nd

P̄ 0
n = P̄n =

1

n
[(2n− 1)ε λn−1(n)︸ ︷︷ ︸

3.1

P̄n−1 − (n− 1)λn−2(n)︸ ︷︷ ︸
3.2

P̄n−2] (3.17)

where P̄0 = 1 and P̄1 = N1P1 =
√

3 ε.

Recursion for Tesseral ALFs P̄mn

This recursion utilizes Parameters 3.4 and 3.5. For n = 2 through nd and (inner loop) m = 1 through nd− 2

P̄mn =
1

n−m
[(2n− 1)ε λn−1,m(n,m)︸ ︷︷ ︸

3.4

P̄mn−1 − (n+m− 1)λn−2,m(n,m)︸ ︷︷ ︸
3.5

P̄mn−2] (3.18)

Recursion for Intermediate Sum Hn

This recursion utilizes Parameters 3.13 and 3.12. For n = 2 through nd

Hn = Cn,0

3.13︷ ︸︸ ︷
λn,m+1(n, 0) P̄ 1

n

+

n∑
m=1

λn,m+1(n,m)︸ ︷︷ ︸
3.12

P̄m+1
n

rm
(Cn,mCm + Sn,mSm) (3.19)

22

THIS PAGE IS INTENTIONALLY LEFT BLANK.

23

24

Chapter 4

Verifications and Conclusions

Each of the algorithms addressed in this paper were at first coded directly from the unnormalized equa-
tions (or adapted from provided unnormalized code if included) in the original primary sources and then
tested against normalized implementations of each developed by adding normalization parameters to the
unnormalized codes (with the notable exception of the Pines algorithm, for which the already-coded De-
Mars normalized implementation was used in conjunction with the unnormalized implementation coded
from scratch).

Surprisingly, the early results showed a fairly large discrepancy between the results of the normalized
and unnormalized implementations for two of the three algorithms. Originally, only the Lear algorithm had
consistent results between normalized and unnormalized implementations. Through numerical analysis and
extremely laborious debugging, it became evident that the generator for the ALFs was the source of error.
Further experimentation verified that the stability of the algorithms depended largely on the stability of
the ALF generator used. Finally, the results of all testing appeared to indicate that normalization amplifies
any inherent noise and error in each of the algorithms, a conclusion that further drove the development of
additional conclusions and recommendations.

After appropriate updates were made to each of the codes, all six implementations agreed with each
other in all tests with negligible error. Figure 4.1 shows that, using the proper implementations found in
Appendix C, the differences in the algorithms are limited to numerical noise.

25

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−18

Maximum degree and order

D
ev

ia
tio

n
fr

om
 s

ta
bl

e
no

rm
al

iz
ed

 P
in

es
 (

km
/s

2)

Lear (norm)
Gottlieb (norm)

Figure 4.1: Acceleration error magnitude for normalized models at equator (φ = 0◦).

4.1 Implementation Notes

4.1.1 Pines Unnormalized

Since the normalized Pines implementation was provided to the authors already coded by DeMars but
its results appeared more stable than the unnormalized implementation coded from scratch directly using
the Pines equations, it was suspected that the two implementations were in some way different. As an
experiment, the unnormalized Pines code was replaced by a copy of the normalized version of the code which
had been “unnormalized,” revealing that the ALF generator was in fact different between the two Pines
implementations utilized in the first test.

4.1.2 Gottlieb Unnormalized

In a troubleshooting approach similar to that of the Pines issues early in testing, a line-by-line analysis of
the provided Ada codes in Ref. [3] revealed that the unnormalized implementation continued to utilize a
recursion equation described earlier in that document to be unstable. The code as-written for the normalized
implementation, however, had been updated to include the same stable recursion as the Lear algorithm and
the DeMars implementation of Pines [4, Recursion I]. Doing so resolved all of the errors seen in early
preliminary testing. A corrected version of the code can be found in Section C.8.

4.2 Preliminary Testing

To test both the normalized and unnormalized implementations of each algorithm (six total implementations)
for agreement, acceleration vectors were computed at a set of positions around a given central body. The
Moon was chosen for the central body, and normalized LP150Q mass coefficients were utilized for the test
(see Appendix C). The mass coefficients were unnormalized using the recursions in Section 2.2 to pass to
the unnormalized algorithms. Tests utilized central-body-fixed position vectors with latitudes ranging from

26

−90◦ to +90◦ in 30◦ increments and at each longitude from −150◦ to +180◦ in 30◦ increments. Each position
vector was given a 200-kilometer altitude above the lunar reference radius of 1738 kilometers.

At each of these positions, the acceleration was computed with all six algorithms with a variety of gravity
model sizes. As a first check to ensure the algorithms functioned properly, a 0 × 0 model was tested to
obtain the central body acceleration. Square models 2× 2 through 50× 50 were then tested, followed by the
non-square models 50 × 0 through 50 × 49. Finally, the “extreme” cases of 125 × 125 and 150 × 150 were
tested to ensure the normalized models in fact converged at relatively high degrees and orders. Section C.1
provides the MATLAB script used to drive the preliminary tests.

The DeMars [5] implementation of normalized Pines was considered the baseline model because it was
based on the extensive stability studies of Lundberg and Schutz. Error, defined for each tested iteration
as the magnitude of the delta vector between the DeMars-calculated acceleration vector and the calculated
accleration vectors from each of the other algorithms, was considered acceptable if the order of magnitude
was 10−18 or smaller. This is the order of magnitude of 10 times truncation error for the acceleration
magnitudes tested, which was obtained by passing various acceleration vector magnitudes from the DeMars
subroutine as arguments to the MATLAB eps function.

The output of the first MATLAB script to test the algorithms is listed in Appendix B. Once the imple-
mentations were all verified to contain stable ALF generators, the “preliminary” testing showed no major
discrepancies in accuracy between the implementations. An additional trend study was conducted to further
examine effects due to increasing degree and order.

4.3 Increasing Degree and Order Trend Study

The tests outlined in Section 4.2 were modified to only calculate accelerations with all the square models
from 2× 2 through 150× 150. This would allow a trend to emerge when plotting the error versus the degree
and order of the model if any existed. Section C.2 provides the MATLAB script used to drive the trend
study tests. Meaningful plots could not be created because the differences between each of the nominal
algorithms is on the order of numerical noise.

27

4.4 Trend Study with Unstable Associated Legendre Function
Generators

To study trends in unstable ALF generators, Gottlieb and Pines implementations with known unstable ALF
generators were intentionally run through the trending script.

Note that these results are not true results for the implementations described in Ap-
pendix C but implementations that were intentionally run in an unstable configuration.

Figure 4.2 shows the growth of deviation in an unnormalized Gottlieb from the normalized Pines at large
degree and order using an unstable ALF generator1. At the equator, the deviation from normalized Pines

0 50 100 150
0

1

2

3

4

5

6

7

8
x 10

−5

Maximum degree and order

D
ev

ia
tio

n
fr

om
 s

ta
bl

e
no

rm
al

iz
ed

 P
in

es
 (

km
/s

 2)

Pines (unnorm)
Lear (unnorm)
Gottlieb (unnorm)

Figure 4.2: Acceleration error magnitude for unnormalized models (intentionally unstable Gottlieb)
at equator (φ = 0◦).

in both the normalized and unnormalized unstable Gottlieb grows slowly with increasing degree and order
and suddenly diverges to positive infinity when the degree and order approaches 150. The rate of growth of
error in Gottlieb is drastically larger as seen by comparing the scales of the y-axis of Figures 4.2 and 4.3.
The beginning of the divergence of Gottlieb from the other two models (which remain closely in line with
each other) in the unstable implementations can be clearly seen in Figure 4.4.

1This is the ALF generator utilized in the original Gottlieb reference [11] which was later found to be unstable. It has no
analogue in Lundberg and Schutz [4].

28

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum degree and order

D
ev

ia
tio

n
fr

om
 s

ta
bl

e
no

rm
al

iz
ed

 P
in

es
 (

km
/s

 2)

Lear (norm)
Gottlieb (norm)

Figure 4.3: Acceleration error magnitude for normalized models (intentionally unstable Gottlieb) at
equator (φ = 0◦).

This same test was run using a known unstable ALF generator2 in the Pines algorithm. The error
behavior of this known unstable algorithm at the poles mirrors the behavior of the Gottlieb error at the
equator. This is shown by comparing unnormalized deviations from normalized Pines in Figure 4.5.
A normalized implementation of the unstable Pines shows that the error is again much larger than the
deviation of the unnormalized unstable Pines, as seen in Figure 4.6. This large disparity between normalized
and unnormalized error also resembles the deviations of the two unstable Gottlieb implementations tested.

2Unnormalized Recursion IV from Lundberg and Schutz [4].

29

60 65 70 75 80 85

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−17

Maximum degree and order

D
ev

ia
tio

n
fr

om
 s

ta
bl

e
no

rm
al

iz
ed

 P
in

es
 (

km
/s

 2)

Pines (unnorm)
Lear (unnorm)
Gottlieb (unnorm)

Figure 4.4: Acceleration error magnitude for unnormalized models (intentionally unstable Gottlieb)
at equator (φ = 0◦) with degree and order 60–85.

0 50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

25

Maximum degree and order

D
ev

ia
tio

n
fr

om
 s

ta
bl

e
no

rm
al

iz
ed

 P
in

es
 (

km
/s

 2)

Pines (unnorm, unstable)
Lear (unnorm)
Gottlieb (unnorm)

Figure 4.5: Acceleration error magnitude for unnormalized models (intentionally unstable Pines) at
south pole (φ = −90◦).

