
Robert M. Manning
Glenn Research Center, Cleveland, Ohio

Beam Wave Considerations for  
Optical Link Budget Calculations

NASA/TM—2016-219120

September 2016



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated 
to the advancement of aeronautics and space science. 
The NASA Scientific and Technical Information (STI) 
Program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Officer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI Program provides access 
to the NASA Technical Report Server—Registered 
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS)  thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:
	
•	 TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of significant 
scientific and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers, but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

	
•	 TECHNICAL MEMORANDUM. Scientific 

and technical findings that are preliminary or of 
specialized interest, e.g., “quick-release” reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis.

	

•	 CONTRACTOR REPORT. Scientific and 
technical findings by NASA-sponsored 
contractors and grantees.

•	 CONFERENCE PUBLICATION. Collected 
papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA.

	
•	 SPECIAL PUBLICATION. Scientific, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

	
•	 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and 
technical material pertinent to NASA’s mission.

For more information about the NASA STI 
program, see the following:

•	 Access the NASA STI program home page at 
http://www.sti.nasa.gov

	
•	 E-mail your question to help@sti.nasa.gov
	
•	 Fax your question to the NASA STI 

Information Desk at 757-864-6500

•	 Telephone the NASA STI Information Desk at
	 757-864-9658
	
•	 Write to: 

NASA STI Program
	 Mail Stop 148
	 NASA Langley Research Center
	 Hampton, VA 23681-2199

 

http://www.sti.nasa.gov
mailto:help%40sti.nasa.gov?subject=STI%20assistance


Robert M. Manning
Glenn Research Center, Cleveland, Ohio

Beam Wave Considerations for  
Optical Link Budget Calculations

NASA/TM—2016-219120

September 2016

National Aeronautics and
Space Administration

Glenn Research Center 
Cleveland, Ohio 44135



Available from

Trade names and trademarks are used in this report for identification 
only. Their usage does not constitute an official endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 

This report contains preliminary findings, 
subject to revision as analysis proceeds.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

http://ntrs.nasa.gov/
http://www.sti.nasa.gov/


 

NASA/TM—2016-219120 1 

Beam Wave Considerations for Optical Link Budget Calculations 
 

Robert M. Manning 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135  

Abstract 
The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is 

considered for diffraction-based link power budget calculations for an optical communications system. 
Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the 
general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the 
concept of effective isotropic radiated power. It is shown here, however, that these considerations are no 
more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general 
expression governing the power transfer for a collimated beam wave is derived and from this are defined the 
three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power 
transfer are given for each region. It is shown that although the well-known linear expressions for power 
transfer in the far-field hold for all distances between source and receiver in the radio frequency case, 
nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with 
typical aperture sizes at source/receiver separations less that 100 km. 

What is ‘Isotropic’ About a Directed Laser Beam When Applying the 
Concept of EIRP to an Optical Satellite Link Budget? 

The use of the concept of effective isotropic radiated power (EIRP) in the calculation of 
communication system performance has its roots in the consideration of power transfer from a transmitter 
to a receiver in which the receiver subtended a portion of the transmitted wave field that could be 
considered spherical. Such spherical field conditions are easily realized at radio frequencies due to the 
relatively large wavelengths as compared to the sizes and the distances of the antennas. As antenna 
configurations evolved that were able to shape the phase fronts of the transmitted waves, EIRP was still 
employed but with ‘correction factors’ to account for the non-isotropic fields. Such corrections are 
usually applied in the calculation of the receiver antenna gain parameter. In essence, what was lost in 
power by using the isotropic assumption was recaptured by appropriately adjusting the receiver gain 
(Ref. 1). 

