
Advanced Systems & Development

S&T Collaboration Way Ahead

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- "Crossing the Chasm" (with fewer \$\$)
- National Space Policy
- DARPA Collaboration
- Space Cyber
- NASA-DARPA Manned GEO Servicing
- DARPA Phoenix Program
- S&T Collaboration with NASA/OCT
- SAF/AQR Rapid Innovation Fund (RIF)
- STEM HMC, AFIT, USAFA
- S&T Collaboration Way Ahead

Most S&T results do not make it to the "market" or to space capabilities

- Collaborate: Define Tech Needs, Innovate, Transition
- Focus on pervasives: IP Enabled Space, Space Cyber, Solar Electric Propulsion (SEP), Advanced Materials, On-orbit Servicing
- Leverage Space Policy for Collaboration

AEROSPACE

^{*} Geoffrey Moore 1991

Nat'l Space Policy (NSP) 2010 and S&T

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- White house NSP: International, Commercial, Civil, NSS
- 2007 DARPA System F6: Fractionated Space Architectures
- Flexibility and Robustness, IP Enabled Space architecture

System F6 Government Team

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- DARPA, SMC, AFSPC, AFRL, NASA, FFRDCs, SETAs
- Enabling technologies: IP Enabled Space, Cluster Ops, Econometrics
 - Value Centric Design Methodology (VCDM)
- F6 Tech Package (F6TP) Pathfinder for Hosted Payload Interface Unit (HPIU)
- F6TP Pathfinder for onboard cyber situational awareness

Collaboration and Transition

F6 Transition to Cyber S&T Concept On-board Cyber Monitor/Enforcement

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

Space Cyber Capability Gap

 Ground based cyber protection cannot identify all space based attacks (e.g. HW Trojan) or respond in time to protect the spacecraft. Onboard Monitor/Enforcement capability is needed.

Estimated S&T Resources

- < \$25M for proof-of-concept,
 > \$50M to integrate space qualified appliance
- On-ramp to programs 5-10 yrs

Illustration - F6 Tech Package (F6TP)

Opportunities & Risks

- ✓ Thwart space based attacks
- Updates for future threats
- ✓ Attribution intelligence
- ✓ Appliance or embed in HW/SW
- Operational risks for autonomous defensive actions

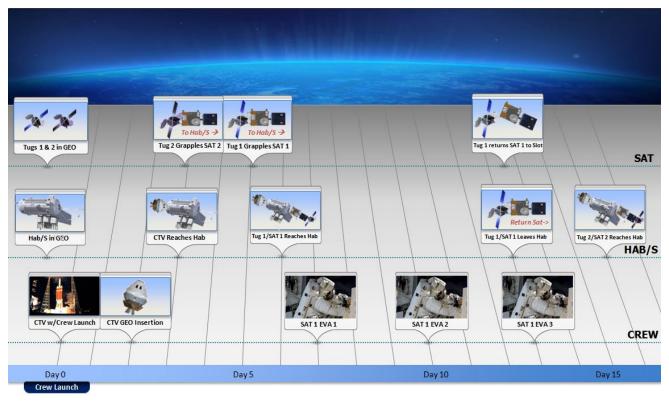
Space Cyber

- Merging of Space and Cyber missions by AFSPC
- AFSPC authored the Space Cyber portion of USAF Cyber Vision 2025 and led the Malware TEM (MTEM 2012) at SMC-Aerospace:

Area	Near (F12-FY15)	Mid (FY16-20)	Far (FY21-25)
Assure and Empower the Mission	 Space/cyber test beds (fractionated, fight-through demos, shorter time to need) (L) Space environment sensors for anomaly attribution (L) Enable and exploit cloud computing (W) 	 Survivable, assured real- time C3 in theater (Software Defined Radio) (L) 	Small, networked satellite constellations for communications, GPS, missile warning (L)
Optimize Human- Machine Systems	Restructure cyber acquisition and operations policy - allow for full spectrum (F)	 Detect hidden functions, malware in the integrated space/cyber networks (hypervisors, etc) (F) 	Tools for intent and behavior determination (F)
Enhance Agility and Resilience	 Reconfigurable antennas and algorithms (L) 	 Autonomous self-healing systems (F) 	 Cognitive Communications agile, reconfigurable, composable comm and sensors (L)
Foundations of Trust and Assurance	 Foundations of trust – hardware foundries, trusted software generation (W) 	 Trusted satellite-cyber architectures (L) Strong satellite C2 authentication (L) Generate, detect single photons/radiation (W) 	 Flexible, scalable high-rate encryption (F) Space Quantum Key Distribution (QKD) (F) Autocode generator generators that produce software that is correct by construction (W)