30

0 50 100 150
0

1

2

3

4

5

6

7

8

9
x 10

25

Maximum degree and order

D
ev

ia
tio

n
fr

om
 s

ta
bl

e
no

rm
al

iz
ed

 P
in

es
 (

km
/s

 2)

Pines (norm, unstable)
Lear (norm)
Gottlieb (norm)

Figure 4.6: Acceleration error magnitude for normalized models (intentionally unstable Pines) at
south pole (φ = −90◦).

31

4.5 Conclusions

Four primary conclusions can be drawn from the data presented in this paper.

1. Pines (as implemented by DeMars), Lear, and Gottlieb (as implemented in this paper)
algorithms are stable because they use a stable ALF recursion. It is worth noting that virtually
the same recursion equation [4, Recursion I] is used for generating ALFs in the stable implementations
of all three algorithms. The very similar behavior between the three algorithms can thus be explained
by the similarity in their ALF generators.

2. Gottlieb [11] and Pines algorithms, as originally published, are unstable due to unstable
ALF recursions. The apparently unstable behavior of the original Gottlieb algorithm, also erro-
neously reprinted in the updated unnormalized implementation code [3], is presumed to be the result
of an unstable ALF generator used in the algorithm. This conclusion is motivated by the similar
signature of the error data with a known unstable ALF generator, the Pines algorithm with unnor-
malized recursion IV from Lundberg and Schutz [4] with which it was originally published. The error
is position-vector-specific, much like the error that develops in the inherently unstable Pines imple-
mentation, albeit in a different position. The fact that both error signatures are latitude-dependent
implies the ALF generator is the source of the instability, since the argument of ALFs used for spherical
harmonic expansion is always sinφ and is the only use of latitude in the equations.

3. Normalization of recursions amplifies numerical instability. Normalizing unstable ALF gen-
erators further decreases their stability and amplifies their error dramatically. This conclusion is sup-
ported by observing the same amplified error in both a known unstable ALF generator in Pines and
the presumed-unstable ALF generator of the original Gottlieb in their “normalized” implementations
relative to their unnormalized equivalents.

4. Unnormalized algorithms provide perfectly valid results at high degree and order as long
as coefficients can be reliably unnormalized. Normalized and unnormalized implementations
of all algorithms agree very well with each other, even at high degree and order. This leads to the
conclusion that it is safe to use unnormalized algorithms as long as proper unnormalization of the
coefficients is performed, such as using the recursions in Section 2.2, and ensuring the coefficients
themselves are not too small to be electronically represented. If a relatively small gravity model is
always desired, such as for computational speed efficiencies, it is perfectly acceptable to continue the
practice of implementing unnormalized algorithms for calculating gravitational acceleration.

4.6 Recommendations

The authors present the following two recommendations:

1. The Gottlieb [11] and Pines algorithms should not be implemented directly as originally
published. Unless the more stable ALF generation scheme of normalized Ref. [3] is implemented as is
presented in this paper in Section C.8 or the improvements to Pines by DeMars, these algorithms should
not be used in their originally published forms if incorporating models much larger than approximately
40 × 40 due to the potential for instability. The normalized implementation later updated by
Gottlieb [3], however, is perfectly valid as printed.

Stable recursions have been examined by Lundberg and Schutz [4], so their recursions should be adapted
for new algorithms or implementations.

2. Normalized implementations are better suited to software packages than unnormalized
algorithms. Normalized algorithms are not only better suited for acceleration calculation with larger
gravity models because of the smaller range of orders of magnitude involved in computation, their
consistency with unnormalized algorithms makes them desirable for all implementations in software

32

packages seeking to maintain versatility and robustness when computing gravitational acceleration.
Normalized algorithms, when properly implemented, should always return a valid acceleration given
r > 0, a set of normalized coefficients, and a valid degree and order. Fast recursions for generating
the normalization parameters can also reduce or eliminate any differences in computational time from
unnormalized implementations.

33

THIS PAGE IS INTENTIONALLY LEFT BLANK.

34

Appendix A

Legendre Polynomials as a Maclaurin
Series Expansion

A function of the form f(α) = (1− α)−1/2 can be expanded through a Maclaurin series.

f(α) =

∞∑
n=0

αn

n!

[
dnf(β)

dβn

]
β=0

(A.1)

By inspection, it can be shown that Eq. A.2 is the form of the derivative of f .

dnf(α)

dαn
=

(2n)!

22nn!
(1− α)−(2n+1)/2 (A.2)

For the Maclaurin condition β = 0, the derivative reduces to the ratio of factorials. Substituting back into
Eq. A.1,

f(α) =

∞∑
n=0

(2n)!

(2nn!)2
αn (A.3)

For the traditional expansion of 1/
√

1 +R2 − 2R cos γ,

α = 2R cos γ −R2 (A.4)

Given this binomial expression for α, the αn factor of Eq. A.3 can be further expanded via the binomial
theorem.

(2R cos γ −R2)n =

n∑
k=0

(
n
k

)
(2R cos γ)n−k(−R2)k (A.5)

Gathering like factors and substituting into Eq. A.3,

f(α) =

∞∑
n=0

n∑
k=0

(−1)k(2n)!

2n+k(n!)2

(
n
k

)
Rn+k cosn−k γ (A.6)

Because it is ideal to gather terms with common exponents of R, the addends of Eq. A.6 are written as
a function of q = n+ k.

g(q, k) =
(−1)k(2q − 2k)!

2q((q − k)!)2

(
q − k
k

)
Rq cosq−2k γ (A.7)

Expanding the binomial coefficient contains a factorial (q − 2k)!, which imposes the constraint q ≥ 2k or
q/2 ≥ k on the function since factorials are undefined for negative numbers. Since q = n when k = 0 and

35

k ≥ 0, q is applicable over the same range as n. Substituting the function g(q, k) into Eq. A.6, expanding
the binomial coefficient, and updating the summation bounds to match the new variables and constraints,

f(α) =

∞∑
q=0

bq/2c∑
k=0

(−1)k(2q − 2k)!

2q(q − k)!k!(q − 2k)!
Rq cosq−2k γ (A.8)

where b c is the integer floor function.
Eq. A.9 groups factors that can be further simplified in later steps.

f(α) =

∞∑
q=0

Rq

 1

2qq!

bq/2c∑
k=0

(
q!

(q − k)!k!

)(
(2q − 2k)!

(q − 2k)!
cosq−2k γ

)
(−1)k

 (A.9)

The factorial ratio in the first set of parentheses is the familiar binomial coefficient. The second set of paren-
theses is the form for a recursive derivative with respect to cos γ. Eq. A.10 substitutes these simplifications.

f(α) =

∞∑
q=0

Rq

[
1

2qq!

q∑
k=0

(
q
k

)(
dq

d(cos γ)q
cos2q−2k γ

)
(−1)k

]
(A.10)

Backing out the derivative removed the (q−2k)! factorial, thus removing the constraint on the summation over
k. Since differentiation is a linear operation, the differential operator can be pulled outside the summation
over k.

f(α) =

∞∑
q=0

Rq

[
1

2qq!

dq

d(cos γ)q

q∑
k=0

{(
q
k

)
(cos2 γ)q−k(−1)k

}]
(A.11)

The quantity in curly braces is an expansion via the binomial theorem. Simplifying back into binomial form,
the quantity in square brackets in Eq. A.12 is Rodrigues’ formula for the Legendre polynomials.

f(α) =

∞∑
q=0

Rq
[

1

2qq!

dq

d(cos γ)q
(cos2 γ − 1)q

]
(A.12)

Finally, we arrive at the desired power series expansion in Eq. A.13.

1√
1 +R2 − 2R cos γ

= f(α) =

∞∑
q=0

Pq(cos γ)Rq (A.13)

36

Appendix B

Preliminary Results

This section contains the final output of the “preliminary” MATLAB test script. Note: If neither “normal-
ized” nor “unnormalized” are specified in the error nomenclature, error is defined as the difference between
the results of the normalized and unnormalized versions of the respective algorithm. Otherwise, error is de-
fined as the magnitude of the delta vector between each algorithm’s acceleration vector and the Normalized
Pines acceleration vector. See Section 4.2 for additional information.

All the results were within the acceptable tolerance of O(10−18) as defined in Section 4.2.