These concepts that have been historically inherent in the calculation of the radio frequency power 
connecting the transmitter to the receiver in a communications link evaluation have persisted into the case 
where short wavelength optical radiation is employed. However, the very aspect of directed optical 
radiation that makes its use desirable for free-space communication systems is diametrically opposed to 
that of ‘isotropic’ transmission. The phenomena occurring here at these shorter wavelengths are solely 
due to diffraction. Diffraction, being a characteristic of all wave propagation, also occurs at radio 
frequencies but does so in a much less noticeable fashion since the ratio of the sizes of the reflector 
antennas that are used to direct the radiation to the sizes of the wavelengths to are very much smaller for 
radio frequencies than for optical frequencies. As shown below, diffraction effects at radio frequencies 
occur very close to the transmitter aperture and are not seen at the distances a receiver aperture would be 
placed. The radio frequency wave field can always be treated as a spherical wave at the receiver locations. 
Optical radiation such as a laser beam emanating from a typical sized optical aperture is, because of its 
short wavelength, dominated by diffractive spatial broadening of its beam as it exits the aperture output 
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plane. For optical wavelengths, the situation is much different than the RF case and the diffractive effects 
at potential receiver locations need to be considered at the outset. The geometrical characteristics of the 
phase front of the optical beam can significantly change at very large distances from the transmitter 
aperture. Depending on the aperture sizes as well as their separation, diffractive beam wave aspects of the 
optical wave field must be included in the power transfer calculations.  

The proper way to describe the power transfer characteristics of all such wave types, i.e., beam 
waves, at any wavelength and propagation distance is to derive equations for the power within the beam 
in terms of the wave equation for the propagating electric field based on the Helmholtz wave equation. 
This is the subject to the present work. General expressions will be derived and, through appropriate 
approximation, are shown to finally reduce to the form of power transfer equations derived using EIRP 
considerations for the optical case so long as the optical receiver aperture is on the order of 100 km from 
the transmitter. For intermediate distances, other forms of the power transfer expression will be obtained. 

Power Transfer Between Apertures by Bounded Beam Waves 
As just mentioned, the proper place to begin the study is from the Helmholtz wave equation that, of 

course, is a solution of the Maxwell equations. Within an approximation that holds for all wave 
propagation problems met with in free-space communications, the wave equation is solved with 
prevailing boundary conditions that describe a finite output aperture (i.e., an antenna or lens) so as to 
capture all the diffraction phenomena that can occur (Refs. 2 and 3). In an effort not to deter from the 
major concepts to be discussed here, an appendix is provided in which an approximation known as the 
paraxial approximation is applied to the Helmholtz wave equation that yields the fundamental analytical 
description of such bounded beam wave modes. This material forms the basis for all optical propagation 
scenarios and should be considered for overall performance analyses. Exact expressions are given in the 
appendix for a specific beam wave mode, the Gaussian beam wave, which has the fidelity to describe five 
different types of wave propagation encountered in most applications: focused, divergent, and collimated 
beam waves. From the collimated beam wave, the special cases of plane and spherical waves can be 
obtained. For the purposes of this discussion, only collimated beam waves will be used due to their 
dominance in the applications. Expressions shown below only hold for a collimated beam wave; 
expressions for the other types of beam waves can similarly be developed.  

Neglecting absorption by the atmosphere of the beam energy, Equation (A14) gives for the intensity 
of a collimated beam at a distance L from the transmitter 

 ( ) ( )
2 2

2
2 ( )
0 2

, T R LRI L A e
R L

−ρρ =  (1) 

where R(L) is, in this case, the radius of a collimated beam at a distance L from the transmitter and is 
given by Equation (A15), 

 ( ) ( )2 22 2
11TR L R L= + α  (2) 

in which  

 1 2
1

TkR
α ≡   (3) 

is the diffraction parameter involving the wave number k of the radiation, k ≡ 2π/λ where λ is the 
wavelength, and the physical radius of the transmitter aperture is RT. The quantity 2

0A  is square amplitude 
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of the radiation at the output aperture and will be related to the transmitted power in what is to follow. 
The total amount of power PR(L) received by an aperture of radius RR placed at a distance L from the 
transmitter is given by 

