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Direct numerical simulations (DNS) are used to examine the pressure fluctuations
generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady
pressure field is analyzed at multiple wall-normal locations, including those at the wall,
within the boundary layer (including inner layer, the log layer, and the outer layer), and
in the free stream. The statistical and structural variations of pressure fluctuations as
a function of wall-normal distance are highlighted. Computational predictions for mean
velocity profiles and surface pressure spectrum are in good agreement with experimen-
tal measurements, providing a first ever comparison of this type at hypersonic Mach
numbers. The simulation shows that the dominant frequency of boundary-layer-induced
pressure fluctuations shifts to lower frequencies as the location of interest moves away
from the wall. The pressure wave propagates with a speed nearly equal to the local mean
velocity within the boundary layer (except in the immediate vicinity of the wall) while
the propagation speed deviates from the Taylor’s hypothesis in the free stream. Com-
pared with the surface pressure fluctuations, which are primarily vortical, the acoustic
pressure fluctuations in the free stream exhibit a significantly lower dominant frequency,
a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure
structures are found to have similar Lagrangian time and spatial scales as the acoustic
sources near the wall. As the Mach number increases, the freestream acoustic fluctuations
exhibit increased radiation intensity, enhanced energy content at high frequencies, shal-
lower orientation of wave fronts with respect to the flow direction, and larger propagation
velocity.

1. Introduction

Understanding the physics of the pressure fluctuations induced by high-speed turbu-
lent boundary layers are of major theoretical and practical importance. From a practical
point of view, the fluctuating pressure on aerodynamic surfaces of flight vehicles plays
an important role in vibrational loading and often leads to damaging effects as fatigue
and flutter (Willmarth 1975; Blake 1986; Bull 1996). The freestream pressure fluctua-
tions radiated from the turbulent boundary layer on the nozzle wall in a conventional
hypersonic wind tunnel is largely responsible for the genesis of tunnel background distur-
bances (commonly referred to as tunnel noise) (Laufer 1964; Stainback 1971; Pate 1978).
Such facility disturbances significantly impact laminar-turbulent transition behavior of
the test article, leading to an earlier onset of transition relative to that in a flight en-
vironment or in a quiet tunnel (Schneider 2001). An in-depth knowledge of the nature
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of pressure fluctuations in the high-speed regime is essential to the structural design of
launch vehicles and to enabling a better use of transition data from the noisy hypersonic
facilities. From a theoretical point of view, a better understanding of the pressure fluc-
tuations could lead to a better understanding of the vorticity dynamics in the boundary
layer since high-vorticity regions are strongly correlated with low-pressure regions (Kim
1989; Kida & Miura 1998; Cadot et al. 1995). Moreover, pressure fluctuations are an
important ingredient in turbulence as they appear in statistical correlations such as the
pressure-strain correlation terms which redistribute turbulence among different compo-
nents of fluctuating velocity. The modeling of the pressure-strain terms in the transport
equations for the Reynolds stresses and the dissipation tensor is regarded as one of the
major issues in the Reynolds stress closure.

The analysis of the pressure fluctuations in the context of incompressible boundary
layers is based on the Poisson equation. The source term in the Poisson equation is com-
posed of two parts that generate, respectively, what are commonly referred to as the
rapid (linear) and slow (nonlinear) parts of the pressure fluctuation field. Examples of
existing studies of global pressure field induced by incompressible boundary layers in-
clude those by Kim (1989); Tsuji et al. (2007, 2012); Kat & Oudheusden (2012); Naka
et al. (2015) among many others. The pressure fluctuations induced by a high-speed tur-
bulent boundary layer are, however, fundamentally more complicated than the low-speed
counterpart. At high speeds, pressure fluctuations of acoustic mode emerge in the form of
eddy Mach waves. The pressure fluctuations in a turbulent boundary layer thus include
contributions from both vorticity and acoustic modes. The former component is typically
dominant within the boundary layer while the latter is dominant in the free stream. The
relative importance of the two modes in different regions of the boundary layer at high
speeds is largely unknown and a detailed analysis of the turbulent correlations containing
pressure fluctuations is lacking.

Although there is a significant amount of literature on the behavior, distribution, and
scaling of velocity fluctuations in high-speed turbulent boundary layers (Smits & Dus-
sauge 2006), the corresponding behavior of pressure fluctuations is much less known.
No measurement technique so far has been able to globally measure the pressure fluc-
tuations inside the boundary layer. Thus existing measurements of pressure fluctuations
due to high-speed turbulent boundary layers consist largely of those at the surface us-
ing surface-mounted pressure transducers. The few existing measurements of fluctuating
wall pressure signals beneath supersonic turbulent boundary layers include early mea-
surements by Kistler & Chen (1963) and by Maestrello (1969) for boundary layers with
M∞ ranging from 1.33 to 5, and more recently by Beresh et al. (2011) for boundary lay-
ers with M∞ up to 3. These measurements exhibit a considerable degree of scatter. For
example, the measurements by Kistler & Chen (1963) and by Maestrello (1969) found
discrepancies in the magnitude of wall pressure fluctuations as large as 30%. The recent
data acquired by Beresh et al. (2011) showed similar large scatter across a broad compila-
tion of high-speed measurements. As pointed out by several authors (Dolling & Dussauge
1989; Beresh et al. 2011), there are few (if any) reliable measurements of the variance of
the wall pressure fluctuations and its frequency spectra, due to the poor spatial resolu-
tion of pressure transducers or limitations in the frequency response of pressure sensors.
Previous DNS studies of pressure fluctuations induced by high-speed boundary layers
focused on the wall pressure and were limited to moderate freestream Mach numbers
(up to Mach 4) (Bernardini & Pirozzoli 2011; Marco et al. 2013). To the knowledge of
the authors, no data exist for turbulent boundary layers in the hypersonic regime that
provide global access to the fluctuating pressure field.

As far as the freestream acoustic pressure fluctuations are concerned, the body of avail-
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able data is even more scarce. Although a number of investigators have reported mea-
surements of freestream disturbance intensity in high-speed facilities at both supersonic
and hypersonic Mach numbers (Donaldson & Coulter 1995; Bounitch et al. 2011; Masutti
et al. 2012), the measurements by Laufer (1964) still provide one of the few datasets that
are detailed enough to be suitable for comparison or model development. Similar to the
wall-pressure measurements, Laufer’s measurements of the acoustic fluctuations in the
freestream region (Laufer 1964) are subject to analogous sources of experimental error.
Moreover, as noted by Laufer, the interpretation of disturbance measurements in a wind
tunnel is further complicated by the fact that the measurements reflect the combined
outcome of acoustic radiation from all sides of the tunnel wall. As a result, highly accu-
rate measurements of the absolute amplitudes of the radiated acoustic energy were not
pursued during his experiments and only the statistical quantities that were least likely
to be influenced by the presence of multiple tunnel walls were investigated.

Direct numerical simulation (DNS) is a valuable tool that can overcome some of the
aforementioned difficulties with experimental measurements and, hence, provide access
to the global fluctuating pressure field that is difficult to obtain otherwise. For the study
of the freestream pressure field, in particular, DNS has the additional benefit of easily
isolating the acoustic radiation from a single surface as against the typical case of multi-
ple tunnel walls in an experiment. Successful applications of DNS for studying acoustic
radiation from turbulent boundary layers at subsonic and supersonic Mach numbers have
been reported by Gloerfelt & Berland (2013) (Mach 0.5) and by Duan et al. (2014) (Mach
2.5), respectively.

