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Abstract—We performed a human-in-the-loop study to 

explore the role of transparency in engendering trust and 

reliance within highly automated systems. Specifically, we 

examined how transparency impacts trust in and reliance upon 

the Autonomous Constrained Flight Planner (ACFP), a critical 

automated system being developed as part of NASA's Reduced 

Crew Operations (RCO) Concept. The ACFP is designed to 

provide an enhanced ground operator, termed a super dispatcher, 

with recommended diversions for aircraft when their primary 

destinations are unavailable. In the current study, 12 commercial 

transport rated pilots who played the role of super dispatchers 

were given six time-pressured "all land" scenarios where they 

needed to use the ACFP to determine diversions for multiple 

aircraft. Two factors were manipulated.  The primary factor was 

level of transparency. In low transparency scenarios the pilots 

were given a recommended airport and runway, plus basic 

information about the weather conditions, the aircraft types, and 

the airport and runway characteristics at that and other airports. 

In moderate transparency scenarios the pilots were also given a 

risk evaluation for the recommended airport, and for the other 

airports if they requested it. In the high transparency scenario 

additional information including the reasoning for the risk 

evaluations was made available to the pilots. The secondary 

factor was level of risk, either high or low. For high-risk aircraft, 

all potential diversions were rated as highly risky, with the ACFP 

giving the best option for a bad situation. For low-risk aircraft 

the ACFP found only low-risk options for the pilot. Both 

subjective and objective measures were collected, including rated 

trust, whether the pilots checked the validity of the automation 

recommendation, and whether the pilots eventually flew to the 

recommended diversion airport. Key results show that: 1) Pilots’ 

trust increased with higher levels of transparency, 2) Pilots were 

more likely to verify ACFP’s recommendations with low levels of 

transparency and when risk was high, 3) Pilots were more likely 

to explore other options from the ACFP in low transparency 

conditions and when risk was high, and 4) Pilots’ decision to 

accept or reject ACFP’s recommendations increased as a 

function of the transparency in the explanation.  The finding that 

higher levels of transparency was coupled with higher levels of 

trust, a lower need to verify other options, and higher levels of 

agreement with ACFP recommendations, confirms the 

importance of transparency in aiding reliance on automated 

recommendations. Additional analyses of qualitative data 

gathered from subjects through surveys and during debriefing 

interviews also provided the basis for new design 

recommendations for the ACFP. 

Keywords—trust in automation; commercial aviation; human-

machine interface; automated tools; NASA 

I.  INTRODUCTION 

In order to enhance safety, improve system performance, 
and create new capabilities for the National Airspace System 
(NAS), the National Aeronautics and Space Administration 
(NASA), industry, and governmental collaborators are 
envisioning and developing increasingly autonomous systems 
(IAs) to carry out complicated tasks with minimal human 
intervention. For example, NASA’s Unmanned Aircraft 
Systems Integration in the NAS (UAS in the NAS) project is 
developing IAs that will underpin detection and avoidance of 
potential UAS collision threats [1];  NASA’s UAS Traffic 
Management (UTM) project is currently working to provide 
guidance and prototypes for IAs that will support the UAS self-
configuration, self-optimization, and self-protection of the 
airspace for low-altitude unmanned vehicles [2]; and finally, 
NASA’s Reduced Crew Operations (RCO) concept is currently 
working on a next-generation ground control station that will 
utilize IAs to assist pilots and airline dispatchers to coordinate 
and execute decisions in off-nominal situations [3]. The work 
described in the present paper utilized IA components of the 
RCO ground station to create a high-fidelity environment for 
experimental scenarios. 

While IA systems provide users, organizations, and 
commercial interests a wide variety of benefits (e.g., increased 
efficiency, cost savings, reliability, and safety), a particular 
challenge identified by researchers concerned with the safe and 
effective integration of IAs into the NAS is the development 
and operation of these systems in ways that facilitate 
appropriate operator trust and reliance in automation.  



Specifically, operators of systems incorporating IA 
components must deal with multiple factors that can lead to 
mistrust or distrust, and thus negatively impact appropriate 
reliance on these systems. For example, it is known that people 
often suffer from automation bias, which leads them to expect 
or believe that the system can do more than it really can; and 
then when it fails to live up to this expectation they go the other 
way and cease to rely on it because of mistrust/distrust [4]. 
Accordingly, a particular challenge identified by researchers 
concerned with the safe and effective integration of IAs into 
the NAS is the development and proper aligning of trust and 
reliance in order to avoid these ‘hot/cold’ or ‘trust/mistrust’ 
swings that impact effective use of these systems. 