 ( ) ( ) ( )( )2 22 2
0

0

2 , 1
R

R

R
R R L

R TP L I L d A R e−= π ρ ρ ρ = π −∫  (4) 

Defining the output power of the transmitter aperture by 

 2 2
0T TP R A= π  (5) 

and substituting Equations (2) and (3) into Equation (4) gives for the exact general equation for power 
transfer between a transmitting aperture and a receiving aperture 

 ( ) ( )( )2 2 42 2 21 T R Tk R R k R L
R TP L P e− += −  (6) 

Three spatial regions along the propagation route can be identified using this general equation. Equation 
(6) holds for power transfer in the near-field of the transmitter. The first line of demarcation is obtained 
by considering at what distance L the denominator of the exponential function is such that 

 42 2
TL k R>> , i.e.,  2

TL kR>  (7) 

The region defined by the inequality of Equation (7) defines the case where the first Fresnel zone of the 
transmitter aperture is located. Within this approximation, Equation (6) achieves its first approximate 
form 

 ( ) ( )2 22 2 21 ,T Rk R R L
R T TP L P e L kR−≈ − >  (8) 

To get an idea of the various Fresnel zones for various wavelengths, consider for RT = 0.1 m at an optical 
wavelength of λ = 1550 nm, i.e., for k = 4×106 m–1. In this case, one has the first Fresnel zone is located at 
LFresnel = 40.5 km far enough from the transmitter within which the receiver may exist. On the contrary, at 
a wavelength of λ = 1.0 cm (30 GHz), the position of the zone occurs at LFresnel = 6.3 km well before the 
point at which a receiver would be placed.  

Proceeding on to the next spatial region defined by approximation, consider the exponential function 
once again and consider distances L for which  

 
2 22

2
1T Rk R R

L
<< , i.e., T RL kR R>  (9) 

This condition defines the far-field of the transmitter in which Equation (8) further approximates to 

 ( )
2 22

2
,T R

R T RT
k R RP L P L kR R

L
 

≈ > 
 

 (10) 

Using the same numerical example used above with a receiver radius of RR = 0.25 m, one has for 
λ = 1550 nm, LFar = 101 km whereas for λ = 1.0 cm, LFar = 15.7 m. Again, an optical receiver must be 
placed beyond 101 km from the transmitter to be in the far-field and described by Equation (10) but a RF 
receiver must only be beyond 15.7 m from the transmitter. Equation (10) is the same as the classical result 
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obtained using EIRP considerations. Hence, Equation (10) will always suffice for power transfer 
calculations for radio frequencies but not for optical link calculations unless the optical receiver is beyond 
the far-field threshold defined for the particular problem. 

Connection to Transmitter and Receiver Gain and Free 
Space Path Loss of a Traditional Link Budget 

Equation (6) is the most general expression that describes the spatial power transfer for a collimated 
beam wave through free-space at distances which satisfy 2

TkR L>  within the Fresnel zone of the 
transmitter. To make contact with the traditional transmitter and receiver system gains used in RF link 
budgets as well as the all-important free-space path loss, one simply considers the dimensionless 
combinations of parameters of the problem that are proportional to power (such as areas of the apertures) 
and the operating wavelength (such as k). Thus, if one defines the dimensionless combination involving 
the area of the transmitter aperture 

 ( )2
T TG kR=  (11) 

i.e., the classical definition of transmitter antenna gain, and similarly for the receiver aperture 

 ( )2
R RG kR=  (12) 

i.e., the classical definition of receiver antenna gain, the exponential function occurring in Equation (6) 
can be written 

 
2 22

4 22 2 2 2
T FS RT R

T T

k R R G L G
k R L G k L

=
+ +

 (13) 

The remaining term in the denominator is, of course, the inverse of the classically defined free-space path 
loss 

 
21

FSL
kL

 ≡  
 

 (14) 

(These gain and loss factors are to within a normalization factor of 2 that is sometimes included in some 
formulations.) Thus, the general expression of Equation (6) becomes 