The objective of the current paper is to document the statistical and structural vari-
ation of boundary-layer-induced pressure fluctuations as a function of wall-normal dis-
tance. The database to be used is obtained from a direct numerical simulation of a
spatially-developing, flat-plate, nominally Mach 6 turbulent boundary layer, with the
freestream and wall-temperature conditions representative of those at the nozzle exit of
the Purdue Mach 6 Quiet Tunnel under noisy operations (Schneider 2008; Steen 2010).
The physical realism and accuracy of the computed flow fields are first established by
comparing with existing experimental results. Given that the DNS grids are designed to
adequately capture both the the boundary layer and the near field of acoustic fluctua-
tions radiated by the boundary layer, the present study is the first attempt, as far as we
know, to investigate the detailed pressure statistics induced by a hypersonic turbulent
boundary layer that includes the radiated pressure fluctuations in the near field, in addi-
tion to those generated within the boundary layer. To our knowledge, except the study
by Duan et al. (2014), all previous DNS studies of supersonic turbulent boundary layers
have focused exclusively on flow features within the boundary layer. The characteristics
associated with the primarily vortical pressure signal within the boundary layer and the
acoustic pressure signal in the free stream are compared.

The remaining part of this paper is structured as follows. The flow conditions se-
lected for numerical simulation and the numerical method used are outlined in section 2.
Section 3 is focused on the analysis of statistical and structural variations of pressure fluc-
tuations as a function of wall-normal distance. The various statistics examined include
pressure fluctuation intensities, power spectral densities, two-point pressure correlations,
and propagation speeds. Section 4 discusses the characteristics of freestream acoustic
radiation, including modal analysis, wave-front orientation, and acoustic sources con-
tributing to the acoustic radiation in the free stream. Conclusions from the study are
presented in section 5.
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M∞ U∞(m/s) ρ∞(kg/m3) T∞(K)
5.86 870.4 0.0427 54.97

Table 1: Freestream conditions for Mach 6 DNS of turbulent boundary layers.

2. Simulation details

Table 1 outlines the freestream flow condition for the present simulations including
the freestream Mach number M∞, density ρ∞, temperature T∞. The mean surface tem-
perature Tw is assumed to be equal to Tw/Tr = 0.76, with the recovery temperature
Tr estimated based on a recovery factor of 0.89. Throughout this paper, subscripts ∞
and w will be used to denote quantities at the boundary layer edge and at the wall,
respectively. The freestream condition is selected to be similar to the conditions of the
Boeing/AFOSR Mach-6 Quiet Tunnel (Schneider 2001; Steen 2010) (BAM6QT) under
noisy operations, so that one-to-one comparison between DNS and experimental results
can be conducted to establish the physical realism and accuracy of the computed flow
fields.

2.1. Governing equations and numerical methods

The details of the DNS methodology, including numerical methods, initial and boundary
conditions, have been documented in our previous paper (Duan et al. 2014). Therefore,
only a cursory description is given here.

The full three-dimensional compressible Navier-Stokes equations in conservation form
are solved in generalized curvilinear coordinates. The working fluid is assumed to be
a perfect gas and the usual constitutive relations for a Newtonian fluid are used: the
viscous stress tensor is linearly related to the rate-of-strain tensor, and the heat flux
vector is linearly related to the temperature gradient through the Fourier’s law. The
coefficient of viscosity µ is computed from the Sutherlands’s law, and the coefficient
of thermal conductivity κ is computed from κ = µCp/Pr, with the molecular Prandtl
number Pr = 0.71.

A 7th-order weighted essentially non-oscillatory (WENO) scheme is used to compute
the convective flux terms. Compared with the original finite-difference WENO intro-
duced by Jiang & Shu (1996), the present WENO scheme is optimized by means of
limiters (Taylor et al. 2006; Wu & Mart́ın 2007) to reduce the numerical dissipation. For
the viscous flux terms, a 4th order central difference scheme is used. The 3rd order low
storage Runge-Kutta scheme by Williamson (1980) is used for time integration. The DNS
code has been extensively validated in previous work for simulating supersonic and hy-
personic turbulent boundary layers (Mart́ın 2007; Wu & Mart́ın 2007, 2008; Duan et al.
2010, 2011; Duan & Mart́ın 2011; Priebe & Mart́ın 2012). The optimized WENO has been
shown to be adequate for time-accurate simulations of compressible turbulence (Mart́ın
2007; Wu & Mart́ın 2007, 2008; Duan et al. 2010, 2011; Duan & Mart́ın 2011; Priebe
& Mart́ın 2012). The shock-capturing capability of the algorithm guarantees numerical
stability and robustness under the present high-Mach-number condition.

2.2. Computational domain and simulation setup

Figure 1 shows a general computational set-up for the DNS in the present work, which
parallels the setup in Duan et al. (2014) for the Mach 2.5 simulation, wherein the effects
of domain size and grid resolution were also assessed. The choice of grid parameters for
the present study is based on lessons learned from Duan et al. (2014) as summarized
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Figure 1: Computational domain and simulation setup for baseline DNS case. The reference

length δi is the thickness of the boundary layer (based on 99% of the freestream velocity) at

the inlet plane. An instantaneous flow is shown in the domain, visualized by iso-surface of

the magnitude of density gradient, |∇ρ|δi/ρ∞ = 0.9825, colored by the streamwise velocity

component (with levels from 0 to U∞, blue to red). x, y, and z are, respectively, the streamwise,

spanwise, and wall-normal coordinates.

in table 2. The streamwise domain length (Lx) is selected to be larger than the eddy
decorrelation distance to guarantee minimal spurious correlation being introduced due
to the inflow turbulence generation. The spanwise domain (Ly) is chosen based on mon-
itoring the decay in cross-correlation of pressure fluctuation as a function of spanwise
separation. Uniform grid spacings are used in the streamwise and spanwise directions
with grid spacings. The grids in the wall-normal direction are clustered in the boundary
layer with ∆z+ ≈ 0.5 at the wall, and kept uniform with ∆z+ ≈ 5 in the freestream until
up to approximately 5.5δi or 3.2δ (figure 2), where δi and δ represent the mean boundary
layer thickness based on u/U∞ = 0.99 at the inflow boundary and at the downstream
location selected for statistical analysis (xa = 54.1δi), respectively. Such wall-normal
grids are designed to adequately resolve both the boundary layer and the near field of
acoustic fluctuations radiated by the boundary layer. The ‘+’ superscript denotes non-
dimensionalization by the viscous length scale zτ = νw/uτ , where νw is the kinematic
viscosity at the wall and uτ =

√
τw/ρw is the friction velocity (τw is the wall-shear stress

and ρw is the density at the wall). Unless otherwise stated, the grid resolutions given
in this section are normalized by the viscous length scale zτ at the selected downstream
location xa. Analysis of the simulation database has also shown that the Kolmogorov
length scale at xa is comparable with the local viscous length.

The turbulent inflow is generated using the recycling/rescaling method developed
by Xu & Mart́ın (2004) with the recycling station set at 56.7δi downstream of the inlet.
The selected rescaling length is similar to the range of the optimum recycling length of
approximately 30δi to 99δi as suggested by Simens et al. (2009) to accommodate the
eddy decorrelation length and to minimize inlet transient as a result of the recycling
process. The original rescaling method is modified by adding the dynamic translation
operations (Morgan et al. 2011) to improve low-frequency characteristics of the gener-
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Figure 2: The wall-normal grid distribution. The grid spacing ∆z+ is normalized by the
viscous length scale at the selected downstream location for statistical analysis (xa =
54.1δi).

Nx ×Ny ×Nz Lx/δi Ly/δi Lz/δi ∆x+ ∆y+ ∆z+min ∆z+max
1600× 800× 500 58.7 15.7 39.7 9.63 5.14 0.51 5.33

Table 2: Grid resolution and domain size for the direct numerical simulation. Lx, Ly,
and Lz are the domain size in the streamwise, spanwise, and wall-normal directions,
respectively. ∆x+ and ∆y+ are the uniform grid spacing in the streamwise and spanwise
directions, respectively. ∆z+

min and ∆z+
max are the minimum and maximum wall-normal

grid spacing for 0 6 z/δi 6 5.5. The grid spacings are reported in terms of the viscous
length scale zτ evaluated at the station selected for statistical analysis xa/δi = 54.1.
δi = 13.8 mm.

ated inflow turbulence and by including a freestream filter to remove artificial freestream
acoustics at the inlet of the computational domain introduced due to the coupling be-
tween the recycling and inflow plane (Duan et al. 2014). This removal of recycled fluc-
tuations in the free stream ensures that the freestream acoustic disturbances within the
domain are radiated entirely from the boundary-layer turbulence rather than convected
downstream from the artificial inflow. In addition, numerical experiments have been con-
ducted with varying filter type and filtering location to ensure that the freestream filtering
has negligible effects on the pressure statistics at the selected downstream location for
statistical analysis (xa = 54.1δi).