Maximum central body unnormalized Pines error: 2.65574e-019

at lat/lon: -30/-60

degree x order: 0x0

Maximum central body unnormalized Lear error: 4.8487e-019

at lat/lon: 0/-120

degree x order: 0x0

Maximum central body unnormalized Gottlieb error: 6.50521e-019

at lat/lon: -90/-150

degree x order: 0x0

Maximum central body normalized Lear error: 0

at lat/lon: -90/-150

degree x order: 0x0

Maximum central body normalized Gottlieb error: 0

at lat/lon: -90/-150

degree x order: 0x0

Maximum square unnormalized Lear error: 1.99033e-018

at lat/lon: 0/30

degree x order: 48x48

Maximum square unnormalized Gottlieb error: 2.31522e-018

at lat/lon: 30/120

degree x order: 45x45

Maximum non-square unnormalized Lear error: 2.28713e-018

at lat/lon: 30/-90

degree x order: 50x9

Maximum non-square unnormalized Gottlieb error: 3.03577e-018

at lat/lon: 0/180

degree x order: 50x3

Maximum square Pines error: 2.65574e-019

at lat/lon: -30/-150

degree x order: 1x1

37

Maximum square Lear error: 2.48422e-019

at lat/lon: 60/60

degree x order: 46x46

Maximum square Gottlieb error: 2.42435e-019

at lat/lon: 60/-90

degree x order: 9x9

Maximum non-square Pines error: 4.96844e-019

at lat/lon: -60/-60

degree x order: 50x13

Maximum non-square Lear error: 2.65574e-019

at lat/lon: -30/150

degree x order: 50x25

Maximum non-square Gottlieb error: 2.48422e-019

at lat/lon: -60/-60

degree x order: 50x35

Maximum square normalized Lear error 125: 9.00606e-019

at lat/lon: 30/-90

degree x order: 125x125

Maximum square normalized Gottlieb error 125: 2.82725e-018

at lat/lon: 0/-120

degree x order: 125x125

Maximum square normalized Lear error 150: 2.7959e-018

at lat/lon: 30/150

degree x order: 150x150

Maximum square normalized Gottlieb error 150: 2.89504e-018

at lat/lon: -30/150

degree x order: 150x150

38

Appendix C

MATLAB Code

This appendix contains the verification testing codes (test sh.m, test2.m) as well as the coded implementa-
tions of the three algorithms themselves, each one unnormalized (pines.m, lear.m, gottlieb.m) and normalized
(pinesnorm.m, learnorm.m, gottliebnorm.m). The verification tests were run with the LP150Q Spherical Har-
monic lunar mass coefficients by Alex S. Konopliv from the Spherical Harmonics Gravity ASCII Data Record,
contained in the file jgl150q1.sha. The file contains a header with the applicable gravitational parameter µ
and reference radius aeq. This file was obtained from

http://pds-geosciences.wustl.edu/lunar01/lp-l-rss-5-gravity-v1/lp_1001/sha/jgl150q1.sha

linked from the NASA Planetary Data System Geosciences Node webpage on June 7, 2010. A function for
parsing the data file (load sha.m) is also included.

Each of the algorithms started with the original code provided with each of the algorithms, except for the
Pines implementations that were provided by DeMars [5]. Lines that were modified by the author, either to
extend functionality or to translate properly from FORTRAN to MATLAB, are tagged with the comment
“%RAE”. Lines modified in order to implement normalization are tagged with the comment “%norm”.

C.1 test sh.m

clear

close

clc

format long g

[mu, r_eq, degree, order, c, s] = load_sha(’jgl150q1.sha’);

rmag = r_eq + 200;

rnp = eye(3);

cunnorm(1,1) = 1;

for n=1:degree

ni = n+1;

normfac = sqrt(2*n+1);

for m=0:n

mi = m+1;

cunnorm(ni,mi) = c(ni,mi) * normfac;

sunnorm(ni,mi) = s(ni,mi) * normfac;

normfac = normfac/sqrt((n+m+1)*(n-m)/(1+(m==0)));

end

end

39

http://pds-geosciences.wustl.edu/lunar01/lp-l-rss-5-gravity-v1/lp_1001/sha/jgl150q1.sha

for nlat = 1:7

for nlon = 1:12

lat = (nlat-4)*pi/6;

lon = (nlon-6)*pi/6;

r(1,1) = rmag*cos(lat)*cos(lon);

r(2,1) = rmag*cos(lat)*sin(lon);

r(3,1) = rmag*sin(lat);

clc

disp(nlat)

disp(nlon)

disp(r)

%central body

apines(nlat,nlon,1,:) = pines(mu, r_eq, r, cunnorm, sunnorm, 0, 0, rnp);

alear(nlat,nlon,1,:) = lear(mu, r_eq, r, cunnorm, sunnorm, 0, 0, rnp);

agott(nlat,nlon,1,:) = gottlieb(mu, r_eq, r, cunnorm, sunnorm, 0, 0, ...

rnp);

apinesn(nlat,nlon,1,:) = pinesnorm(mu, r_eq, r, c, s, 0, 0, rnp);

alearn(nlat,nlon,1,:) = learnorm(mu, r_eq, r, c, s, 0, 0, rnp);

agottn(nlat,nlon,1,:) = gottliebnorm(mu, r_eq, r, c, s, 0, 0, rnp);

%square models

for nmax = 2:50

apines(nlat,nlon,nmax,:) = pines(mu, r_eq, r, cunnorm, sunnorm, ...

nmax, nmax, rnp);

alear(nlat,nlon,nmax,:) = lear(mu, r_eq, r, cunnorm, sunnorm, ...

nmax, nmax, rnp);

agott(nlat,nlon,nmax,:) = gottlieb(mu, r_eq, r, cunnorm, sunnorm, ...

nmax, nmax, rnp);

apinesn(nlat,nlon,nmax,:) = pinesnorm(mu, r_eq, r, c, s, nmax, ...

nmax, rnp);

alearn(nlat,nlon,nmax,:) = learnorm(mu, r_eq, r, c, s, nmax, ...

nmax, rnp);

agottn(nlat,nlon,nmax,:) = gottliebnorm(mu, r_eq, r, c, s, nmax, ...

nmax, rnp);

end

%nonsquare models with n=50

for mmax = 0:49

mi = mmax + 51;

apines(nlat,nlon,mi,:) = pines(mu, r_eq, r, cunnorm, sunnorm, 50, ...

mmax, rnp);

alear(nlat,nlon,mi,:) = lear(mu, r_eq, r, cunnorm, sunnorm, 50, ...

mmax, rnp);

agott(nlat,nlon,mi,:) = gottlieb(mu, r_eq, r, cunnorm, sunnorm, ...

50, mmax, rnp);

apinesn(nlat,nlon,mi,:) = pinesnorm(mu, r_eq, r, c, s, 50, mmax, ...

rnp);

alearn(nlat,nlon,mi,:) = learnorm(mu, r_eq, r, c, s, 50, mmax, rnp);

agottn(nlat,nlon,mi,:) = gottliebnorm(mu, r_eq, r, c, s, 50, ...

mmax, rnp);

end

%normalized at 125x125

apines(nlat,nlon,101,:) = pines(mu, r_eq, r, cunnorm, sunnorm, 125, ...

125, rnp);

alear(nlat,nlon,101,:) = lear(mu, r_eq, r, cunnorm, sunnorm, 125, ...

125, rnp);

agott(nlat,nlon,101,:) = gottlieb(mu, r_eq, r, cunnorm, sunnorm, 125, ...

125, rnp);

apinesn(nlat,nlon,101,:) = pinesnorm(mu, r_eq, r, c, s, 125, 125, rnp);

alearn(nlat,nlon,101,:) = learnorm(mu, r_eq, r, c, s, 125, 125, rnp);

agottn(nlat,nlon,101,:) = gottliebnorm(mu, r_eq, r, c, s, 125, 125, rnp);

40

%normalized at 150x150

apines(nlat,nlon,102,:) = pines(mu, r_eq, r, cunnorm, sunnorm, 150, ...

150, rnp);

alear(nlat,nlon,102,:) = lear(mu, r_eq, r, cunnorm, sunnorm, 150, ...

150, rnp);

agott(nlat,nlon,102,:) = gottlieb(mu, r_eq, r, cunnorm, sunnorm, 150, ...

150, rnp);

apinesn(nlat,nlon,102,:) = pinesnorm(mu, r_eq, r, c, s, 150, 150, rnp);

alearn(nlat,nlon,102,:) = learnorm(mu, r_eq, r, c, s, 150, 150, rnp);

agottn(nlat,nlon,102,:) = gottliebnorm(mu, r_eq, r, c, s, 150, 150, rnp);

% deviation of unnormalized from standard

for i = 1:102

uleardiff(nlat,nlon,i) = norm(squeeze(...

alear(nlat,nlon,i,:)-apinesn(nlat,nlon,i,:)));

ugottdiff(nlat,nlon,i) = norm(squeeze(...

agott(nlat,nlon,i,:)-apinesn(nlat,nlon,i,:)));

end

% deviation of normalized from unnormalized

for i = 1:102

pinesdiff(nlat,nlon,i) = norm(squeeze(...

apines(nlat,nlon,i,:)-apinesn(nlat,nlon,i,:)));

leardiff(nlat,nlon,i) = norm(squeeze(...

alear(nlat,nlon,i,:)-alearn(nlat,nlon,i,:)));

gottdiff(nlat,nlon,i) = norm(squeeze(...

agott(nlat,nlon,i,:)-agottn(nlat,nlon,i,:)));

end

% deviation of normalized from standard

nleardiff(nlat,nlon,1) = norm(squeeze(...

alearn(nlat,nlon,101,:)-apinesn(nlat,nlon,101,:)));

ngottdiff(nlat,nlon,1) = norm(squeeze(...

agottn(nlat,nlon,101,:)-apinesn(nlat,nlon,101,:)));

nleardiff(nlat,nlon,2) = norm(squeeze(...

alearn(nlat,nlon,102,:)-apinesn(nlat,nlon,102,:)));

ngottdiff(nlat,nlon,2) = norm(squeeze(...

agottn(nlat,nlon,102,:)-apinesn(nlat,nlon,102,:)));

[maxucpinesdiff(nlat,nlon) maxucpinesdiffn(nlat,nlon)] = ...

max(squeeze(pinesdiff(nlat,nlon,1)));

[maxucleardiff(nlat,nlon) maxucleardiffn(nlat,nlon)] = ...

max(squeeze(uleardiff(nlat,nlon,1)));

[maxucgottdiff(nlat,nlon) maxucgottdiffn(nlat,nlon)] = ...

max(squeeze(ugottdiff(nlat,nlon,1)));

[maxcleardiff(nlat,nlon) maxcleardiffn(nlat,nlon)] = ...

max(squeeze(leardiff(nlat,nlon,1)));

[maxcgottdiff(nlat,nlon) maxcgottdiffn(nlat,nlon)] = ...

max(squeeze(gottdiff(nlat,nlon,1)));

[maxuleardiff(nlat,nlon,1) maxuleardiffn(nlat,nlon,1)] = ...

max(squeeze(uleardiff(nlat,nlon,2:50)));

[maxugottdiff(nlat,nlon,1) maxugottdiffn(nlat,nlon,1)] = ...

max(squeeze(ugottdiff(nlat,nlon,2:50)));

[maxuleardiff(nlat,nlon,2) maxuleardiffn(nlat,nlon,2)] = ...

max(squeeze(uleardiff(nlat,nlon,51:100)));

[maxugottdiff(nlat,nlon,2) maxugottdiffn(nlat,nlon,2)]= ...

max(squeeze(ugottdiff(nlat,nlon,51:100)));

[maxpinesdiff(nlat,nlon,1) maxpinesdiffn(nlat,nlon,1)] = ...

max(squeeze(pinesdiff(nlat,nlon,2:50)));

[maxleardiff(nlat,nlon,1) maxleardiffn(nlat,nlon,1)] = ...