In what has become a seminal paper on the role of trust in 
automated systems, Lee and See [5] proposed that trust in 
automation is appropriate when it is properly calibrated, 
meaning that there is a one-to-one correspondence between the 
user’s trust level and their understanding of the system’s 
capability. A mismatch between user trust and perceived 
capability has the potential to lead to inappropriate reliance 
behavior in the form of misuse or disuse of the system [4]. 
Misuse occurs when an operator inappropriately relies on the 
automation due to over-trust (i.e., trust exceeds the system’s 
actual capability). Conversely, disuse occurs when an 
operator’s reliance is guided by under-trust (i.e., the system is 
more capable than the user trusts it to be). And in both cases, 
disuse and misuse of automation have led to unfortunate real-
world outcomes [5], [6]. 

To help mitigate the problem of uncalibrated trust leading 
to inappropriate reliance, researchers have identified 
automation transparency—defined as a shared awareness and 
shared intent between a user and system—as a mechanism for 
engendering trust [7], [8]. Lyons proposes that ideal teaming 
between humans and automated systems encompasses two 
complementary aspects of transparency, 1) robot-to-human 
transparency which conveys to the human how the automation 
understands the world, the tasks it performs, and how it should 
perform them, and 2) robot-of-human transparency which 
conveys to the human what the automation knows about the 
human operator, e.g., the human’s state, preferences, and 
task/goal awareness. Using this transparency decomposition, 
systems can be designed to encourage human-automation 
teaming and a fitting division of labor [9] between the system 
and user.  

The current study focuses on robot-to-human transparency. 
Chen and colleagues [10] have developed a model for robot-to-
human transparency utilizing Endsley’s [11] theory of situation 
awareness (SA) which posits that humans acquire SA at three 
levels: 1) individual situation elements, 2) interpretation of the 
situation’s elements altogether, and 3) the prediction of the 
near-term state based on that interpretation. Following the 
model, Chen et al.’s SA-based agent transparency (SAT) 
advocates for transparency guidelines that provide information 
to the user that maintain the three levels of SA. In effect, SAT 
aims to provide transparency which allows the user to 
immediately answer these questions: (Level 1 SA) What is the 
agent doing/attempting? (Level 2 SA) Why is the agent doing 
that? (Level 3 SA) What should I expect to happen next? They 
also note that, unlike Endsley’s SA model which needs all 

three SA levels to achieve optimal situation awareness, the 
SAT model does not assume that all three levels are needed to 
achieve transparency. Instead, for the SAT model these levels 
are simply different aspects that may be differentially needed 
according to the situation. For example, in a time-sensitive 
situation, the operator may only need to know the agent’s 
proposed actions (level 1) and the projected outcome (level 3) 
to make a sufficiently informed decision. Furthermore, it may 
be that providing reasoning information needed to answer the 
question “Why?” (level 2) may be harmful because it leads to 
an unacceptable delay in decision making while the user 
assimilates this information.  

The nature of the link between transparency and trust has 
been explored theoretically and empirically by multiple 
researchers [5], [7], [12]-[15]. While the relationship between 
transparency and trust is usually predicted in theoretical 
examinations, the empirical work has shown mixed results 
when attempting to link trust and transparency.  Some studies 
show a significant impact of an automated system’s 
transparency on an operator’s trust [16]-[19] while other 
researchers report transparency level to have no effect on user 
trust [20], [21].   

In the current study we have attempted to further our 
understanding of transparency as a mechanism for calibrating 
trust by examining how transparency impacts trust in, and 
reliance upon, a new automated system developed by NASA. 
This system, the Autonomous Constrained Flight Planner 
(ACFP), is being developed as part of NASA's exploration of 
technologies supporting reduced crew operations (RCO), an 
effort within NASA’s Safe Autonomous Systems Operations 
project.  The RCO effort has explored tools, technologies and 
concepts that can be used to reduce the number of crew 
members needed to fly transport aircraft. One idea has been to 
provide automation that will quickly and efficiently assist in 
rapidly making decisions for emergency diversion planning in 
off-nominal situations.  This automation, based on the work of 
Meuleau, Plaunt, Smith, & Smith [22], has been incorporated 
into the ACFP, which is a ground-based, not aircraft based, 
tool utilized by a ground operator to provide enhanced support 
to RCO aircraft in these off-nominal situations.   

The ACFP compiles and utilizes information from many 
different sources to generate a list of diversions. The ACFP 
uses ATIS information at the airport, current weather, aircraft 
flight envelope and equipment status, aircraft location and 
terrain, airport/runway characteristics, and available arrivals 
and approaches when generating diversions. The main factors 
that the ACFP takes into consideration are: enroute distance 
and turns, enroute weather, approach weather and minimums, 
population density along the approach path (i.e., in case of 
crash), runway length and width, landing speed (given winds 
and required approach speed), landing crosswind, runway 
surface, braking action, and terrain. The weather used comes 
from a variety of sources, including METAR reports, radar 
data (storms), turbulence and icing forecasts, and PIREPS, 
which are all provided by the National Weather Service 
(NWS). The ACFP takes in all of this information and uses it 
to generate risk estimates for diversions to available airport 
runways, and then uses these estimates in turn to make a 
recommendation. These risk calculations and recommendations 



are meant to provide substantial workload savings to operators 
who, otherwise, would have to gather this information and then 
take it into account, when utilizing their own expertise to 
evaluate diversion options. Clearly, trust is critical if operators 
are to rely on the ACFP in emergency situations, and 
transparency may be one of the keys to this trust. If distrusted, 
the operators may fail to utilize the ACFP during emergencies 
adding workload to an already task-saturated environment.  