On the wall, no-slip conditions are applied for the three velocity components and
an isothermal condition is used for the temperature with Tw ≈ 0.76Tr. The density is
computed from the continuity equation. At the top and outlet boundaries, unsteady
non-reflecting boundary conditions based on Thompson (1987) are imposed. Periodic
boundary conditions are used in the spanwise direction.

For the current spatial simulations, the boundary layer grows slowly in the streamwise
direction, with both the boundary-layer thickness δ and the displacement thickness δ∗

increase by a factor of approximately two across the length of the simulation domain
(figure 3). Correspondingly, the Karman number Reτ increases from approximately 200
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(a) (b)

(c) (d)

Figure 3: Evolution of boundary-layer parameters with streamwise distance. (a) δ/δi; (b)
δ∗/δi; (c) Reτ ; (d) p′rms/τw at z/δi = 0 and 4.5.

at the inlet to 500 at the outlet with a useful range of Reτ = 350 − 460 where the
boundary layer has recovered from the initial transient due to the recycling method. The
stremwise computational domain is large enough for the memory of the inflow generation
to fade out and a nearly uniform acoustic radiation field to be established. In particular,
figure 3d shows that the pressure fluctuations at the wall and in the freestream have
become nearly homogeneous in the streamwise direction after x/δi ≈ 30.

In the following section, averages are first calculated over a streamwise window of
[xa − 0.9δi, xa + 0.9δi] (xa = 54.1δi) and spanwise locations for each instantaneous flow
field; then, an ensemble average over 153 flow field snapshots spanning a time interval of
approximately 240δi/U∞ (corresponding to 12.5δi/uτ ) is calculated. To monitor the sta-
tistical convergence, flow statistics are computed by averaging over the whole or half the
number of the flow-field snapshots and negligible difference (< 1%) is observed between
the two.

Power spectra are calculated using the Welch method (Welch 1967) with eight segments
and 50% overlap. A Hamming window is used for weighting the data prior to the fast
Fourier transform (FFT) processing. The sampling frequency is approximately 63U∞/δi,
or 4 MHz, and the length of an individual segment is approximately 53.2δi/U∞.
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Tw(k) Tw/Tr Reθ Reτ Reδ2 θ(mm) H δ(mm) zτ (µm) uτ (m/s)
300 0.76 9455.4 453.1 1745.7 0.948 13.6 23.77 52.6 45.07

Table 3: Boundary layer properties at the station selected for the analysis (xa = 54.1δi)
of the acoustic field for the present DNS. The local boundary layer thickness δ is approx-
imately δ ≈ 1.7δi.

2.3. Validation of DNS data

2.3.1. Velocity statistics

The velocity statistics (including the mean and RMS values) are reported in this section
at a selected downstream location for statistical analysis (xa = 54.1δi), which are also
used in the analysis of fluctuating pressure field in section 3. Table 3 lists the values of
the mean boundary layer parameters at the selected location, including the momentum
thickness θ, shape factor H = δ∗/θ (where δ∗ denotes the local displacement thickness).
The outer and inner length scales (boundary layer thickness δ and viscous length scale
zτ , respectively) and the velocity scales uτ and uτ

√
ρw/ρ∞ are also shown along with

the representative Reynolds number parameters, Reθ ≡ ρ∞U∞θ/µ∞, Reτ ≡ ρwuτδ/µw,
and Reδ2 ≡ ρ∞U∞θ/µw. Throughout this paper, the subscripts ∞ and w are used to
denote quantities at the boundary layer edge and at the wall, respectively.

The van Driest transformed mean velocity profile based on the DNS is shown in figure 4.
ŪV D is defined as

ŪV D =
1

uτ

∫ U

0

(Tw/T )1/2dU .

The mean velocity conforms well to the incompressible law-of-the-wall upon van Driest
transformation and shows a (narrow) logarithmic region that is comparable in extent
to Mach 4 simulations by Bernardini & Pirozzoli (2011) at similar Reτ . In addition,
the transformed mean-velocity profile compares well with the experimental results by
Schlatter & Örlü (2010) for an incompressible boundary layer at Reτ = 1145 and by
Bookey et al. (2005) at Mach 2.9, Reτ = 501.

Figures 5(a–f ) plot turbulence intensities and density weighted turbulence intensities
in streamwise, spanwise and wall-normal directions across the boundary layer. A signif-
icantly improved collapse of data is achieved by Morkovin’s scaling, which takes into
account the variation in mean flow properties. Morkovin’s scaling brings the magnitudes
of the extrema in the compressible cases closer to the incompressible results of Spalart
(1988) and Schlatter & Örlü (2010), allowing the present DNS to compare well with
existing data at similar conditions.

2.3.2. Comparison with experiments

The physical realism and accuracy of the computed flow fields have been further es-
tablished by comparing with existing experimental results at similar flow conditions.
Figure 6 shows the comparison of DNS results (Case M6Tw076) with the wind-tunnel
measurement and the calculation using Harris Boundary-layer code (Harris & Blanchard
1982) for a Mach 5.8 turbulent boundary layer on the nozzle wall of BAM6QT under
noisy-flow conditions (Re = 9.69 × 106/m, Pt,∞ = 965 kPa, Tt,∞ = 429 K) (Casper
2011; Steen 2010). The DNS and experiments agree well with each other in terms of both
boundary-layer profile and wall-pressure spectrum. In comparison, the Mach number pro-
file based on the boundary layer code exhibits larger differences from the measurement
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(a) (b)

Figure 4: (a) van Driest transformed mean velocity profile (k=0.41, C = 5.2) and (b) van Driest

transformed mean deficit velocity. Symbols denote the DNS by Bernardini & Pirozzoli (2011)

at Mach 4, Reτ = 506 (circles), the experiment by Bookey et al. (2005) at Mach 2.9, Reτ = 501

(diamonds), and the experiment by Schlatter & Örlü (2010) for an incompressible boundary

layer at Reτ = 1145 (gradients).

and the DNS in the outer part of the boundary layer. Moreover, figure 6c and figure 6d
show that DNS extends the measured spectra to higher frequencies. The resolution of
the high-frequency region as well as the acoustic radiation due to these high-frequency
fluctuations are especially important for studying the receptivity process associated with
second-mode waves in hypersonic wind tunnels.

Additional comparisons of DNS results with both experiments and other high-quality
simulations are presented in the following sections.

3. Results

3.1. Pressure Statistics

Figures 7a shows that the RMS of pressure fluctuations normalized by the local wall
shear for the present DNS and some of previous DNS results at lower Mach numbers
with similar Reynolds numbers (Duan et al. 2014; Bernardini & Pirozzoli 2011). At the
wall, the value of p′rms/τw at Mach 5.86 is about 2.8, which is close to 3 based on the
model by Bies (1966) and those given by the DNS of Guarini et al. (2000); Spalart
(1988); Bernardini & Pirozzoli (2011) at lower Mach numbers. p′rms/τw is insensitive
to Mach number variation within most of the boundary layer and collapses with lower
Mach-number data. Outside the boundary layer, however, p′rms/τw approaches a constant
value of about 0.9 for the Mach 5.86 case, which is significantly larger than the value
of 0.4 for the Mach 2.5 turbulent boundary layer. The variation of freestream pressure
fluctuations with Mach number is consistent with the trend predicted by the experimental
data reported by Laufer (1964) (figure 7b). Whenever all four walls of the rectangular test
section were radiating to the measurement location, Laufer obtained the contribution to
the acoustic fluctuations from a single wall by assuming equal contributions from each
wall. This assumption was validated by comparing the measured fluctuations with those
in the case where only one wall had a turbulent boundary layer and the rest had laminar
boundary layers. The increase in radiation intensity with freestream Mach number in
figure 7b is consistent with the ‘eddy Mach wave’ hypothesis Phillips (1960), which states
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(a) (b) (c)