41

max(squeeze(leardiff(nlat,nlon,2:50)));

[maxgottdiff(nlat,nlon,1) maxgottdiffn(nlat,nlon,1)] = ...

max(squeeze(gottdiff(nlat,nlon,2:50)));

[maxpinesdiff(nlat,nlon,2) maxpinesdiffn(nlat,nlon,2)] = ...

max(squeeze(pinesdiff(nlat,nlon,51:100)));

[maxleardiff(nlat,nlon,2) maxleardiffn(nlat,nlon,2)] = ...

max(squeeze(leardiff(nlat,nlon,51:100)));

[maxgottdiff(nlat,nlon,2) maxgottdiffn(nlat,nlon,2)] = ...

max(squeeze(gottdiff(nlat,nlon,51:100)));

[maxnleardiff(nlat,nlon,1) maxnleardiffn(nlat,nlon,1)] = ...

max(squeeze(nleardiff(nlat,nlon,1)));

[maxngottdiff(nlat,nlon,1) maxngottdiffn(nlat,nlon,1)] = ...

max(squeeze(ngottdiff(nlat,nlon,1)));

[maxnleardiff(nlat,nlon,2) maxnleardiffn(nlat,nlon,2)] = ...

max(squeeze(nleardiff(nlat,nlon,2)));

[maxngottdiff(nlat,nlon,2) maxngottdiffn(nlat,nlon,2)] = ...

max(squeeze(ngottdiff(nlat,nlon,2)));

end

end

maxuleardiffn(:,:,2) = maxuleardiffn(:,:,2) + 50;

maxugottdiffn(:,:,2) = maxugottdiffn(:,:,2) + 50;

maxpinesdiffn(:,:,2) = maxpinesdiffn(:,:,2) + 50;

maxleardiffn(:,:,2) = maxleardiffn(:,:,2) + 50;

maxgottdiffn(:,:,2) = maxgottdiffn(:,:,2) + 50;

%max deviation

[x maxucpinesdiffi] = max(maxucpinesdiff(1:84));

[x maxucleardiffi] = max(maxucleardiff(1:84));

[x maxucgottdiffi] = max(maxucgottdiff(1:84));

[x maxcleardiffi] = max(maxcleardiff(1:84));

[x maxcgottdiffi] = max(maxcgottdiff(1:84));

[x maxuleardiff1] = max(maxuleardiff(1:84));

[x maxugottdiff1] = max(maxugottdiff(1:84));

[x maxuleardiff2] = max(maxuleardiff(85:168));

[x maxugottdiff2] = max(maxugottdiff(85:168));

[x maxpinesdiff1] = max(maxpinesdiff(1:84));

[x maxleardiff1] = max(maxleardiff(1:84));

[x maxgottdiff1] = max(maxgottdiff(1:84));

[x maxpinesdiff2] = max(maxpinesdiff(85:168));

[x maxleardiff2] = max(maxleardiff(85:168));

[x maxgottdiff2] = max(maxgottdiff(85:168));

[x maxnleardiff1] = max(nleardiff(1:84));

[x maxngottdiff1] = max(ngottdiff(1:84));

[x maxnleardiff2] = max(nleardiff(85:168));

[x maxngottdiff2] = max(ngottdiff(85:168));

maxuleardiff2 = maxuleardiff2 + 84;

maxugottdiff2 = maxugottdiff2 + 84;

maxpinesdiff2 = maxpinesdiff2 + 84;

maxleardiff2 = maxleardiff2 + 84;

maxgottdiff2 = maxgottdiff2 + 84;

maxnleardiff2 = maxnleardiff2 + 84;

maxngottdiff2 = maxngottdiff2 + 84;

42

nlat = 1 + mod(maxucpinesdiffi-1,7);

nlon = 1 + (maxucpinesdiffi - nlat)/7;

fprintf(’Maximum central body unnormalized Pines error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxucpinesdiff(maxucpinesdiffi), (nlat-4)*30, (nlon-6)*30, 0, 0)

nlat = 1 + mod(maxucleardiffi-1,7);

nlon = 1 + (maxucleardiffi - nlat)/7;

fprintf(’Maximum central body unnormalized Lear error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxucleardiff(maxucleardiffi), (nlat-4)*30, (nlon-6)*30, 0, 0)

nlat = 1 + mod(maxucgottdiffi-1,7);

nlon = 1 + (maxucgottdiffi - nlat)/7;

fprintf(’Maximum central body unnormalized Gottlieb error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxucgottdiff(maxucgottdiffi), (nlat-4)*30, (nlon-6)*30, 0, 0)

nlat = 1 + mod(maxcleardiffi-1,7);

nlon = 1 + (maxcleardiffi - nlat)/7;

fprintf(’Maximum central body normalized Lear error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxcleardiff(maxcleardiffi), (nlat-4)*30, (nlon-6)*30, 0, 0)

nlat = 1 + mod(maxcgottdiffi-1,7);

nlon = 1 + (maxcgottdiffi - nlat)/7;

fprintf(’Maximum central body normalized Gottlieb error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxcgottdiff(maxcgottdiffi), (nlat-4)*30, (nlon-6)*30, 0, 0)

nlat = 1 + mod(maxuleardiff1-1,7);

nlon = 1 + (maxuleardiff1 - nlat)/7;

fprintf(’Maximum square unnormalized Lear error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxuleardiff(maxuleardiff1), (nlat-4)*30, (nlon-6)*30, ...

maxuleardiffn(nlat,nlon,1), maxuleardiffn(nlat,nlon,1))

nlat = 1 + mod(maxugottdiff1-1,7);

nlon = 1 + (maxugottdiff1 - nlat)/7;

fprintf(’Maximum square unnormalized Gottlieb error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxugottdiff(maxugottdiff1), (nlat-4)*30, (nlon-6)*30, ...

maxugottdiffn(nlat,nlon,1), maxugottdiffn(nlat,nlon,1))

nlat = 1 + mod(maxuleardiff2-85,7);

nlon = 1 + (maxuleardiff2 - 84 - nlat)/7;

fprintf(’Maximum non-square unnormalized Lear error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxuleardiff(maxuleardiff2), (nlat-4)*30, (nlon-6)*30, 50, ...

maxuleardiffn(nlat,nlon,2)-51)

nlat = 1 + mod(maxugottdiff2-85,7);

nlon = 1 + (maxugottdiff2 - 84 - nlat)/7;

fprintf(’Maximum non-square unnormalized Gottlieb error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxugottdiff(maxugottdiff2), (nlat-4)*30, (nlon-6)*30, 50, ...

maxugottdiffn(nlat,nlon,2)-51)

nlat = 1 + mod(maxpinesdiff1-1,7);

nlon = 1 + (maxpinesdiff1 - nlat)/7;

fprintf(’Maximum square Pines error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxpinesdiff(maxpinesdiff1), (nlat-4)*30, (nlon-6)*30, ...

maxpinesdiffn(nlat,nlon,1), maxpinesdiffn(nlat,nlon,1))

43

nlat = 1 + mod(maxleardiff1-1,7);

nlon = 1 + (maxleardiff1 - nlat)/7;

fprintf(’Maximum square Lear error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxleardiff(maxleardiff1), (nlat-4)*30, (nlon-6)*30, ...

maxleardiffn(nlat,nlon,1), maxleardiffn(nlat,nlon,1))

nlat = 1 + mod(maxgottdiff1-1,7);

nlon = 1 + (maxgottdiff1 - nlat)/7;

fprintf(’Maximum square Gottlieb error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxgottdiff(maxgottdiff1), (nlat-4)*30, (nlon-6)*30, ...

maxgottdiffn(nlat,nlon,1), maxgottdiffn(nlat,nlon,1))

nlat = 1 + mod(maxpinesdiff2-85,7);

nlon = 1 + (maxpinesdiff2 - 84 - nlat)/7;

fprintf(’Maximum non-square Pines error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxpinesdiff(maxpinesdiff2), (nlat-4)*30, (nlon-6)*30, 50, ...

maxpinesdiffn(nlat,nlon,2)-51)

nlat = 1 + mod(maxleardiff2-85,7);

nlon = 1 + (maxleardiff2 - 84 - nlat)/7;

fprintf(’Maximum non-square Lear error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxleardiff(maxleardiff2), (nlat-4)*30, (nlon-6)*30, 50, ...