IPP process driven by S&T of Cyber Enhanced Space

Envisioning and Shaping the Future of Space


AIAA Space 2016

DARPA-NASA Manned GEO Servicing (MGS)

ADVANCED SYSTEMS AND DEVELOPMENT DIREC

- NSP 2010 MGS Program Initiated
- MGS Ops Concept

MGS Collaboration

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- DARPA, SMC, AFSPC, AFRL, NASA(JSC, GSFC MSFC, HQ), NRL, FFRDCs, SETAs
- Enabling technologies: On orbit servicing, SEP, Life support
- Both MGS and F6 transitioned into Phoenix
- Repurpose large apertures in space

3-Way Transition F6-MGS-Phoenix

DARPA Phoenix Program

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

Servicer satellite retrieves PODs after ejection from commercial satellite, stores in toolbelt.

Commercial communications satellites carry Satlets in PODs as ridealongs. Servicer flies to and harvests retired aperture, installs Satlets, disengages aperture from retired satellite.

> Repurposed aperture is transferred by servicer to new GEO slot.

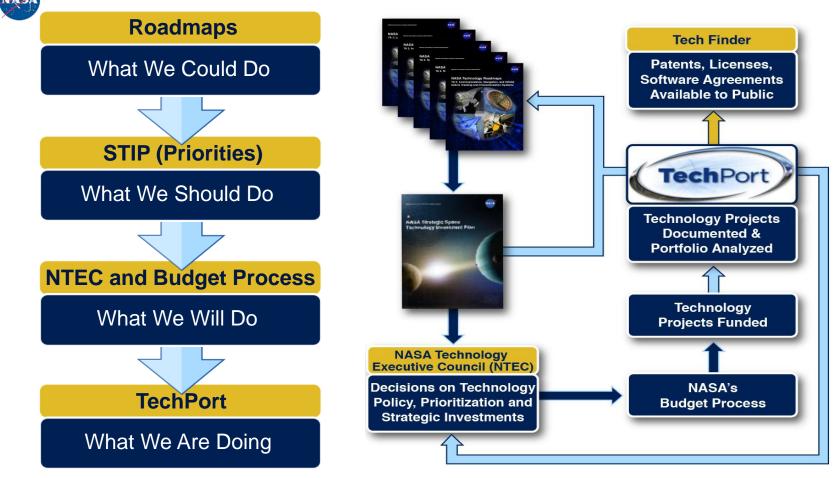
Artist's rendition of Satlets & PODs

Satlets created, loaded into PODs along with tools and electronics for launch. Repurposed aperture demonstrates communication to the ground and to the "Tender".

Envisioning and Shaping the Future of Space

10

NASA Office of Chief Technologist – NASA/OCT Collaboration

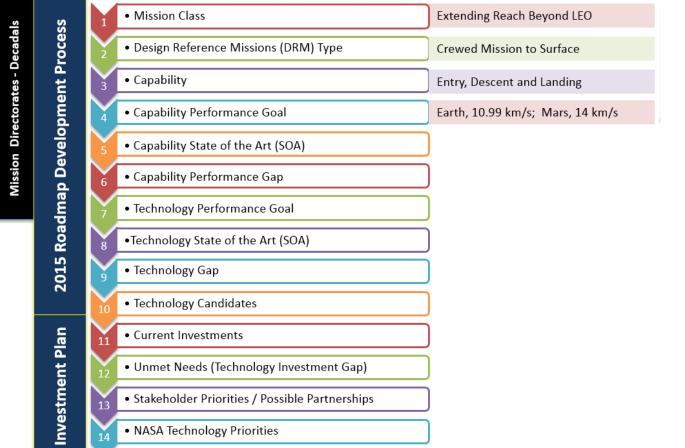

- NASA-DARPA MGS involved NASA/OCT
- More recently increased collaborated on S&T roadmaps
- Some overlap among S&T, even though NASA is Science exploration mission, and USAF is NSS
- Focus on Common Pervasives such as:
 - Launch Technologies, SEP and Advanced Launch Architecture
 - Advanced Materials
 - On-Orbit Logistics
 - Space-Cyber
- Interest in STEM cultivation
- Collaboration with DARPA projects such as F6