In this paper, we describe a high-fidelity experiment that 
was conducted with commercial airline pilots to examine the 
relationship between transparency, trust, and reliance. Pilots in 
the experiment interacted with the ACFP in conditions in 
which the transparency level and risk level of ACFP’s 
recommendation were varied. This study follows earlier work 
examining trust calibration with the ACFP in a low-fidelity 
environment [17]. In the sections that follow, we will detail the 
study’s overall design, the task that was carried out by pilots, 
details of the ground station’s operations, key findings 
regarding pilot behavior in response to our manipulations, 
followed by a discussion of our results’ meanings and 
implications for designing transparent interfaces. 

II. METHOD 

A. Participants 

Participants were 12 commercial transport pilots who had 
experience with flight management systems (FMS) and glass-
cockpit instrumentation. The study was conducted within the 
Human Systems Integration Division at NASA Ames Research 
Center, with pilots being recruited by the San Jose State 
University Research Foundation from the surrounding San 
Francisco Bay Area. With the exception of one participant who 
had 3001-5000 hours of experience, all other pilots had 
10,000+ hours of flight experience as line pilots. Additionally, 
all pilots had previous experience making diversions from 
flight plans for a variety of reasons including poor weather 
conditions, air traffic issues, mechanical failure, and/or medical 
emergencies. All pilots were employed by their airlines as 
Captains (66.7%) or as First Officers (33.3%), and two-thirds 
of pilots reported having prior experience with military flying. 
Most pilots (75%) specified being either “somewhat familiar,” 
“familiar,” or “very familiar” with flying in the simulated 
geographical area in the study (Colorado, Utah, and 
Wyoming). 

B. Experimental Design 

For this study we employed a within-subjects 3 x 2 
(Transparency x Risk) factorial design with three levels of 
Transparency (Baseline, Value, and Logic), and two levels of 
Risk (Low and High).  

Six distinct scenarios were created, and all pilots saw each 
of the scenarios, for a total of six trials.  Across these six trials 
each pilot was shown each of the 3 levels of Transparency 
twice, but was never shown the same Transparency level more 
than once for any one of the six scenarios. The Transparency 
level corresponded to the type of explanation for the diversion 
recommendation provided to the pilots.  In all three levels of 
Transparency the pilots were able to call up and view all of the 

information that the automation used to derive its 
recommendation.  The three levels differed in that no 
explanation for how the automation arrived at its 
recommendation was provided in the Baseline condition, while 
the calculated success probability that ultimately drove the 
diversion recommendation was provided in the Value 
condition, and an additional explanation detailing the link 
between these probabilities and the information used to derive 
the recommendations was provided in the Logic condition.  
Thus we used an additive manipulation of transparency, 
consistent with similar methods in prior research [19]. 

All scenarios took place within a region roughly 
encompassing Colorado and parts of immediately surrounding 
states. The scenarios were generated by, among other things, 
combinations of landing conditions (e.g. runway length and 
surface conditions, crosswinds, etc.), en route and arrival 
convective weather, aircraft type, and aircraft fuel. These 
factors were used to generate three High Risk and three Low 
Risk diversions for six aircraft within each scenario.  The Risk 
factor was a within-scenario manipulation. In particular,  each 
scenario was designed such that the best diversion option for 
three of the aircraft had a probability of a successful landing 
between 0.8 and 1.0 (Low Risk), while the best diversion 
option for the other three had a probability of a successful 
landing between 0.4 and 0.65 (High Risk).  There was never a 
better option available in these cases as determined by the 
ACFP risk algorithm.  Therefore, for the High Risk aircraft, 
while there was a substantial risk in the recommended 
diversion, it was the best that the ACFP risk algorithm could 
find, with all other alternatives having higher risk; while for the 
Low Risk aircraft there might be other high and low risk 
alternatives, but the recommended diversion had the lowest 
risk.     

Each pilot engaged in a total of six scenarios.  Both 
instances of each Transparency condition were presented back-
to-back, yielding three blocks.  Each of the six potential 
orderings of the three blocks were presented to two pilots, thus 
providing counterbalancing for any order effects in presenting 
Transparency conditions.  Risk was a within-scenario 
manipulation and counterbalancing was handled by requiring 
pilots to reroute their six aircraft in a prescribed order, with this 
order manipulated to counterbalance for Risk order effects. 
Across all participants and trials each of the six scenario was 
paired with each of the three Transparency conditions exactly 4 
times. 