maxleardiffn(nlat,nlon,2)-51)

nlat = 1 + mod(maxgottdiff2-85,7);

nlon = 1 + (maxgottdiff2 - 84 - nlat)/7;

fprintf(’Maximum non-square Gottlieb error: ’)

fprintf(’%g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxgottdiff(maxgottdiff2), (nlat-4)*30, (nlon-6)*30, 50, ...

maxgottdiffn(nlat,nlon,2)-51)

nlat = 1 + mod(maxnleardiff1-1,7);

nlon = 1 + (maxnleardiff1 - nlat)/7;

fprintf(’Maximum square normalized Lear error 125:’)

fprintf(’ %g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxnleardiff(maxleardiff1), (nlat-4)*30, (nlon-6)*30, 125, 125)

nlat = 1 + mod(maxngottdiff1-1,7);

nlon = 1 + (maxngottdiff1 - nlat)/7;

fprintf(’Maximum square normalized Gottlieb error 125:’)

fprintf(’ %g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxngottdiff(maxngottdiff1), (nlat-4)*30, (nlon-6)*30, 125, 125)

nlat = 1 + mod(maxnleardiff2-85,7);

nlon = 1 + (maxnleardiff2 - 84 - nlat)/7;

fprintf(’Maximum square normalized Lear error 150:’)

fprintf(’ %g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxnleardiff(maxnleardiff2), (nlat-4)*30, (nlon-6)*30, 150, 150)

nlat = 1 + mod(maxngottdiff2-85,7);

nlon = 1 + (maxngottdiff2 - 84 - nlat)/7;

fprintf(’Maximum square normalized Gottlieb error 150:’)

fprintf(’ %g\nat lat/lon: %d/%d\ndegree x order: %dx%d\n\n’, ...

maxngottdiff(maxngottdiff2), (nlat-4)*30, (nlon-6)*30, 150, 150)

C.2 test2.m

clear

close

clc

44

format long g

[mu, r_eq, degree, order, c, s] = load_sha(’jgl150q1.sha’);

rmag = r_eq + 200;

rnp = eye(3);

cunnorm(1,1) = 1;

for n=1:degree

ni = n+1;

normfac = sqrt(2*n+1);

for m=0:n

mi = m+1;

cunnorm(ni,mi) = c(ni,mi) * normfac;

sunnorm(ni,mi) = s(ni,mi) * normfac;

normfac = normfac*sqrt((1+(m==0))/((n+m+1)*(n-m)));

end

end

for nlat = 1:7

for nlon = 1:12

lat = (nlat-4)*pi/6;

lon = (nlon-6)*pi/6;

r(1,1) = rmag*cos(lat)*cos(lon);

r(2,1) = rmag*cos(lat)*sin(lon);

r(3,1) = rmag*sin(lat);

clc

disp(nlat)

disp(nlon)

disp(r)

%square models

for nmax = 2:150

apines(nlat,nlon,nmax,:) = pines(mu, r_eq, r, cunnorm, sunnorm, ...

nmax, nmax, rnp);

alear(nlat,nlon,nmax,:) = lear(mu, r_eq, r, cunnorm, sunnorm, ...

nmax, nmax, rnp);

agott(nlat,nlon,nmax,:) = gottlieb(mu, r_eq, r, cunnorm, sunnorm, ...

nmax, nmax, rnp);

apinesn(nlat,nlon,nmax,:) = pinesnorm(mu, r_eq, r, c, s, nmax, ...

nmax, rnp);

alearn(nlat,nlon,nmax,:) = learnorm(mu, r_eq, r, c, s, nmax, ...

nmax, rnp);

agottn(nlat,nlon,nmax,:) = gottliebnorm(mu, r_eq, r, c, s, nmax, ...

nmax, rnp);

uleardiff(nlat,nlon,nmax) = norm(squeeze(...

alear(nlat,nlon,nmax,:)-apinesn(nlat,nlon,nmax,:)));

ugottdiff(nlat,nlon,nmax) = norm(squeeze(...

agott(nlat,nlon,nmax,:)-apinesn(nlat,nlon,nmax,:)));

nleardiff(nlat,nlon,nmax) = norm(squeeze(...

alearn(nlat,nlon,nmax,:)-apinesn(nlat,nlon,nmax,:)));

ngottdiff(nlat,nlon,nmax) = norm(squeeze(...

agottn(nlat,nlon,nmax,:)-apinesn(nlat,nlon,nmax,:)));

pinesdiff(nlat,nlon,nmax) = norm(squeeze(...

apines(nlat,nlon,nmax,:)-apinesn(nlat,nlon,nmax,:)));

leardiff(nlat,nlon,nmax) = norm(squeeze(...

alear(nlat,nlon,nmax,:)-alearn(nlat,nlon,nmax,:)));

gottdiff(nlat,nlon,nmax) = norm(squeeze(...

agott(nlat,nlon,nmax,:)-agottn(nlat,nlon,nmax,:)));

45

end

end

end

C.3 load sha.m

function [mu, r_eq, degree, order, c, s] = load_sha(filename)

% open file for reading (MATLAB default mode)

f = fopen(filename);

% read header line

r_eq = fscanf(f, ’%g,’, 1);

mu = fscanf(f, ’%g,’, 1);

degree = fscanf(f, ’%*g, %d,’, 1);

order = fscanf(f, ’%d,’, 1);

normalized = fscanf(f, ’%d,’, 1);

% c at degree = 0 and order = 0 is defined as 1

c(1,1) = 1;

if (normalized > 1)

fprintf(’This file uses a nonstandard normalization.\n\n’)

degree = -1;

order = -1;

return

end

% iterate from ’degree’ 1 to degree

for n = 1:degree

ni = n+1; % the value of n to be used as an array index

% if normalized flag is not present, calculate normalization

% factor at order = 0 using recursive method defined by Adamo

if (normalized==0)

% Because the files load in coefficients across rows and

% then down, we seed each row by using factor for order 0

normfac = 1/sqrt(2*n+1);

end

%iterate from ’order’ 0 to n

for m = 0:n

mi = m+1; % the value of m to be used as an array index

% read one line

c(ni,mi) = fscanf(f, ’%*g, %*g %*d, %*d, %g,’, 1);

s(ni,mi) = fscanf(f, ’%g,’, 1);

% if normalized flag is not present, apply normalization

if (normalized==0)

c(ni,mi) = c(ni,mi) * normfac;

s(ni,mi) = s(ni,mi) * normfac;

% calculate factor for next order

normfac = normfac*sqrt((n+m+1)*(n-m)/(1+(m==0)));

end

end

end

fclose(f);

return

C.4 pines.m

function accel = pines(MU, REQ, x, CNM, SNM, NMAX, MMAX, rnp)

46

R_F = rnp*x; %RAE

RMAG = norm(R_F);

S = R_F(1)/RMAG;

T = R_F(2)/RMAG;

U = R_F(3)/RMAG;

ANM = zeros(NMAX+3,NMAX+3); %RAE

ANM(1,1) = 1;

for M = 0:NMAX+2 %RAE

M_A = M + 1;

if(M ~= 0) % DIAGONAL RECURSION

ANM(M_A,M_A) = (2*M-1)*ANM(M_A-1,M_A-1);

end

if(M ~= NMAX+2) % FIRST OFF-DIAGONAL RECURSION %RAE

ANM(M_A+1,M_A) = (2*M+1)*U*ANM(M_A,M_A);

end

if(M < NMAX+1) % COLUMN RECURSION %RAE

for N = M+2:NMAX+2 %RAE

N_A = N + 1;

ANM(N_A,M_A) = ((2*N-1)*U*ANM(N_A-1,M_A)-(N+M-1)*ANM(N_A-2,M_A))/ ...

(N-M);

end

end

end

RM = zeros(MMAX+2,1); %RAE

IM = zeros(MMAX+2,1); %RAE

RM(1) = 0.0D0;

IM(1) = 0.0D0;

RM(2) = 1.0D0; %RAE

IM(2) = 0.0D0; %RAE

for M = 1:MMAX %RAE

M_RI = M + 2; %RAE

RM(M_RI) = S*RM(M_RI-1) - T*IM(M_RI-1);

IM(M_RI) = S*IM(M_RI-1) + T*RM(M_RI-1);

end

RHO = (MU)/(REQ*RMAG);

RHOP = (REQ)/(RMAG);

G1 = 0.0D0;

G2 = 0.0D0;

G3 = 0.0D0;

G4 = 0.0D0;

for N = 0:NMAX

N_A = N + 1;

G1TEMP = 0.0D0;

G2TEMP = 0.0D0;

G3TEMP = 0.0D0;

G4TEMP = 0.0D0;

if (N>MMAX) %RAE

nmodel=MMAX; %RAE

else %RAE

nmodel=N; %RAE

end %RAE

for M = 0:nmodel %RAE

M_A = M + 1;

M_RI = M + 2; %RAE

DNM = CNM(N_A,M_A)*RM(M_RI) + SNM(N_A,M_A)*IM(M_RI);

47

ENM = CNM(N_A,M_A)*RM(M_RI-1) + SNM(N_A,M_A)*IM(M_RI-1);

FNM = SNM(N_A,M_A)*RM(M_RI-1) - CNM(N_A,M_A)*IM(M_RI-1);

G1TEMP = G1TEMP + ANM(N_A,M_A)*(M)*ENM;

G2TEMP = G2TEMP + ANM(N_A,M_A)*(M)*FNM;

G3TEMP = G3TEMP + ANM(N_A,M_A+1)*DNM;