(d) (e) (f)

Figure 5: Turbulence intensities and density-weighted turbulence intensities of the (a,d) stream-

wise, (b,e) spanwise and (c,f) wall-normal fluctuating velocity components. −−−−−: Mach 5.86,

M∞ = 5.86, Reθ = 9455.4, Tw/Tr = 0.76. −·−·−: Mach 2.5, M∞ = 2.5, Reθ = 2834.8,

Tw/Tr = 1. −−−: M5T4 (Duan et al. 2010), M∞ = 5, Reθ = 3819.3, Tw/Tr = 0.68. �:
M5T5 (Duan et al. 2010), M∞ = 5, Reθ = 4840.5, Tw/Tr = 1. �, (Spalart 1988), M∞ ≈ 0,

Reθ = 1410. M, (Spalart 1988), M∞ ≈ 0, Reθ = 670. 5, (Pirozzoli & Bernardini 2011),

M∞ = 2, Reθ = 2377. •, (Bernardini & Pirozzoli 2011), M∞ = 4, Reθ = 5824. /, (Peltier et al.

2012), M∞ = 4.9, Reθ ≈ 40× 103, Tw/Tr = 0.9. �, (Piponniau et al. 2009), M∞ = 2.28,

Reθ = 5100. �, (Eléna & Lacharme 1988), M∞ = 2.32, Reθ = 4700. J, (Schlatter & Örlü

2010), M∞ ≈ 0, Reθ = 3626.

that the ‘Mach wave type’ radiation is produced by eddies that convect supersonically
with respect to the free stream. At low supersonic freestream Mach numbers, sources
that contribute primarily to the radiation field are slowly moving ones, the convection
velocities of which are supersonic relative to the freestream (see figure 20). As the Mach
number increases, additional faster moving turbulent eddies acquire supersonic relative
speeds and start to take part in the radiation process, accounting for the larger acoustic
amplitudes in the free stream.

3.2. Frequency spectra

The frequency spectrum of the pressure fluctuations is defined as

Φp(ω) =
1

2π

∫ ∞
−∞

p′(x, y, z, t)p′(x, y, z, t+ τ)e−iωτdτ (3.1)
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Figure 6: Comparison of DNS results with those of a Mach-5.8 turbulent boundary layer
on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel under noisy-flow condi-
tions (Re = 9.69 × 106/m, Pt,∞ = 965 kPa, Tt,∞ = 429 K). The Pitot-probe measure-
ment of the boudnary-layer profiles was conducted by Steen (2010); the calculation of
the boundary-layer profiles using Harris boundary-layer Code (Harris & Blanchard 1982)
and the measurement of the wall pressure spectrum were conducted by Casper (2011).
The experimental curve of wall pressure spectrum is normalized with DNS-computed pa-
rameters and includes the Corcos correction for finite probe size (Beresh et al. 2011). (a)
Mean velocity profile; (b) Mach number profile; (c) frequency spectrum in outer scale;
(d) frequency spectrum in inner scale.

The pressure spectrum can be divided into several segments with different power law
scalings. According to Bull (1996), the pressure spectrum can be broken into regions
of low, mid, mid-to-high overlap, and high frequencies, with corresponding spectrum
slopes of ω2, ω−1, ω−7/3, and ω−5, respectively. The ω2 dependence of pressure spectrum
at lowest frequencies (ωδ∗/U∞ < 0.03) are induced by the passive structures in the
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(a) (b)

Figure 7: (a) Pressure fluctuation rms profile p′rms/τw as a function of wall-normal dis-
tance. The symbols denote the DNS results of Bernardini & Pirozzoli (2011).(b) Com-
parison of p′rms/τw in the free stream with the experiments by Laufer (1964), and the
DNS results correspond to present case M6Tw076 and the Mach 2.5 results of Duan et al.
(2014).

outer layer of the boundary layer. The ω−1 dependence of the pressure spectrum at
mid frequencies is typically attributed to convected turbulence in the logarithmic region
where the pressure-inducing eddies has a length scale proportional to the distance from
the wall (Bradshaw 1967) . The ω−7/3 scaling of the pressure spectrum lies in the overlap
region between mid and high frequencies and is attributed to eddies in the highest part
of the buffer region (20 < z+ < 30). Such a region is analogous to the inertial subrange in
velocity spectra that is described by the Kolmogorov’s −5/3 law. The typical frequency
range for this region is 0.3 < ων/u2

τ < 1. The ω−5 dependence of the pressure spectrum
at high frequencies is attributed to sources in the boundary layer below z+ = 20 and this
region is referred to as the sublayer dominance by Blake (1986).

Figure 8a shows the pressure spectrum as a function of the wall-normal distance for
the present DNS. The pressure spectrum is normalized so that the area under each curve
is equal to unity. For reference, straight lines with slopes of 2, −1, −7/3, and −5 are also
included to gauge the rate of spectral roll-off across relatively low, mid, overlap, and high
frequencies, respectively. The vertical lines in the plots (ωνw/u

2
τ = 0.3 and ωνw/u

2
τ = 1.0)

demarcate the overlap regions between mid and high frequencies and show the estimated
locations where a slope change in pressure spectrum is predicted according to the theory
by Bull (1996).

The pressure spectrum shows a rather weak frequency dependence up to the lowest
frequencies covered by the DNS (ωδ∗/U∞ ≈ 0.08). The absence of the more rapid and
incompressible ω2 scaling as ω → 0 at low frequencies in the wall-pressure spectrum is
consistent with the measurements by Beresh et al. (2011); Casper (2011) and the DNS
by Bernardini & Pirozzoli (2011) at supersonic Mach numbers. At all wall-normal lo-
cations, there is little evidence of the ω−1 region at mid-frequencies. Given that ω−1

dependence of the pressure spectrum is attributed to sources within the logarithmic re-
gion of the boundary layer, the absence of the ω−1 region is consistent with the relatively
low Reynolds number (Reτ ≈ 500) as well as the small logarithmic region of the current
DNS. In the overlap region between the mid and high frequencies, the pressure spectrum
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deviates from Kolmogorov’s −7/3 scaling and shows a slope of ω−1.6 at the wall. As the
location of interest moves away from the wall, the deviation from the Kolmogorov scaling
becomes smaller. The deviation from the Kolmogorov scaling is expected given the non-
zero shear rate within the boundary layer. As a result, local isotropy cannot be realized
for the current Reynolds number (Tsuji et al. 2007). The reduced deviation from the
Kolmogorov’s −7/3 scaling away from the surface can be attributed to the progressive
reduction in the local shear rate. The relation between the ω−7/3 scaling of the pressure
spectrum and the shear rate has previously been explained by Bernardini et al. (2011),
who observed the ω−7/3 behavior of wall-pressure spectrum in a supersonic turbulent
boundary layer with adverse pressure gradient and showed that such a scaling is related
to reduction of shear rate induced by adverse pressure gradient. At high frequencies, the
spectrum exhibits a slightly more rapid decay than the ω−5 scaling predicted theoreti-
cally by Blake (1986), and the energy content becomes progressively lower as the location
of interest moves away from the wall.

Figures 8b and 8c show a comparison of the pressure spectrum at the wall and in
the free stream, respectively, for the present DNS at Mach 5.86 and that of a Mach
2.5 turbulent boundary layer (Duan et al. 2014). The higher Mach-number case exhibits
significantly higher energy than the lower Mach number case at high frequencies. Sim-
ilar dependence of pressure spectrum on Mach number was shown in the experiments
by Laufer (1964). While an observable region of slope close to −7/3 is absent in the
freestream pressure spectrum of the Mach 5.86 DNS, the freestream spectrum for the
Mach 2.5 case has an observable region of slope close to −7/3, indicating a possible
influence of Mach number on the overlap region of the pressure spectrum. A similar
Mach-number dependence of the freestream pressure spectrum has been observed by
Masutti et al. (2012).