 ( ) ( )( )211 T FS R FSTG L G G L
R FS TP L P e− += −  (near-field optical case) (15) 

Given the results obtained earlier, in the event that 2
TL kR> , i.e., 1T FSG L < , this reduces, as shown by 

Equation (8), to the first Fresnel zone expression, 

 ( ) ( )1 T FS RG L G
R FS TP L P e−≈ −  (first Fresnel zone optical case) (16) 

Finally, when T RL kR R> , i.e., 1T FS RG L G < , this far-field condition allows Equation (16) to further 
simplify to 

 ( )R FS T T FS RP L P G L G≈  (far-field optical case and all RF cases) (17)  
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Appendix—The Parabolic Approximation of the Helmholtz Equation 
Without going into too much detail, there exists the paraxial solution (Refs. 2 and 3) to the wave 

equation that describes the propagation of a short wavelength beam waves with a Gaussian distribution of 
complex amplitude (i.e., by ‘short wavelength’ one implies that the wavelength λ is very much smaller 
than any other spatial quantity that enters the problem, such as the aperture size or the propagation 
distance). The usual Helmholtz wave equation for a scalar electric field ( )E r (as opposed to the more 
general vector electric field which incorporates potential depolarization effects) is given by 

 ( ) ( )2 2 0E r k E r∇ + =
    (A1) 

where, as usual, k ≡ 2π/λ is the wave number associated with the wavelength λ and the usual three-
dimensional Laplacian ( )2E r∇

  of the electric field. The first step is to specialize this equation for a 
bounded wave field (a beam wave) propagating in the x  direction by writing 

 ( ) ( ) ikxE r U r e=
   (A2) 

where the newly introduced function ( )U r  still describes the evolution of the electric field but devoid of 
its oscillatory wave component eikx. Putting Equation (A2) into Equation (A1) and remembering that the 
Laplacian of the electric field shown in Equation (A1) really means  

 ( ) ( ) ( ) ( )2 2 2
2

2 2 2

E r E r E r
E r

x y z
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

  

  (A3) 

one can get the equation for ( )U r  

 ( ) ( )2 2 0
U r

U r ik
x

∂
∇ + =

∂



  (A4) 

In an effort to continually isolate the x  direction in which the beam wave is propagating from the 
transverse directions (along which diffractive phenomena exist), one can decompose ( )2U r∇

  into its 
longitudinal part (along the direction of propagation which is taken to be along the  axis) and its 
transverse part (along the remaining y  and z  axes which are collectively written as ˆ ˆyy zzρ ≡ +

  where ŷ  
and ẑ  are unit vectors) 

 ( ) ( ) ( ) ( )
2

2 2 2
2

,
, ,

U x
U r U x U x

x ρ
∂ ρ

∇ =∇ ρ ≡ +∇ ρ
∂



   (A5) 

Putting this into Equation (A4) gives the expression 

 ( ) ( ) ( )2
2

2

,
, 2 0

U x U r
U x ik

x xρ
∂ ρ ∂

+∇ ρ + =
∂ ∂

 

  (A6) 

Now, here is where the famous paraxial approximation comes into play: by construction, the field 
( ),U x ρ
  is devoid of any spatially–driven effects except for the oscillatory variation eikx. Thus, the value 

of ( ),U x ρ
  only changes over a distance of a wavelength λ which means that the second spatial derivative 
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( )2 2,U x x∂ ρ ∂
  can only change by the amount on the order of ( ) 2,U x ρ λ

 . If the similar spatial 

variations that are represented by ( )2 ,U xρ∇ ρ
  are much larger (i.e., these transverse variation will be 

affected by other spatial quantities in the transverse direction such as the initial radius W0 of the 
transmitter aperture), that is, if W0 >> λ, then the first term of Equation (A6) is much more smaller than 
the second or third term, i.e., 