G4TEMP = G4TEMP + ((N+M+1)*ANM(N_A,M_A) + U*ANM(N_A,M_A+1))*DNM;

end

RHO = RHOP*RHO;

G1 = G1 + RHO*G1TEMP;

G2 = G2 + RHO*G2TEMP;

G3 = G3 + RHO*G3TEMP;

G4 = G4 + RHO*G4TEMP;

end

G_F = [G1 - G4*S;G2 - G4*T;G3 - G4*U];

accel=rnp’*G_F; %RAE

return

C.5 pinesnorm.m

function accel = pinesnorm(MU, REQ, x, CNM, SNM, NMAX, MMAX, rnp)

R_F = rnp*x; %RAE

RMAG = norm(R_F);

S = R_F(1)/RMAG;

T = R_F(2)/RMAG;

U = R_F(3)/RMAG;

ANM = zeros(NMAX+3,NMAX+3); %RAE

ANM(1,1) = sqrt(2.0D0); %norm

for M = 0:NMAX+2 %RAE

M_A = M + 1;

if(M ~= 0) % DIAGONAL RECURSION

ANM(M_A,M_A) = sqrt(1+(1/(2*M)))*ANM(M_A-1,M_A-1); %norm

end

if(M ~= NMAX+2) % FIRST OFF-DIAGONAL RECURSION %RAE

ANM(M_A+1,M_A) = sqrt(2*M+3)*U*ANM(M_A,M_A); %norm

end

if(M < NMAX+1) % COLUMN RECURSION %RAE

for N = M+2:NMAX+2 %RAE

N_A = N + 1;

ALPHA_NUM = (2*N+1)*(2*N-1);

ALPHA_DEN = (N-M)*(N+M);

ALPHA = sqrt(ALPHA_NUM/ALPHA_DEN);

BETA_NUM = (2*N+1)*(N-M-1)*(N+M-1);

BETA_DEN = (2*N-3)*(N+M)*(N-M);

BETA = sqrt(BETA_NUM/BETA_DEN);

ANM(N_A,M_A) = ALPHA*U*ANM(N_A-1,M_A) - BETA*ANM(N_A-2,M_A); %norm

end

end

end

for N = 0:NMAX+2 %RAE

N_A = N + 1;

ANM(N_A,1) = ANM(N_A,1)*sqrt(0.5D0); %norm

end

RM = zeros(MMAX+2,1); %RAE

IM = zeros(MMAX+2,1); %RAE

48

RM(1) = 0.0D0;

IM(1) = 0.0D0;

RM(2) = 1.0D0; %RAE

IM(2) = 0.0D0; %RAE

for M = 1:MMAX %RAE

M_RI = M + 2; %RAE

RM(M_RI) = S*RM(M_RI-1) - T*IM(M_RI-1);

IM(M_RI) = S*IM(M_RI-1) + T*RM(M_RI-1);

end

RHO = (MU)/(REQ*RMAG);

RHOP = (REQ)/(RMAG);

G1 = 0.0D0;

G2 = 0.0D0;

G3 = 0.0D0;

G4 = 0.0D0;

for N = 0:NMAX

N_A = N + 1;

G1TEMP = 0.0D0;

G2TEMP = 0.0D0;

G3TEMP = 0.0D0;

G4TEMP = 0.0D0;

SM = 0.5D0;

if (N>MMAX) %RAE

nmodel=MMAX; %RAE

else %RAE

nmodel=N; %RAE

end %RAE

for M = 0:nmodel %RAE

M_A = M + 1;

M_RI = M + 2; %RAE

DNM = CNM(N_A,M_A)*RM(M_RI) + SNM(N_A,M_A)*IM(M_RI);

ENM = CNM(N_A,M_A)*RM(M_RI-1) + SNM(N_A,M_A)*IM(M_RI-1);

FNM = SNM(N_A,M_A)*RM(M_RI-1) - CNM(N_A,M_A)*IM(M_RI-1);

ALPHA = sqrt(SM*(N-M)*(N+M+1)); %norm

G1TEMP = G1TEMP + ANM(N_A,M_A)*(M)*ENM;

G2TEMP = G2TEMP + ANM(N_A,M_A)*(M)*FNM;

G3TEMP = G3TEMP + ALPHA*ANM(N_A,M_A+1)*DNM; %norm

G4TEMP = G4TEMP + ((N+M+1)*ANM(N_A,M_A)+ALPHA*U*ANM(N_A,M_A+1))*DNM;%norm

if(M == 0); SM = 1.0D0; end; %norm

end

RHO = RHOP*RHO;

G1 = G1 + RHO*G1TEMP;

G2 = G2 + RHO*G2TEMP;

G3 = G3 + RHO*G3TEMP;

G4 = G4 + RHO*G4TEMP;

end

G_F = [G1 - G4*S;G2 - G4*T;G3 - G4*U];

accel=rnp’*G_F; %RAE

return

C.6 lear.m

function ag = lear(mu, rbar, r, c, s, nmax, mmax, rnp)

for n=2:nmax %RAE

pnm(n-1,n)=0;

end

49

rgr=rnp*r; %RAE

e1=rgr(1)^2+rgr(2)^2;

r2=e1+rgr(3)^2;

absr=sqrt(r2);

r1=sqrt(e1);

sphi=rgr(3)/absr;

cphi=r1/absr;

sm(1)=0;

cm(1)=1;

if (r1~=0)

sm(1)=rgr(2)/r1;

cm(1)=rgr(1)/r1;

end

rb(1)=rbar/absr;

rb(2)=rb(1)^2;

sm(2)=2*cm(1)*sm(1);

cm(2)=2*cm(1)^2-1;

pn(1)=sphi;

pn(2)=(3*sphi^2-1)/2;

ppn(1)=1;

ppn(2)=3*sphi;

pnm(1,1)=1;

pnm(2,2)=3*cphi;

pnm(2,1)=ppn(2);

ppnm(1,1)=-sphi;

ppnm(2,2)=-6*sphi*cphi;

ppnm(2,1)=3-6*sphi^2;

if (nmax>=3) %RAE

for n=3:nmax %RAE

nm1=n-1;

nm2=n-2;

rb(n)=rb(nm1)*rb(1);

sm(n)=2*cm(1)*sm(nm1)-sm(nm2);

cm(n)=2*cm(1)*cm(nm1)-cm(nm2);

e1=2*n-1;

pn(n)=(e1*sphi*pn(nm1)-nm1*pn(nm2))/n;

ppn(n)=sphi*ppn(nm1)+n*pn(nm1);

pnm(n,n)=e1*cphi*pnm(nm1,nm1);

ppnm(n,n)=-n*sphi*pnm(n,n);

end

for n=3:nmax %RAE

nm1=n-1;

e1=(2*n-1)*sphi;

e2=-n*sphi;

for m=1:nm1

e3=pnm(nm1,m);

e4=n+m;

e5=(e1*e3-(e4-1)*pnm(n-2,m))/(n-m);

pnm(n,m)=e5;

ppnm(n,m)=e2*e5+e4*e3;

end

end

end

asph(1)=-1;

asph(3)=0;

for n=2:nmax %RAE

ni=n+1; %RAE

e1=c(ni,1)*rb(n); %RAE

asph(1)=asph(1)-(n+1)*e1*pn(n);

asph(3)=asph(3)+e1*ppn(n);

end

asph(3)=cphi*asph(3);

t1=0;

t3=0;

asph(2)=0;

50

for n=2:nmax %RAE

ni=n+1; %RAE

e1=0;

e2=0;

e3=0;

if (n>mmax) %RAE

nmodel=mmax; %RAE

else %RAE

nmodel=n; %RAE

end %RAE

for m=1:nmodel %RAE

mi=m+1; %RAE

tsnm=s(ni,mi); %RAE

tcnm=c(ni,mi); %RAE

tsm=sm(m);

tcm=cm(m);

tpnm=pnm(n,m);

e4=tsnm*tsm+tcnm*tcm;

e1=e1+e4*tpnm;

e2=e2+m*(tsnm*tcm-tcnm*tsm)*tpnm;

e3=e3+e4*ppnm(n,m);

end

t1=t1+(n+1)*rb(n)*e1;

asph(2)=asph(2)+rb(n)*e2;

t3=t3+rb(n)*e3;

end

e4=mu/r2;

asph(1)=e4*(asph(1)-cphi*t1);

asph(2)=e4*asph(2);

asph(3)=e4*(asph(3)+t3);

e5=asph(1)*cphi-asph(3)*sphi;

agr(1,1)=e5*cm(1)-asph(2)*sm(1); %RAE

agr(2,1)=e5*sm(1)+asph(2)*cm(1); %RAE

agr(3,1)=asph(1)*sphi+asph(3)*cphi; %RAE

ag=rnp’*agr; %RAE

return

C.7 learnorm.m

function ag = learnorm(mu, rbar, r, c, s, nmax, mmax, rnp)

for n = 2:nmax %RAE

norm1(n) = sqrt((2*n+1)/(2*n-1)); %RAE

norm2(n) = sqrt((2*n+1)/(2*n-3)); %RAE

norm11(n) = sqrt((2*n+1)/(2*n))/(2*n-1); %RAE

for m = 1:n %RAE

norm1m(n,m) = sqrt((n-m)*(2*n+1)/((n+m)*(2*n-1))); %RAE

norm2m(n,m) = sqrt((n-m)*(n-m-1)*(2*n+1)/((n+m)*(n+m-1)*(2*n-3))); %RAE

end %RAE

end %RAE

for n=2:nmax %RAE

pnm(n-1,n)=0;

end

rgr=rnp*r; %RAE

e1=rgr(1)^2+rgr(2)^2;

r2=e1+rgr(3)^2;

absr=sqrt(r2);

r1=sqrt(e1);

sphi=rgr(3)/absr;

cphi=r1/absr;

sm(1)=0;

cm(1)=1;

if (r1~=0)

sm(1)=rgr(2)/r1;