To illustrate the distribution of energy among various frequencies, figure 9a shows the
pre-multiplied pressure spectra at selected heights above the surface. It is shown that
the pressure spectra in the inner layer have a dominant hump centered on ωδ/U∞ ≈ 8
(or fδ/U∞ ≈ 1), which is the characteristic frequency of the energetic vortical structures
within the boundary layer. As one moves away from the wall into the outer layer, the peak
gradually shifts to lower frequencies as spatial intermittency becomes more important.
In the free stream, where the pressure signal is predominantly acoustic, the peak of the
spectrum is centered at a frequency of ωδ/U∞ ≈ 3 (i.e. f ≈ 10.8 kHz), indicating that
characteristic frequency of the acoustic fluctuations is significantly lower than that of the
vorticity mode. Similar variation in pre-multiplied pressure spectrum with wall-normal
distance is observed for the Mach 2.5 case. Figure 9b further compares the pre-multiplied
spectra for the two Mach number cases at the wall and in the free stream. While the
wall spectrum is centered on nearly the same frequency ωδ/U∞ ≈ 8 at both Mach
numbers, the freestream spectrum for the Mach 5.86 case peaks at significantly higher
frequency than the Mach 2.5 case. The reduced gap in the dominant frequency between
pressure signals at the wall and in the free stream can be explained by the ‘eddy Mach
wave radiation’ concept (Phillips 1960; Ffowcs-Williams & Maidanik 1965). As the Mach
number increases, additional faster moving turbulent eddies acquire supersonic relative
speeds and start in the radiation process. The increased fraction of the inner layer that
can radiate to the free stream contributes to a reduced gap between the peak frequency
of fluctuations near the surface and in the free stream.
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(a)

(b) Wall (c) Freestream

Figure 8: (a) Normalized frequency spectrum of computed pressure signal at selected
heights for the Mach 5.86; (b), (c) Comparison of pressure spectrum at the wall and in
the free stream between the Mach 5.86 DNS and the Mach 2.5 DNS Duan et al. (2014).
The freestream are taken at z/δ = 2.63 for the Mach 5.86 DNS and z/δ = 2.8 for the
Mach 2.5.

3.3. Two-point correlations

3.3.1. Two-point correlations in streamwise-spanwise planes

The two-point correlation coefficient of the pressure field in a streamwise-spanwise
plane is defined as

Cpp(∆x,∆y, z) =
p′(x, y, z, t)p′(x+ ∆x, y + ∆y, z, t)(

p′2(x, y, z, t)
)1/2 (

p′2(x+ ∆x, y + ∆y, z, t)
)1/2

(3.2)

where ∆x and ∆y are spatial separations in the streamwise and spanwise directions,
respectively.

Figure 10 displays the contours of streamwise-spanwise correlation Cpp(∆x,∆y, z) of
the pressure fluctuations across a range of wall-normal heights for the present DNS and
the Mach 2.5 case of Duan et al. (2014). The contours of Cpp are approximately circular
for small spatial separation but become elongated in the spanwise direction for large sep-
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(a) (b)

Figure 9: Pre-multiplied power spectrum of pressure signals. (a) at selected heights for
the Mach 5.86 DNS; (b) comparison between Mach 5.86 and Mach 2.5 Duan et al. (2014).
The pressure spectrum is normalized so that the area under each curve is equal to unity.
The freestream are taken at z/δ = 2.63 for the Mach 5.86 DNS and z/δ = 2.8 for the
Mach 2.5.

aration distances, indicating that the small-scale pressure-carrying eddies or wavepackets
are nearly isotropic while the large-scale eddies become more coherent in the spanwise
direction. The extent of the pressure contours increases in both in-plane directions as the
wall-normal height increases. The two-point correlations of the pressure fluctuations in
the free stream show similar patterns to those within the boundary layer, except for a
variation in spatial length scales. Within the boundary layer, the pressure contours ex-
hibit minor Mach number dependence when nondimensionalized by the boundary layer
thickness. In the free stream, however, the large-scale pressure wavepackets for the Mach
5.86 case become less elongated in the spanwise direction compared with the lower Mach
number case.

Figures 11a and 11b show the variation of streamwise and spanwise length scales of
the pressure field ((Lx)p and (Ly)p), respectively, as a function of wall-normal distance.

The streamwise and spanwise length scales of the pressure field display an approximate
increase with wall-normal coordinate within most of the boundary layer, reaching a peak
just outside the boundary-layer edge. For about z/δ > 2, both scales again relax to ap-
proximately constant values that are nearly twenty-five percent lower than the respective
peaks. Such a dependence of length scales on the wall-normal coordinate is consistent
with wall-normal variation of the extent of pressure correlation contours shown in fig-
ure 10. The nearly linear increase of pressure length scales with wall-normal location in
the outer region of the boundary layer is consistent with the conceptual model of very
large-scale motion (VLSM) proposed by Kim & Adrian (1999). Similar wall-normal varia-
tion of large-scale coherence has been revealed by PIV experiments of turbulent boundary
layers at low and supersonic speeds (Tomkins & Adrian 2003; Ganapathisubramani et al.
2005, 2006) based on two-point correlations of streamwise velocity fluctuations.
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(a) wall (b) z/δ = 0.158

(c) z/δ = 0.734 (d) z/δ = 2.631

Figure 10: Contours of constant streamwise-spanwise correlation coefficient of the pres-
sure signal Cpp(∆x,∆y) at selected heights for Mach 5.86 (Colored solid line) and Mach
2.5 (Black dashed line). Contour levels vary from 0.1 to 0.9 with increments of 0.1.

(a) Λx (b) Λy

Figure 11: (a) Streamwise Λx and (b) spanwise Λy integral length scales as a function
of the wall-normal location. Λx ≡

∫
Cpp(∆x, 0, 0)d(∆x) and Λy ≡

∫
Cpp(0,∆y, 0)d(∆y),

with the limits of the integral chosen as the streamwise and spanwise separations between
the two crossings of Cpp = 0.1.
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3.3.2. Two-point correlations in streamwise wall-normal planes

The two-point correlation coefficient of the pressure field in a streamwise wall-normal
plane is defined as

Cpp(∆x, z, zref ) =
p′(x, y, zref , t)p′(x+ ∆x, y, z, t)(

p′2(x, y, zref , t)
)1/2 (

p′2(x+ ∆x, y, z, t)
)1/2

(3.3)

where ∆x is spatial separations in the streamwise direction and zref is the reference
wall-normal location at which the correlation is computed.

Contours of constant Cpp(∆x, z, zref ) for the present Mach 5.86 DNS at multiple refer-
ence heights zref are shown in figure 12. The same contours for the Mach 2.5 DNS (Duan
et al. 2014) are also included to highlight the differences from the lower Mach number
case. For each reference height zref , the maximum correlation of pressure fluctuations is
approximately aligned along a line, indicating the presence of downward-leaning struc-
tures. At the wall,the structure of pressure fluctuations is inclined about θxz ≈ 80◦ to
the wall. The inclination angle decreases gradually in the inner and outer regions of
the boundary layer. In the free stream, the inclination angle of the pressure structure
plateaus to θxz ≈ 21◦, and the freestream wave-front inclination θxz closely matches
the wave-front orientation of the instantaneous acoustic radiation visualized by numer-
ical Schlieren as shown in figure 19a. The variation in θxz with wall-normal distance
indicates that pressure disturbances generated within the boundary layer will undergo
significant refraction before they are radiated to the free stream. The freestream pressure
wave-front inclination θxz closely matches the wave-front orientation of the instantaneous
acoustic radiation visualized by numerical Schlieren as shown in figure 19a.

The pressure-structure angle exhibits minor Mach number dependence within the
boundary layer. In the free stream, however, the pressure wave front is significantly
shallower for the higher Mach number case. The shallower wave front of the freestream
radiation for the higher Mach number case is consistent with the decrease in the zone of
influence of a flow disturbance as Mach number increases.