 
( ) ( ) ( )2

2
2

,
, , 2

U x U r
U x ik

x xρ
∂ ρ ∂

<< ∇ ρ
∂ ∂

 



 (A7) 

and Equation (A7) becomes 

 ( ) ( )2 , 2 0
U r

U x ik
xρ

∂
∇ ρ + =

∂



  (A8) 

(There is also the implicit constraint on the total distance of propagation L and the wavelength, i.e., 
L >> λ in addition to L >> W0.) This is the paraxial approximation of the original wave equation 
Equation (A1). It reduces the full three-dimensional form of Equation (A1) to a much more easily handled 
‘diffusion’ equation form of Equation (A8).  

A Solution for the Paraxial Approximation—Beam Waves 

In order to obtain an analytical expression that describes the subsequent propagation of a bounded 
wave beam that is controlled by Equation (A8), one simply begins with a ‘wish-list’ of what parameters 
should go into such a description. The two most important parameters that enter are the radius of the 
transmitter aperture W0 as well as the curvature R0 of the initially transmitted phase front of the beam. 
Assuming a single-mode of operation of the transmitter, than it can be expected that the electric field 
distribution of the beam as it exits the output aperture will be of a Gaussian function of transverse 
position across the beam. Given these constraints, than one can show (Refs. 2 and 3), after a bit of work 
on Equation (A8), that the ( ),U x ρ

  field distribution is given by the functional relationship 

 ( ) 20 (2(1 )),
1

k i xAU x e
i x

− αρ + αρ =
+ α

  (A9) 

where A0 is the initial amplitude of the beam field as it leaves the transmitter and the defining beam 
parameters enter into the problem through 

 1 2 1 22
00

2 1, ,i
kW R

α ≡ α + α α ≡ α ≡  (A10) 

The corresponding electric field in found using Equation (A2). (Eq. (A9) is one of several beam modes 
that can be describes within the paraxial approximation, others being Laguerre beam waves and Bessel 
beam waves.) 

The resulting intensity (i.e., the power density) of the beam at a distance L from the transmitter is 
given by Equation (A9) is 

 ( ) ( ) ( ) ( ) ( )
2 2

22 02 2 ( )
0 2

, , * , , W LW
I L E L E L E L A e

W L
− ρρ ≡ ρ ρ = ρ =  (A11) 
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where  

 ( ) ( )( )22 22 2
20 11W L W L L= −α + α  (A12) 

is the square of the beam radius at L.  
It is very important to note from the form of the exponential of Equation (A11) that at the output 

aperture of the transmitter placed at L = 0, the actual physical size of the radius RT of the transmitter 
aperture is defined by the diffractive waist radius W0 by  

 0 2TR W≡  (A13) 

i.e., the radius W0 used to describe diffraction from an aperture of physical radius RT is, due to diffraction, 
larger than RT. Thus, any other diffractive radius such as W(L) that can occur along the propagation path 
is connected to the prevailing physical radius by ( ) ( ) 2R L W L= . Hence, the intensity of the beam 
given by Equation (A11) can be written in terms of the physical radius of the transmitter aperture 

 ( ) ( ) ( ) ( )( )2 2
2 22 2 2( ) 2 2

2 10 1 22
1, , 1 ,T R L

T
T

RI L A e R L R L L
R L kR

−ρρ = = −α + α α ≡  (A14) 

A Collimated Beam Wave 

The model given above for a beam wave can describe five different wave types: divergent (R0 > 0), 
focused (R0 < 0), and collimated (R0 → ∞) beams as well as plane waves (RT → ∞, R0 → ∞) and spherical 
waves (RT → 0, R0 → ∞). For any space-based optical transmitter, a collimated beam wave is employed. 
Thus, the appropriate expression to use for intensity calculations involving collimated beams is Equation 
(A14) where, from Equation (A12) with α2 = 0, 

 ( ) ( ) ( )2 2 22 2
1coll 1TR L R L R L≡ = + α  (A15) 
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