51

cm(1)=rgr(1)/r1;

end

rb(1)=rbar/absr;

rb(2)=rb(1)^2;

sm(2)=2*cm(1)*sm(1);

cm(2)=2*cm(1)^2-1;

root3=sqrt(3); %RAE

root5=sqrt(5); %RAE

pn(1)=root3*sphi; %norm

pn(2)=root5*(3*sphi^2-1)/2; %norm

ppn(1)=root3; %norm

ppn(2)=root5*3*sphi; %norm

pnm(1,1)=root3; %norm

pnm(2,2)=root5*root3*cphi/2; %norm

pnm(2,1)=root5*root3*sphi; %norm %RAE

ppnm(1,1)=-root3*sphi; %norm

ppnm(2,2)=-root3*root5*sphi*cphi; %norm

ppnm(2,1)=root5*root3*(1-2*sphi^2); %norm

if (nmax>=3) %RAE

for n=3:nmax %RAE

nm1=n-1;

nm2=n-2;

rb(n)=rb(nm1)*rb(1);

sm(n)=2*cm(1)*sm(nm1)-sm(nm2);

cm(n)=2*cm(1)*cm(nm1)-cm(nm2);

e1=2*n-1;

pn(n)=(e1*sphi*norm1(n)*pn(nm1)-nm1*norm2(n)*pn(nm2))/n; %norm

ppn(n)=norm1(n)*(sphi*ppn(nm1)+n*pn(nm1)); %norm

pnm(n,n)=e1*cphi*norm11(n)*pnm(nm1,nm1); %norm

ppnm(n,n)=-n*sphi*pnm(n,n);

end

for n=3:nmax %RAE

nm1=n-1;

e1=(2*n-1)*sphi;

e2=-n*sphi;

for m=1:nm1

e3=norm1m(n,m)*pnm(nm1,m); %norm

e4=n+m;

e5=(e1*e3-(e4-1)*norm2m(n,m)*pnm(n-2,m))/(n-m); %norm

pnm(n,m)=e5;

ppnm(n,m)=e2*e5+e4*e3;

end

end

end

asph(1)=-1;

asph(3)=0;

for n=2:nmax %RAE

ni=n+1; %RAE

e1=c(ni,1)*rb(n); %RAE

asph(1)=asph(1)-(n+1)*e1*pn(n);

asph(3)=asph(3)+e1*ppn(n);

end

asph(3)=cphi*asph(3);

t1=0;

t3=0;

asph(2)=0;

for n=2:nmax %RAE

ni=n+1; %RAE

e1=0;

e2=0;

e3=0;

if (n>mmax) %RAE

nmodel=mmax; %RAE

else %RAE

nmodel=n; %RAE

52

end %RAE

for m=1:nmodel %RAE

mi=m+1; %RAE

tsnm=s(ni,mi); %RAE

tcnm=c(ni,mi); %RAE

tsm=sm(m);

tcm=cm(m);

tpnm=pnm(n,m);

e4=tsnm*tsm+tcnm*tcm;

e1=e1+e4*tpnm;

e2=e2+m*(tsnm*tcm-tcnm*tsm)*tpnm;

e3=e3+e4*ppnm(n,m);

end

t1=t1+(n+1)*rb(n)*e1;

asph(2)=asph(2)+rb(n)*e2;

t3=t3+rb(n)*e3;

end

e4=mu/r2;

asph(1)=e4*(asph(1)-cphi*t1);

asph(2)=e4*asph(2);

asph(3)=e4*(asph(3)+t3);

e5=asph(1)*cphi-asph(3)*sphi;

agr(1,1)=e5*cm(1)-asph(2)*sm(1); %RAE

agr(2,1)=e5*sm(1)+asph(2)*cm(1); %RAE

agr(3,1)=asph(1)*sphi+asph(3)*cphi; %RAE

ag=rnp’*agr; %RAE

return

C.8 gottlieb.m

function accel = gottlieb(mu, re, xin, c, s, nax, max, rnp)

x=rnp*xin; %RAE

r = sqrt(x(1)^2+x(2)^2+x(3)^2);

ri=1/r;

xor=x(1)*ri;

yor=x(2)*ri;

zor=x(3)*ri;

ep=zor;

reor=re*ri;

reorn=reor;

muor2=mu*ri*ri;

p(1,1) = 1; %RAE

p(1,2) = 0; %RAE

p(1,3) = 0; %RAE

p(2,2) = 1; %RAE

p(2,3) = 0; %RAE

p(2,4) = 0; %RAE

for n = 2:nax %RAE

ni = n+1; %RAE

p(ni,ni) = p(n,n)*(2*n-1); %RAE

p(ni,ni+1) = 0; %RAE

p(ni,ni+2) = 0; %RAE

end

ctil(1)=1; %RAE

stil(1)=0; %RAE

ctil(2)=xor; %RAE

stil(2)=yor; %RAE

sumh=0;

sumgm=1;

sumj=0;

sumk=0;

53

p(2,1) = ep; %RAE

for n=2:nax

ni=n+1; %RAE

reorn=reorn*reor;

n2m1=n+n-1;

nm1=n-1;

np1=n+1;

p(ni,n) = ep*p(ni,ni); %RAE

p(ni,1) = (n2m1*ep*p(n,1)-nm1*p(nm1,1))/n; %RAE

p(ni,2) = (n2m1*ep*p(n,2)-n*p(nm1,2))/(nm1); %RAE

sumhn=p(ni,2)*c(ni,1); %RAE

sumgmn=p(ni,1)*c(ni,1)*np1; %RAE

if (max>0)

for m = 2:n-2

mi = m+1; %RAE

p(ni,mi) = (n2m1*ep*p(n,mi)-(nm1+m)*p(nm1,mi))/(n-m); %RAE

end

sumjn=0;

sumkn=0;

ctil(ni)=ctil(2)*ctil(ni-1)-stil(2)*stil(ni-1); %RAE

stil(ni)=stil(2)*ctil(ni-1)+ctil(2)*stil(ni-1); %RAE

if(n<max)

lim=n;

else

lim=max;

end

for m=1:lim

mi=m+1; %RAE

mm1=mi-1; %RAE

mp1=mi+1; %RAE

mxpnm=m*p(ni,mi); %RAE

bnmtil=c(ni,mi)*ctil(mi)+s(ni,mi)*stil(mi); %RAE

sumhn=sumhn+p(ni,mp1)*bnmtil; %RAE

sumgmn=sumgmn+(n+m+1)*p(ni,mi)*bnmtil; %RAE

bnmtm1=c(ni,mi)*ctil(mm1)+s(ni,mi)*stil(mm1); %RAE

anmtm1=c(ni,mi)*stil(mm1)-s(ni,mi)*ctil(mm1); %RAE

sumjn=sumjn+mxpnm*bnmtm1;

sumkn=sumkn-mxpnm*anmtm1;

end

sumj=sumj+reorn*sumjn;

sumk=sumk+reorn*sumkn;

end

sumh = sumh+reorn*sumhn;

sumgm = sumgm+reorn*sumgmn;

end

lambda=sumgm+ep*sumh;

g(1,1)=-muor2*(lambda*xor-sumj);

g(2,1)=-muor2*(lambda*yor-sumk);

g(3,1)=-muor2*(lambda*zor-sumh);

accel=rnp’*g; %RAE

return

C.9 gottliebnorm.m

function accel = gottliebnorm(mu, re, xin, c, s, nax, max, rnp)

for n = 2:nax+1 %RAE

norm1(n) = sqrt((2*n+1)/(2*n-1)); %RAE

norm2(n) = sqrt((2*n+1)/(2*n-3)); %RAE

norm11(n) = sqrt((2*n+1)/(2*n))/(2*n-1); %RAE

normn10(n) = sqrt((n+1)*n/2); %RAE

for m = 1:n %RAE

54

norm1m(n,m) = sqrt((n-m)*(2*n+1)/((n+m)*(2*n-1))); %RAE

norm2m(n,m) = sqrt((n-m)*(n-m-1)*(2*n+1)/((n+m)*(n+m-1)*(2*n-3))); %RAE

normn1(n,m) = sqrt((n+m+1)*(n-m)); %RAE

end %RAE

end %RAE

x=rnp*xin; %RAE

r = sqrt(x(1)^2+x(2)^2+x(3)^2);

ri=1/r;

xor=x(1)*ri;

yor=x(2)*ri;

zor=x(3)*ri;

ep=zor;

reor=re*ri;

reorn=reor;

muor2=mu*ri*ri;

p(1,1) = 1; %RAE

p(1,2) = 0; %RAE

p(1,3) = 0; %RAE

p(2,2) = sqrt(3); %RAE %norm

p(2,3) = 0; %RAE

p(2,4) = 0; %RAE

for n = 2:nax %RAE

ni = n+1; %RAE

p(ni,ni) = norm11(n)*p(n,n)*(2*n-1); %RAE %norm

p(ni,ni+1) = 0; %RAE

p(ni,ni+2) = 0; %RAE

end

ctil(1)=1; %RAE

stil(1)=0; %RAE

ctil(2)=xor; %RAE

stil(2)=yor; %RAE

sumh=0;

sumgm=1;

sumj=0;

sumk=0;

p(2,1) = sqrt(3)*ep; %RAE %norm

for n=2:nax

ni=n+1; %RAE

reorn=reorn*reor;

n2m1=n+n-1;

nm1=n-1;

np1=n+1;

p(ni,n) = normn1(n,n-1)*ep*p(ni,ni); %RAE %norm

p(ni,1) = (n2m1*ep*norm1(n)*p(n,1)-nm1*norm2(n)*p(nm1,1))/n; %RAE %norm

p(ni,2) = (n2m1*ep*norm1m(n,1)*p(n,2)-n*norm2m(n,1)*p(nm1,2))/(nm1); %RAE %norm

sumhn=normn10(n)*p(ni,2)*c(ni,1); %norm %RAE

sumgmn=p(ni,1)*c(ni,1)*np1; %RAE

if (max>0)

for m = 2:n-2

mi = m+1; %RAE

p(ni,mi) = (n2m1*ep*norm1m(n,m)*p(n,mi)-...