3.3.3. Space-time correlation

The space-time of the pressure field is defined as

Cpp(∆x,∆t) =
p′(x, y, z, t)p′(x+ ∆x, y, z, t+ ∆t)(

p′2(x, y, z, t)
)1/2 (

p′2(x+ ∆x, y, z, t+ ∆t)
)1/2

(3.4)

where ∆x and ∆t are spatial separation in the streamwise direction and the time delay,
respectively.

The space-time correlation contours of Cpp(∆x,∆t) are plotted at multiple wall-normal
locations as shown in figure 13. For comparison, the same contours for the Mach 2.5
DNS (Duan et al. 2014) are also included. At all wall-normal locations, the pressure con-
tours are skewed with the maximum correlation aligned along the first or third quadrant
in the (∆x, ∆t)-plane. The concentration of contours of Cpp(∆x,∆t) into a narrow band
indicates strong downstream propagation of pressure fluctuations. In addition, there is a
change in the overall slope of d∆x/d∆t at different wall-normal locations, indicating a
variation of bulk propagation speed of pressure fluctuations as a function of wall-normal
distance. The overall larger inclination of the space-time correlation contours in the free
stream for the Mach 5.86 case indicates that the freestream pressure structures propagate
with a larger speed relative to the Mach 2.5 case. A further discussion of the propagation
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(a) zref/δ = 0 (b) zref/δ = 0.158

(c) zref/δ = 0.734 (d) zref/δ = 2.631

Figure 12: Streamwise wall-normal correlation coefficient of the pressure signal
Cpp(∆x, z, zref ) at selected heights for Mach 5.86 (Colored solid line) and Mach 2.5
(Black dashed line). Contour levels vary from 0.1 to 0.9 with increments of 0.1.

speed of pressure fluctuations, including its dependence on different definitions, will be
given in section 3.4.

Figures 14a and 14b plot the maximum space-time correlation of pressure fluctuations,
(Cpp)max, as a function of time delay ∆t and streamwise separation ∆x, respectively, at
multiple wall-normal locations. The scales of temporal and spatial decays in (Cpp)max are
measures of the life time and Lagrangian decorrelation length of the coherent pressure
structures or wavepackets. Within the boundary layer, the temporal and spatial La-
grangian scales of the pressure structures increase with wall-normal distance and are at
least five times larger than the large-eddy turnover time and the boundary layer thickness,
respectively. In the free stream, the acoustic pressure fluctuations show similar temporal
and spatial decay rates as those near the wall (z+ ≈ 20). Given that acoustic sources
are concentrated in the near-wall region according to the concept of ‘eddy Mach-wave
radiation’ (section 4.3), the apparent match in the Lagrangian time and spatial scales be-
tween the freestream pressure structures and the structures near the wall indicates that
the freestream acoustic radiation mainly originates from the near-wall region, a finding
that is consistent with the concept of ‘eddy Mach waves’.
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(a) wall (b) z/δ = 0.158

(c) z/δ = 0.734 (d) z/δ = 2.631

Figure 13: Contours of constant space-time correlation coefficient of pressure fluctuations
Cpp(∆x,∆t) at selected heights for Mach 5.86 (Colored solid line) and Mach 2.5 (Black
dashed line). Contour levels vary from 0.1 to 0.9 with increments of 0.1.

3.4. Propagation speed

The space-time correlation data based on the DNS was used to estimate the speed of
propagation of pressure fluctuations. First, for a given time delay ∆t, the propagation
speed Uc is defined as the ratio ∆x/∆t at the value of ∆x where

∂C(rx, 0,∆t)

∂rx

∣∣∣∣
rx=∆x

= 0 (3.5)

Similar procedure has been used by multiple researchers (Kim 1989; Choi & Moin 1990;
Bernardini & Pirozzoli 2011) to define the convection speed of wall-pressure fluctuations.
Figure 15a plots the propagation speed as a function of time delay ∆t at several selected
heights across the boundary layer for the present DNS. As expected, the propagation
speed shows a ∆t dependence, and there is an increase in Uc at large time separations
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(a) (b)

Figure 14: Decay of the maximum spatial-time correlation coefficient of pressure fluc-
tuations, (Cpp)max, as a function of (a) time delay ∆t and (b) streamwise separation
∆x.

in the inner and outer layers of the boundary layer (z/δ < 1). Given that only large
eddies retain their coherence at large time separations, such an increase in Uc at large
∆t may suggest that large pressure-carrying eddies/wavepackets propagate with higher
speeds than small ones. The propagation speed at the wall is Uc ≈ 0.8U∞ for the large-
scale disturbances (associated with large time delay) and Uc ≈ 0.72U∞ for the small-
scale disturbances (associated with small time delay). The magnitude of the propagation
speed near the surface as well as its scale dependence is in close agreement with both
measured and computed values for low-speed and supersonic turbulent boundary-layer
flows (Willmarth 1975; Choi & Moin 1990; Tsuji et al. 2007; Bernardini & Pirozzoli 2011).
The propagation velocity becomes less scale dependent in the log layer (z/δ = 0.16) and
the outer layer (z/δ = 0.73) and the overall range is very close to the local mean velocity.
Outside the boundary layer, the propagation speed is again insensitive to ∆t and the
pressure wavepackets propagate at a significantly smaller speed of Uc ≈ 0.63U∞. Similar
findings were reported by Duan et al. (2014) for a Mach 2.5 turbulent boundary layer. The
significantly smaller propagation speed of the freestream pressure wavepackets indicates
that the acoustic sources that radiate noise into the freestream convect with a speed
much smaller than the freestream velocity.

As suggest by Laufer (1964), the propagation speed Uc ≡ ∆x/∆t can also be defined
for a given ∆x and at the value of ∆t where

∂C(∆x, 0, rt)

∂rt

∣∣∣∣
rt=∆t

= 0 (3.6)

This definition is consistent with Laufer’s experiments (Laufer 1964) in which two probes
with fixed streamwise separation are used to determine the propagation speed. Figure 15b
shows a plot of the propagation speed Uc as a function of streamwise separation ∆x
at selected wall-normal locations. Similar to figure 15a, the propagation speed in the
inner layer increases at large streamwise separations and such an increase becomes less
significant as the location of interest moves to the outer layer. In the free stream, Uc/U∞ is
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(a) (b)

Figure 15: Propagation speed of pressure fluctuations as a function of (a) time delay ∆t
and (b) streamwise separation ∆x for the DNS of Mach 5.86 turbulent boundary layer.

approximately 0.68 for ∆x/δ ≈ 0.23 (corresponding to the probe separation ∆xLaufer =
0.71 centimeters in Laufer’s experiment by assuming δLaufer = 3.15 centimeters).

A third way to quantify the overall propagation speed of pressure-carrying eddies or
wavepackets is to find the value of Ub which minimizes the difference between the real
time evolution of p(x, t) and a frozen wave p(x − Ubt). Following this definition, the
following expression can be obtained

Ub ≡ −
(∂p/∂t)(∂p/∂x)

(∂p/∂x)2
(3.7)

The same definition of bulk propagation speed was introduced by Del Alamo & Jimenez
(2009) for the streamwise velocity fluctuations. Similar to the streamwise velocity (Del
Alamo & Jimenez 2009), a figure of merit for the frozen-wave approximation can be
introduced for the pressure fluctuations as

γp ≡

∣∣∣(∂p/∂x)(∂p/∂t)
∣∣∣[

(∂p/∂t)
2

(∂p/∂x)
2
]1/2 (3.8)

γp equals to unity for a perfect frozen wave, and zero for fast decaying or deforming
waves as they convect downstream.