NSS and Civil Collaboration

11

NASA OCT S&T Process

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE


NASA Matches Technology to Needs

NASA OCT S&T Workflow

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

From Missions to Technology Priorities

NASA Technology Roadmaps

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

S&T Priorities Driven by Mission Needs

Envisioning and Shaping the Future of Space

14

NASA OCT and AFSPC & SMC S&T Cross Walk

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

NASA	AFSPC	Degree of				NASA	AFSPC	
Need #	Need #	Correlation	Funding	Impact	Activity Area	Order #	Order #	NASA Title
8.1.1	1034	Н	Ϋ́	H	LD/MW	259	11	Detectors & Focal Planes
5.2.2	587	L	Y	Н	COM-N	168	2	Power Efficient Technologies
5.2.6	241	Н	Y	Е	COM-N	172	8	Antennas
8.1.4	587	L	Y	Н	COM-N	262	2	Microwave, Millimeter-, and Submillimeter-Waves
5.7.1	1030	Н	Y	Н	SSA & BA - SS	201	35	Tracking Technologies
5.7.1	1031	Н	R	М	SSA & BA - SS	201	39	Tracking Technologies
1.2.2	384	Н	Y	Н	LRN	12	55	RP/LOX Based
8.1.1	861	Н	G	Н	LD/MW	259	10	Detectors & Focal Planes
8.1.2	1019	Н	Y	Н	per	260	87	Electronics
4.5.2	1042	М	R	н	C2	139	63	Activity Planning, Scheduling, and Execution
4.5.8	1042	М	R	Н	C2	145	63	Automated Data Analysis for Decision Making
5.2.3	960	L	G	Н	COM-N	169	1	Propagation
8.1.4	960	L	G	Н	COM-N	262	1	Microwave, Millimeter-, and Submillimeter-Waves
8.1.4	241	М	Y	Е	COM-N	262	8	Microwave, Millimeter-, and Submillimeter-Waves
1.4.5	1015	Н	R	Е	LRN	31	60	Health Management and Sensors
2.2.1	761	Н	Y	М	LRN	61	50	Electric Propulsion
3.2.1	714	Н	Y	М	per	88	99	Batteries
8.1.1	702	Н	G	М	LD/MW	259	13	Detectors & Focal Planes
8.1.2	737	Н	G	Н	per	260	86	Electronics
8.1.2	743	Н	G	Н	per	260	88	Electronics
8.1.2	736	М	Y	Н	per	260	89	Electronics
8.1.2	732	Н	Y	М	per	260	90	Electronics
8.1.2	750	Н	Y	М	per	260	91	Electronics
10	964	Н	Y	М	per	305	100	Nanotechnology
10.2.1	714	Н	Y	М	per	313	99	Energy Storage
11.1.1	743	Н	G	Н	per	326	88	Flight Computing
11.1.1	750	Н	Y	М	per	326	91	Flight Computing

NSS and Civil Collaboration & Prioritization

NASA NSS Cross Walk Detail

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

NASA Need #	AFSPC Need #	Degree of Correlation	NASA Title	AFSPC Title
π	Neeu m	Correlation		Albrentie
1.2.2	384	Н	RP/LOX Based	Oxygen-rich staged combustion engine technology development and demonstration
1.2.3	384	Ĺ	CH4/LOX Based	Oxygen-rich staged combustion engine technology development and demonstration
1.2.6	301	Μ	Fundamental Liquid Propulsion Technologies	Combustion Stability Design Methods and Tools
1.4.1	760	М	Auxiliary Control Systems	Hydrazine replacement technology
1.4.2	1014	н	Main Propulsion Systems	Additive manufacturing technology maturation for launch vehicles
1.4.2	1002	М	Main Propulsion Systems	Light weight, low cost tank, vehicle, and fairing structures
1.4.5 *	1015	н	Health Management and Sensors	Launch Vehicle Health Management and Sensing Technologies

Lift and Propulsion S&T Detail

NASA Heat Shield for Extreme Entry Environment Technology (HEEET)

NASA and NSS May Benefit from Army's Work

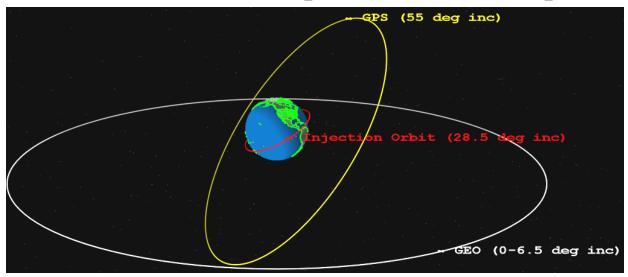
Envisioning and Shaping the Future of Space