(nm1+m)*norm2m(n,m)*p(nm1,mi))/(n-m); %RAE %norm

end

sumjn=0;

sumkn=0;

ctil(ni)=ctil(2)*ctil(ni-1)-stil(2)*stil(ni-1); %RAE

stil(ni)=stil(2)*ctil(ni-1)+ctil(2)*stil(ni-1); %RAE

if(n<max)

lim=n;

55

else

lim=max;

end

for m=1:lim

mi=m+1; %RAE

mm1=mi-1; %RAE

mp1=mi+1; %RAE

mxpnm=m*p(ni,mi); %RAE

bnmtil=c(ni,mi)*ctil(mi)+s(ni,mi)*stil(mi); %RAE

sumhn=sumhn+normn1(n,m)*p(ni,mp1)*bnmtil; %RAE %norm

sumgmn=sumgmn+(n+m+1)*p(ni,mi)*bnmtil; %RAE

bnmtm1=c(ni,mi)*ctil(mm1)+s(ni,mi)*stil(mm1); %RAE

anmtm1=c(ni,mi)*stil(mm1)-s(ni,mi)*ctil(mm1); %RAE

sumjn=sumjn+mxpnm*bnmtm1;

sumkn=sumkn-mxpnm*anmtm1;

end

sumj=sumj+reorn*sumjn;

sumk=sumk+reorn*sumkn;

end

sumh = sumh+reorn*sumhn;

sumgm = sumgm+reorn*sumgmn;

end

lambda=sumgm+ep*sumh;

g(1,1)=-muor2*(lambda*xor-sumj);

g(2,1)=-muor2*(lambda*yor-sumk);

g(3,1)=-muor2*(lambda*zor-sumh);

accel=rnp’*g; %RAE

return

56

Nomenclature

C̄n,m normalized C coefficient

P̄n,m normalized ALF

S̄n,m normalized S coefficient

δ0,m Kronecker delta function: returns one (1) if m = 0 and zero (0) otherwise

γ angle between position vectors of a differential mass dm and arbitrary point

λ normalization parameter (subscript expressions refer to ALF of same subscript expression)

µ central body gravitational parameter

∇ gradient

∇· divergence

∇2 Laplacian

∇b gradient with respect to central-body-fixed coordinates

φ geocentric latitude

φo orthogonal spherical z coordinate

θ longitude

θo orthogonal spherical y coordinate

~a acceleration

~F force

~r position vector

dm differential mass of central body

E mechanical energy

M central body mass

m order of term

md desired maximum order of model

n degree of term

nd desired maximum degree of model

57

Pn Legendre polynomial (assumed argument of sinφ)

Pn(cos γ) Legendre polynomial with argument cos γ for power series

Pn,m ALF (assumed argument of sinφ)

R ratio of position vector lengths of a differential mass dm over an arbitrary point

r magnitude of satellite position vector

ro orthogonal spherical x coordinate

T kinetic energy

U potential

u potential per unit mass

V potential energy

xb central-body-fixed x coordinate

yb central-body-fixed y coordinate

zb central-body-fixed z coordinate

Nn,m normalization factor

ALF Associated Legendre Function

58

Bibliography

[1] Pines, S., “Uniform Representation of the Gravitational Potential and its Derivatives,” AIAA Journal ,
Vol. 11, No. 11, Nov. 1973, pp. 1508–1511.

[2] Lear, W. M., “The Gravitational Acceleration Equations,” JSC Internal Note 86-FM-15 (JSC-22080),
NASA, April 1986.

[3] Gottlieb, R. G., “Fast Gravity, Gravity Partials, Normalized Gravity, Gravity Gradient Torque and
Magnetic Field: Derivation, Code and Data,” NASA Contractor Report 188243, NASA, Feb. 1993.

[4] Lundberg, J. B. and Schutz, B. E., “Recursion Formulas of Legendre Functions for Use with Nonsingular
Geopotential Models,” Journal of Guidance, Control, and Dynamics, Vol. 11, Jan.-Feb. 1988, pp. 31–38.

[5] DeMars, K. J., Bishop, R. H., Crain, T. P., and Condon, G. L., “Engineering Analysis of Guidance
and Navigation Performance in the Uncertain Lunar Environment to Support Human Exploration,”
Thirty-First Annual AAS Guidance and Control Conference, No. AAS 08-046, American Astronautical
Society, Breckenridge, CO, Feb. 2008.

[6] Tapley, B. D., Schutz, B. E., and Born, G. H., Statistical Orbit Determination, Elsevier, 2004.

[7] Schey, H. M., Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, W. W. Norton,
4th ed., 2005.

[8] Vallado, D. A., Fundamentals of Astrodynamics and Applications, Microcosm Press/Springer, 3rd ed.,
2007.

[9] Jahnke, E. and Emde, F., Tables of Functions with Formulae and Curves, Dover, 4th ed., 1945.

[10] Mueller, A. C., “A Fast Recursive Algorithm for Calculating the Forces Due to the Geopotential (Pro-
gram: GEOPOT),” JSC Internal Note 75-FM-42 (JSC-09731), NASA, June 1975.

[11] Gottlieb, R. G., “A Fast Recursive Singularity Free Algorithm for Calculating the First and Second
Derivatives of the Geopotential,” JSC Internal Note 89-FM-10 (JSC-23762), NASA, July 1990.

59

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

 June 2016 Technical Publication

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Normalization and Implementation of Three Gravitational Acceleration Models

6. AUTHOR(S)
Randy A. Eckman, Aaron J. Brown, Daniel R. Adamo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERS

Lyndon B. Johnson Space Center

Houston, Texas 77058

S-1222

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001

TP-2016-218604

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified/Unlimited
Available from the NASA Center for AeroSpace Information (CASI)
7115 Standard
Hanover, MD 21076-1320 Category: 66

13. ABSTRACT (Maximum 200 words)

 Unlike the uniform density spherical shell approximations of Newton, the consequence of spaceflight in the real universe is that

gravitational fields are sensitive to the asphericity of their generating central bodies. The gravitational potential of an aspherical

central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical

harmonic approximations results in at least two singularities that must be removed to generalize the method and solve for any possible

orbit, including polar orbits. Samuel Pines, Bill Lear, and Robert Gottlieb developed three unique algorithms to eliminate these

singularities.This paper documents the methodical normalization of two of the three known formulations for singularity-free

gravitational acceleration (namely, the Lear and Gottlieb algorithms) and formulates a general method for defining normalization

parameters used to generate normalized Legendre polynomials and Associated Legendre Functions (ALFs) for any algorithm. A

treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief

overview of the philosophical differences between the three known singularity-free algorithms.

14. SUBJECT TERMS 15. NUMBER OF

 PAGES

16. PRICE CODE

gravity, acceleration, gravitational acceleration, spherical harmonics, normalization,

singularity, Lear, Gottlieb, Pines, Legendre 74

17. SECURITY CLASSIFICATION

OF REPORT

18. SECURITY CLASSIFICATION

 OF THIS PAGE

19. SECURITY CLASSIFICATION

 OF ABSTRACT

20. LIMITATION OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

Standard Form 298 (Rev Feb 89) (MS Word Mar 97)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

	Introduction
	Gravitational Potential and Acceleration
	History
	Derivation
	Conservative Forces and Potential
	Properties of Potential Functions
	Defining the Gravitational Potential
	Power Series Expansion
	Spherical Harmonic Expansion

	Coordinates
	The Gravitational Acceleration
	Trigonometric Relationships

	Normalization
	The Normalization Factor
	Recursive Mass Coefficient Normalization
	Normalization Ratios
	The Recursion Normalization Parameter

	The Three Singularity-Free Algorithms
	Pines Algorithm
	Basis of the Pines Approach
	Pines Algorithm Implementations

	Lear Algorithm
	Basis of the Lear Approach
	Normalized Lear Algorithm
	Example of Normalized Lear Recursions

	Gottlieb Algorithm
	Basis of the Gottlieb Approach
	Normalized Gottlieb Algorithm

	Verifications and Conclusions
	Implementation Notes
	Pines Unnormalized
	Gottlieb Unnormalized

	Preliminary Testing
	Increasing Degree and Order Trend Study
	Trend Study with Unstable Associated Legendre Function Generators
	Conclusions
	Recommendations

	Legendre Polynomials as a Maclaurin Series Expansion
	Preliminary Results
	MATLAB Code
	test_sh.m
	test2.m
	load_sha.m
	pines.m
	pinesnorm.m
	lear.m
	learnorm.m
	gottlieb.m
	gottliebnorm.m

	Nomenclature
	Bibliography

