

11th International Planetary Probe Workshop, Pasadena California, 16th-20th June 2014

An Update to a Conformal Ablative Thermal Protection **System for Planetary and Human Exploration Missions**

R. Beck, J. Arnold, M. Gasch, M. Stackpoole, E. Venkatapathy

NASA Ames Research Center

CONTEXT & OBJECTIVE

NASA STMD Game Changing Development Program

What is our Mission?

To focus on transformative space technologies that will lead to advances in space and terrestrial capabilities

Goals

- Develop Game Changing technologies that produce dramatic impacts for NASA's Space Exploration and Science Missions
- Capitalize on opportunities to leverage funding and cost-share from external organizations in technology areas mutually benefiting NASA and the other organizations
- Formulate and implement technology projects that deliver the

Vision

- Focus of the spacecraft design community has been on "heritage" ablative materials for TPS
- Lessons learned during recent builds:
 - Rigid lightweight TPS heritage alternatives (PICA and AVCOAT) have been having significant integration issues
 - Low strain-to-failure of PICA makes direct bonding problematic and requires small tile sizes and gap fillers for large heatshields
 - High touch labor requirements for AVCOAT results in large costs and long schedules, high CTE limits choice of structure materials
- Work was initiated under ETDD and ARMD and continued under STMD/GCDP to develop improved TPS to solve these issues

required performance to stakeholders on schedule and within cost

• Deliver technology knowledge that is used internally for NASA missions as well as externally throughout the aerospace community

The Vision is to develop and deliver a high strain-to-failure conformal TPS to TRL 5-6 capable of reducing the cost and complexity of protecting an flight aeroshell

MSL: 113 PICA Tiles

rigid aeroshell structure

Continued Systems Engineering Approach to Material Development

CA-TPS Key Performance Parameters

Technical Requirements Definition

- Stakeholder expectations assessed to understand the • technical problem and establish the design boundary
- Define
 - Continuous Risk Management (CRM) antici ConO
- Defin •
- CRM utilized to provide systematic method for identifying, Define analyzing, tracking, and communicating risks on a continuous define basis functi
- Defin Embed risk management into normal day-to-day activities to bound identify and manage risks
 - Delegate risk management responsibility to lowest possible • organization to mitigate or accept risk
 - Dedicate Risk Management Officer to lead risk management

-				N	N.
2	Conformal Ablators Key Performance Parameters	Category <i>Definition</i>	State-of- the-Art Value	TRL 5 Threshold/ Goal	Justification
	KPP-C1	Survivable for MSL-like and COTS aerothermal environments Capability required for future Mars and COTS missions	PICA: >250 W/cm ² , 0.33 atm, 490 Pa shear	250 W/cm2 / >500 W/cm2	Current goal for Conformal Ablator is to meet MSL-like conditions while satisfying COTS heat shield conditions
51 S	KPP-C2	Strain to Failure Material property that provides an indication of compliance when bonded to an underlying structure	PICA (<<1%) Avcoat (~1%)	>1% / > 2%	High strain to failure and use of felts for substrates enables factor of >10 reduction in heat shield parts count
	КРР-СЗ	Manufacturing Scalability Assesses the likelihood that the technology concept will successfully scale to the large sizes required by mission architectures	20" x 40" PICA max tile size (1m cast monolithic)	1m x 1m / 2m x 2m	Eventual application will require large panels, seams, and close-outs. Heat loads define ablator thickness. The MDU, arcjet testing, and analysis will prove scalability of the ablator to full scale.
	КРР-С4	Response Model Fidelity Ability to reliably and repeatably predict the thermal response of the material to the applied environments	Mean: bias error 30%, Time to peak error: 30% Recession: 150%	Mean bias error < 40% / 10% Time-to-peak error < 40%/ 10% Recession error < 50% / 25%	Working from low to mid to high fidelity models - need the ability to estimate thicknesses for target mission design

CA-TPS Schedule

Testing, Results and Modeling

Establish Industry Partnerships

Felt Thickness Scale Up

• State of the art for carbon felt

g/cm³

18-m long

~1.0-in thick, density 0.8-1.0

Vendor completed processing of

10-cm thick rayon felt (white

square yard (OPSY) – density

manufactured was 2-m wide by

2 layers = 15-cm

goods) at ~525 ounces per

~0.23 g/cm³, material

• Final thicknesses ~7.5-cm,

Material carbonized

density~.127g/cm³

10-cm

Conformal TPS Manufacturing

Scale-Up

Vendor is required to supply for 1-m or larger MDU:

- Small-scale samples for matl props and SPRITE followed by large-scale materials for application to the MDU
- Manufacturing Plan for C-PICA at least 1x1-m scale
- Non-destructive methodologies necessary to examine variations in the felt structure and the resulting conformal ablator and for bond verification
- Design support and manufacture of a large manufacturing demonstration unit (MDU)

Small Probe Vendor

- Technology transfer TPS manufacturing to Small Probe **Provider Terminal Velocity** Aerospace (TVA) and provide flight test article
 - Perform all work required for Conformal PICA and Conformal Silica-Silicone technology transfer to TVA for small entry probes in FY'15 along with two aeroshell with instrumented TPS
- test data in FY16+ ReBR/RED flight tests
- Includes:
- Plan, build test articles, and

- flight vehicles
- Technology transfer -- process documentation, training, testing

Vendor to obtain and deliver flight

- perform arc jet testing Vibro/acoustic testing RF transparency testing
- Manufacture and install TPS
- and instrumentation for 2 test

CONCLUSION & OUTLOOK

— data (3 sets) — FIAT

Game Changing: we have created a high strain-to-failure TPS with a dramatic

(copper Heat-Shiel GPS and Iridium Antennas Iridium Moden Batteries and Electronics Heat-Shield

> Housing (copper)

In terface Adapto

(connects to

host vehicle)