Figure 16 plots the bulk propagation speed of the pressure fluctuation as a function of
wall-normal distance. The bulk propagation speed of the pressure fluctuation is signifi-
cantly larger than the local mean velocity in the viscous sublayer and the buffer layer.
The bulk propagation speed of the pressure fluctuation becomes approximately equal to
the local mean velocity in the upper buffer layer and remains so over a significant portion
of boundary layer (up to z/δ ≈ 0.65). Such a variation of Ub within the boundary layer
is consistent with the findings for incompressible and lower-Mach-number supersonic
flows (Kim & Hussain 1993; Duan et al. 2014). In the free stream, the propagation speed
departs from the Taylor’s hypothesis and is significantly lower than the local mean ve-
locity. Figure 17 shows the wall-normal distribution of the correlation coefficient γp that
provides a figure of merit for the frozen-wave approximation. The pressure wave is nearly
frozen with γ ≈ 1 within the boundary layer and becomes less so outside the boundary
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(a) (b)

Figure 16: Wall-normal distribution of bulk propagation speed of pressure fluctuations
in (a) outer and (b) inner units. Ub is defined based on ‘frozen-wave’ approximation as
equation 3.7 (Del Alamo & Jimenez 2009) for the Mach 5.86 and Mach 2.5 DNS, and
is calculated using equation 3.5 with ∆t+ = 18 for the incompressible DNS by Kim &
Hussain (1993).

layer at both Mach numbers. As the Mach number increases, propagation effect becomes
significantly more dominant over evolution effect for the freestream pressure wave.

Figure 18 compares the bulk propagation speed at the wall and in the free stream with
some existing experiments and simulations. In the figure, Ub1 is defined based on the
space-time correlation coefficient with equation 3.5 for the time delay ∆t or frequency
(ω = 2π/∆t) where the pre-multiplied frequency spectrum (figure 9a) attains its maxi-
mum. In analogy, Ub2 is derived based on equation 3.6 for the streamwise separation ∆x
or wavenumber (k1 = 2π/∆x) where the pre-multiplied one-dimensional wavenumber
spectrum attains its maximum. Ub3 is computed using equation 3.7 by assuming ‘frozen
wave/eddy’. The values of bulk propagation speed Ub varies depending on specific defini-
tions. Similar findings were reported for the convection speed of the wall pressure (Choi
& Moin 1990). The value of Ub at the wall gradually increases with the freestream Mach
number and is slightly higher than those widely quoted for low-speed flows (Willmarth
1975; Choi & Moin 1990; Tsuji et al. 2007). The gradual increase in propagation speeds
with Mach number is consistent with the values reported by Bernardini & Pirozzoli (2011)
for turbulent boundary layers at Mach 2, 3, and 4 (figure 18a). In the free stream, the
bulk propagation speed is approximately equal to 0.7U∞. Such a freestream propagation
speed falls within the region where Mr > 1, with Mr ≡ (U∞ − Ub)/a∞, consistent with
the concept of ‘eddy Mach wave’ radiation (Phillips 1960; Ffowcs-Williams & Maidanik
1965). Figure 18b further shows that the DNS-computed propagation speed compares
well with existing experiments and simulations (Laufer 1964; Duan et al. 2014).
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Figure 17: The distribution of correlation coefficient γp = |(∂p/∂x)(∂p/∂t)|[
(∂p/∂t)2 (∂p/∂x)2

]1/2 that pro-

vides a figure of merit for the frozen-wave approximation.

(a) Wall (b) Freestream

Figure 18: Bulk convection speed of pressure fluctuations as a function of freestream
Mach number: (a) at the wall; (b) in the freestream. Symbols: squares: Kistler & Chen
(1963); deltas: Bernardini & Pirozzoli (2011); left triangles: Laufer (1964); diamonds:
Kendall (1970); D : Kim (1989); filled circles: DNS Mach 5.86; right triangles: DNS Mach
5.86; circles: DNS Mach 5.86; A: DNS Mach 2.5 (Duan et al. 2014); B : DNS Mach 2.5; C :

DNS Mach 2.5; Lines: Mr = 1. Ub1 : ∂C(rx,0,∆t)
∂rx

|rx=∆x = 0, Ub1 : ∂C(∆x,0,rt)
∂rt

|rt=∆t = 0.

Ub3 : − (∂p/∂t)(∂p/∂x)

(∂p/∂x)2
.

4. Freestream acoustic radiation

4.1. Characteristics of Freestream fluctuations

In this section, the nature of freestream acoustic fluctuations is analyzed using the present
DNS data at Mach 5.86 and compared with previous results at Mach 2.5 Duan et al.
(2014).

Table 4 lists the freestream values of several fluctuating flow variables for the present
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Mach 5.86 Mach 2.5
u′rms/u 1.3633× 10−3 8.3217× 10−4

v′rms/u 1.0514× 10−3 4.9146× 10−4

w′rms/u 2.0526× 10−3 9.1447× 10−4

p′rms/p 2.0498× 10−2 3.9143× 10−3

ρ′rms/ρ 1.4621× 10−2 2.7967× 10−3

T ′rms/T 5.8908× 10−3 1.1180× 10−3

(ρu)′rms/ρu 1.3754× 10−2 2.2742× 10−3

T ′t,rms/T t 1.9813× 10−3 6.5962× 10−4

p′t,rms/pt 6.6867× 10−3 2.3330× 10−3

(∂ui/∂xi)′2/Ω′iΩ
′
i 31580 6099

s′rms/R 2.1149× 10−3 1.1765× 10−4

u′p′/u′rmsp
′
rms −0.6528 −0.7197

v′p′/v′rmsp
′
rms −0.00639 −0.0059

w′p′/w′rmsp
′
rms 0.9250 0.7765

ρ′p′/ρ′rmsp
′
rms 1 1

T ′p′/T ′rmsp
′
rms 1 1

Table 4: The disturbance field at z/δ = 2.63 for Case Mach 5.86 and z/δ = 2.8 for Case
Mach 2.5.

DNS at Mach 5.86 and the Mach 2.5 DNS (Duan et al. 2014). Similar to the Mach 2.5
case, the freestream thermodynamic fluctuations for the present Mach 5.86 case satisfy
isentropic relations, indicating the acoustic nature of freestream fluctuations. Moreover,
the level of dilatational fluctuations (∂ui/∂xi)′2, which is representative of the acoustic
mode, is compared with the magnitude of vortical fluctuations Ω′iΩ

′
i, which is repre-

sentative of vorticity mode. The large values of (∂ui/∂xi)′2/Ω′iΩ
′
i as well as the small

values of entropy fluctuations s′rms/R relative to p′rms/p̄ imply that the acoustic mode
is dominant over the vorticity and entropy modes in the free stream in terms of modal
compositions (Kovasznay 1953). The dominance of the acoustic mode over the other two
modes confirms that a purely acoustic field in the free stream is successfully isolated
by the present DNS. Thus, the present simulation provides a unique opportunity for
studying the similarities and differences in the characteristics of the primarily vortical
fluctuations within the boundary layer and acoustic fluctuations in the free stream.

The normalized velocity fluctuations at Mach 5.86 are significantly larger than those
at Mach 2.5. Yet, the rms fluctuations in either velocity component are less than ap-
proximately 0.25%. The fluctuations in thermodynamic variables are stronger than the
velocity fluctuations and also increases from Mach 2.5 to Mach 5.86. At Mach 5.86, the
rms pressure fluctuations are approximately 2% of the mean pressure value, compared
with p′rms/p̄ ≈ 0.4% at Mach 2.5. The increase in fluctuating intensity with the Mach
number is consistent with the theory of ’Mach wave radiation’ and the experimental
findings by Laufer (1964). For both Mach number cases, the pressure fluctuations are
strongly correlated with the streamwise velocity (u) and the wall-normal velocity (w),
but almost uncorrelated with the spanwise velocity (v). The large negative value of u′p′

and positive value of w′p′ indicate that the freestream radiation may be approximated by
two-dimensional, backward-facing waves. The changes in values of w′p′/w′rmsp

′
rms and

u′p′/u′rmsp
′
rms between the Mach 2.5 and Mach 5.86 cases indicate a variation of the

directionality of the freestream radiation with the Mach number (see section 4.2).
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4.2. Wave-front orientation

In this section, the directionality of the stochastic acoustic field in the free stream is dis-
cussed given its importance to hypersonic transition testing in conventional wind tunnels.
Figure 19a shows that the instantaneous pressure field in the free stream consists of ran-
domly spaced wavefronts, each with a limited spatial coherence. The wave fronts exhibit
a preferred orientation within the streamwise-wall normal (x-z) plane. The orientation of
the instantaneous freestream pressure field is similar to that of the freestream pressure
structures that are defined in the statistical sense based on Cpp(∆x, z, zref ) (figure 12d)
with θ ≈ θxz = 21◦.