AIAA Space 2016

AEROSPACE

NASA and USAF NSS Collaboration

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE


- NASA and NSS collaboration enhances capabilities
- Synergies identified and improved S&T investments
- Broad Awareness of multi agency S&T benefits all
- Building working relationships presents opportunities

Achieving Better Space S&T Performance

SEP Launch Architecture Concept

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

 the SMC launch enterprise can be re-imagined by using a LEO orbit as the standard injection orbit. All higher mission orbits can be achieved by SEPpowered orbit transfers [Penn et al 2014]:

Re-Imagined High Performance Launch Architecture

SEP Launch Architecture Benefits

• Significant potential benefits include:

- Downsizing spacecraft and launch vehicles
- Lowering fleet-wide architecture costs: Smaller boosters, dual launching, and possibly launching all vehicles from a single launch site
- Increased maneuverability
- Increased resiliency ("graceful" failure mode with multiple SEP engines)
- More efficient and effective constellation management
- Provide extra power and enabling enhanced payload capability and performance
- Enhanced end-of-life options (possible de-orbit) and reduced orbital debris
- Enabling larger launch windows

AEROSPACE

 Enabling previously infeasible/impractical missions: Maintaining unstable orbits or ground tracks and Dynamic orbit change flexibility (high number of orbit changes and repositions)

Multiple Benefits to the Space Enterprise

USAF Rapid Innovation Program

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- Led by SAF/AQR, SMC evaluates NSS
- Small investments (<\$3M)
- Fast transition to capability (<2yrs)
 - Carbon Nanotubes harness (-30% weight)
 - IP Encryption (HAIPE) for small Satellites
- Bridge SBIR S&T to capability
- Leverage small, athletic companies

Meaningful capabilities for small investments

STEM - Harvey Mudd College (HMC)

- Leadership of Engineering Visitors Committee (EVC)
 - Accreditation, Curriculum, Faculty, Development
- Sponsorship of capstone projects
 - 25 annual projects on NSS topics
- Successful recruitment at all levels

Future capabilities for embryonic investments

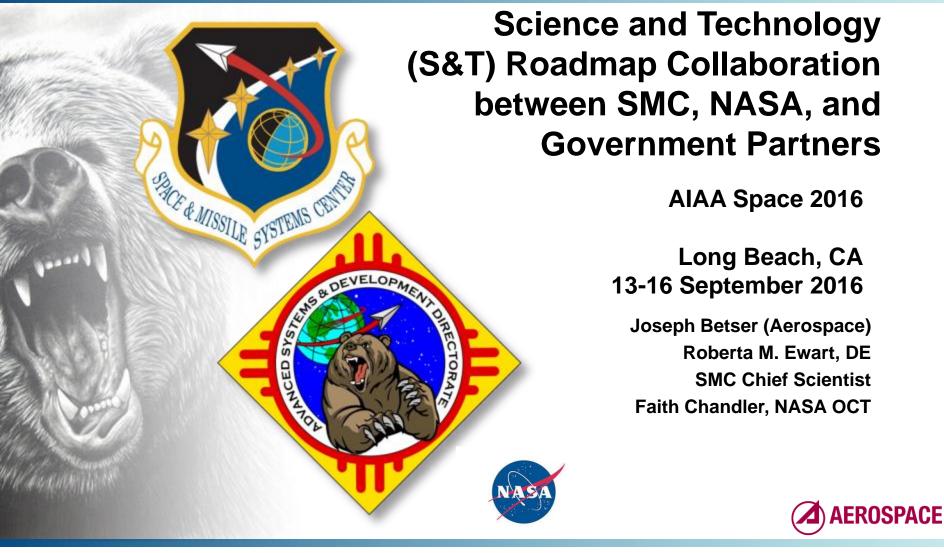
22

STEM – USAFA, AFIT

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- Work with AFIT faculty on thesis topics
- Recruitment of graduate students to SMC
- Work with USAFA graduates incoming to SMC at all levels
- Interest in academic cubesat programs
- Influence curriculum to make it relevant to S&T needs

S&T investments driving workforce impact


S&T Collaboration Way Ahead

ADVANCED SYSTEMS AND DEVELOPMENT DIRECTORATE

- "Crossing the Chasm" (with fewer \$\$)
- National Space Policy
- DARPA Collaboration
- Space Cyber
- NASA-DARPA Manned GEO Servicing
- DARPA Phoenix Program
- S&T Collaboration with NASA/OCT
- SAF/AQR Rapid Innovation Fund (RIF)
- STEM HMC, AFIT, USAFA
- S&T Collaboration Way Ahead

Advanced Systems & Development