An alternate way of defining the freestream wave-front orientation is to assume that
the two-dimensional freestream acoustic field consists of planar acoustic waves. The wave-
front orientation can therefore be derived using the following plane-acoustic-wave rela-
tion (Liepmann & Roshko 1957)

u′n
U∞

=
1

γM∞

p′

p∞
(4.1)

where un = u · n = u′ cos θn + w′ sin θn is the velocity normal to the wave front and
n = (cos θn, sin θn) is the plane-wave normal direction with θn the angle between u and
n. The wave-front orientation that is statistically most likely can be determined to be
the direction that minimizes the difference between u′n,rms/U∞ and p′rms/(γM∞p∞). By
using the freestream statistics analogous to table 4, θn ≈ 120◦ (correspondingly θ ≈ 30◦)
is obtained. For comparison, the wave angle of acoustic radiation for a Mach 2.5 turbulent
boundary layer is θ = 42◦ (Duan et al. 2014). Laufer (1964) has used a similar but less
rigorous relation u′ncosθn = u′ to estimate the wave-orientation, since the streamwise
velocity fluctuation u′ is the only velocity component that could be measured in his
experiments.

The differences in the calculated wave angles θ based on the plane-acoustic-wave as-
sumption and the two-point correlation Cpp(∆x, z, zref ) indicate that the the freestream
acoustic field does not correspond to truly planar waves. The deviation from purely pla-
nar behavior is also indicated by the imperfect correlation between p′ and the streamwise
(u′) and wall-normal (w′)velocity fluctuations in the freestream region (Recall the data
presented in table 4). As seen from figure 19b, a substantial portion of the instantaneous
pressure field within the region of interest corresponds to conical disturbances propagat-
ing from some (possibly virtual) localized source within the boundary layer. The finite
spanwise extent of the pressure wavepackets is consistent with the finite size of acoustic
sources that are responsible for generating the waves. The details of the acoustic sources
will be discussed in section 4.3.

4.3. Sources of freestream acoustic radiation

In this section, the acoustic sources that give rise to the acoustic pressure fluctuations in
the free stream are approximated in terms of flow turbulence according to the acoustic
analogy approach by Phillips (1960). The Phillips’ form of the acoustic analogy equation,
the definition of acoustic source terms as well as their decomposition into linear and
quadratic components are given in Duan et al. (2014).

Figure 20a plots the root-mean-square (RMS) of the acoustic source term including
both linear and nonlinear components as functions of z across the near-wall portion of the
boundary layer. Similar to the Mach 2.5 case (Duan et al. 2014), the total source term for
the present DNS peaks at z+ ≈ 20 and the nonlinear source term is dominant over the
linear source term throughout the boundary layer. Among the six constituent terms of
the nonlinear acoustic source (figure 20b), (∂v′/∂z)(∂w′/∂y) has the largest RMS value
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(a) (b)

Figure 19: Numerical Schlieren image based on instantaneous flow field for the present
DNS of a Mach 5.86 turbulent boundary layer. Contour levels are selected to emphasize
disturbances in the freestream. θ is the angle between the flow direction and the acoustic
wave front, and the vertical dashed line in (a) indicates the streamwise location of the
selected spanwise wall-normal plane visualized in (b).

with approximately the same peak location as the total acoustic source. The dominance
of (∂v′/∂z)(∂w′/∂y) in the buffer layer may indicate the important role played by the
near-wall streamwise structures in sound generation. Similar distribution of source terms
as well as the dominance of the nonlinear components have been reported by Kim (1989)
in the context of incompressible flows.

We note that the magnitude of the source terms is not the sole determinant of the
local contribution to the acoustic radiation in the free stream. The solution to the acous-
tic analogy equation is given by the convolution of the source terms with the Green’s
function of this equation which may be viewed as the local efficiency of the conversion
of hydrodynamic source terms into radiating acoustic disturbances. Due to the dramatic
differences in the ability of sound generation between turbulent sources that travel at
subsonic or supersonic speeds relative to the frees tream (i.e. the basic concept of ‘eddy
Mach wave’ (Phillips 1960; Ffowcs-Williams & Maidanik 1965)), figure 20a also shows the
regions of flow with a supersonic (Mr > 1) and subsonic (Mr < 1) relative Mach number.
The relative sonic location (Mr = 1) for the Mach 5.86 lies at z+ ≈ 114 (z/δ ≈ 0.25),
compared with z+ ≈ 22 (z/δ ≈ 0.04) for the Mach 2.5 case, indicating a dramatic increase
in the fraction of sound-radiating eddies as the freestream Mach number increases. The
increased portion of sound-generating eddies is consistent with the enhanced radiation
intensity as the freestream Mach number increases (figure 7b). Moreover, the increased
fraction of the inner layer that can radiate to the free stream contributes to a reduced gap
between the peak frequency of fluctuations near the surface and within the free stream
as shown by figure 9b.

5. Summary and conclusions

DNS of a zero-pressure-gradient turbulent boundary layer with a nominal freestream
Mach number of 5.86 and a wall-to-recovery temperature ratio of Tw/Tr = 0.76 is con-
ducted to investigate the wall-normal variation of the fluctuating pressure field and high-
light the differences between the primarily vortical pressure signal within the boundary
layer and the acoustic pressure signal in the free stream. Computational predictions
for both the mean velocity profile and frequency spectrum of surface pressure fluctua-
tions compare well with measurements in a Mach 6 wind tunnel facility, providing what
we believe is the first ever comparison of this type at hypersonic Mach numbers. The



27

(a) (b)

Figure 20: Profiles of the rms source terms (including the total, nonlinear source (NLS),
and linear source (LS) terms) across the near-wall portion of the boundary layer. The

rms of the source terms are normalized by
(
δ2

U2
∞

)
.

spectrum peak of pressure signals shifts to lower frequencies as the location of inter-
est moves away from the wall. Compared with the pressure signal within the boundary
layer, the freestream acoustic pressure fluctuations exhibit a significantly lower dominant
frequency, a greater spatial extent, a smaller structure angle, and a smaller bulk propa-
gation speed. Within the boundary layer (except in the immediate vicinity of the wall),
Taylor’s hypothesis approximately holds with pressure waves propagating with the local
mean velocity. In the free stream, however, the propagation speed of pressure fluctua-
tions is significantly smaller than the freestream velocity, even though the ‘frozen-eddy’
assumption approximately holds as indicated by the value of γp ≈ 1 (figure 17). There
is an apparent match in the Lagrangian time and spatial scales between the freestream
pressure structures and the structures near the wall. Given that the freestream acoustic
radiation is generated by turbulent fluctuations within the boundary layer, the apparent
match in Lagrangian scales indicates that the acoustic sources are located near the wall.
The source terms identified from the standpoint of an acoustic analogy (Phillips 1960)
are shown to be located mostly in the buffer layer and dominated by terms that are
quadratic in fluctuating velocities. The numerical findings on the acoustic sources are
consistent with the theory of ‘Mach wave radiation’.

The DNS results are also compared with the recently reported Mach 2.5 DNS (Duan
et al. 2014) to highlight the variation of acoustic characteristics with Mach number. It is
found that the Mach 5.86 DNS exhibits increased radiation intensity, enhanced energy
content at high frequencies, shallower orientation of wave fronts with respect to the flow
direction, and larger convection velocity relative to the Mach 2.5 case. These variations
in the freestream pressure field with Mach number agree well with the experimentally
measured trends (Laufer 1964) and are consistent with the ‘Mach wave radiation’ con-
cept (Phillips 1960; Ffowcs-Williams & Maidanik 1965).
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