C. Task/Apparatus 

This study used a simulation environment designed to 

support research within the NASA Ames Human Systems 

Integration Division addressing issues in air-ground 

integration for proposed future air traffic management 

systems. The current study built upon capabilities that were 

designed to enable exploration of concepts for the ground 

support of single-piloted aircraft, an effort which was part of 

the NASA’s Reduced Crew Operations (RCO) project [23].  

In the current study an operator at a simulated advanced 

ground station monitored and produced diversions for aircraft. 

Six principal components of the whole prototype ground 



station were utilized; this subset of the functionalities 

included: the Autonomous Constrained Flight Planner (ACFP) 

recommender system (see Fig. 1), an Aircraft Control List 

(ACL), Automatic Terminal Information Service (ATIS) 

broadcasts, a Traffic Situation Display (TSD), Federal 

Aviation Administration (FAA)-issued approach plates and 

airport charts, and pop-up windows that contained evaluations 

of specific diversions provided by the ACFP. 

Researchers in NASA’s RCO project designed the ACFP 

as a tool to support flight path monitoring and re-routing by 

incorporating an Emergency Landing Planner (ELP) algorithm 

previously developed at NASA [22] and most recently utilized 

in a precursor study to the present experiment [17]. The ACFP 

provided automated diversion recommendations and 

evaluations during the study’s landing scenarios by evaluating 

the risks of going to airport runways within 200 nautical miles 

(370.4 kilometers) of an aircraft. The top recommendation and 

route, plus any transparency information were then presented 

on a pop-up window on the TSD. The system would also give 

risk, route, and transparency information for any other airport 

runway upon request by the pilot. The TSD provided pilots 

with a visual display of the geographic area including 

convective weather cells and turbulence boxes, as well as 

icons representing the locations of available airports. 

Additionally, the TSD displayed information related to each 

aircraft’s current state, including altitude, heading, indicated 

airspeed, and location. By using the ACL, pilots were able to 

shift focus between the six simulated aircraft in the TSD and 

see the type of the selected aircraft (e.g., Airbus A320, Boeing 

747, etc.). By accessing a menu in the TSD, local airport 

weather conditions were also available to participants in the 

form of the ATIS broadcast for the corresponding landing site. 

Pilots were able to look up the approach plate for each 

available approach, which provided a schematic diagram of 

the approach as well as the ceiling and visibility minimums for 

the approach.  

Each scenario required pilots to land all aircraft under their 

control (6 per trial). Following examples set forth in [17], the 

ACFP window presented information to the pilot using one of 

the three hierarchical levels of transparency,. In the Baseline 

Transparency condition (Fig. 2, top), participants were 

provided with a recommendation from ACFP displaying the 

recommended landing site. This included the airport and 

runway number, runway length (in feet), approach name/type, 

and the distance to the landing site (in nautical miles). In the 

Value Transparency condition (Fig. 2, middle), pilots were 

provided with a “risk statement” in addition to the information 

presented in the Baseline Transparency condition. This 

statement provided the evaluation from ACFP of the 

probability of success for landing on the first attempt (e.g., 

“There is a 55% chance that you will be able to successfully 

complete the approach and landing under current conditions”). 

The success probabilities refer to the chance of having to 

perform a “go-around” or missed approach. The Logic 

Transparency condition (Fig. 2, bottom) included information 

from the Baseline and Value conditions, as well as additional 

statements to explain the rationale behind the ACFP 

recommendation. The statements contained descriptions of 

relevant factors along phases of flight that led to the 

determination for the recommendation, such as information 

about the enroute, approach, or landing phase. 

D. Measures 

Trust was measured using a 7-item scale to gauge pilot’s 

intentions to be vulnerable to, that is ‘trust’, the ACFP [17]. 

Pilots rated their agreement with the items using a 7-point 

Likert scale. Trust measures were taken after each 

Transparency condition and the scale evidenced high 

reliability with alphas ranging from 0.88-0.92.  Example items 

included: “I think using the [ACFP] will lead to positive 

outcomes,” “I would feel comfortable relying on the 

recommendations of the [ACFP] in the future,” and “when the 

task was hard I felt like I could depend on the [ACFP].” 

Behavioral data was recorded and stored in timestamped 

system log files. A sample of the type of data recorded 

includes: when pilots toggled focus on an aircraft, when ACFP 

queries were made, when and what diversions were executed, 

requests for airport ATIS data, and when and what approach 

charts were viewed. Three main types of 

behavioral/performance measures were derived from the 

recorded data. 

1) Verification: Did the pilot look at the ATIS data or 

approach plates upon which the ACFP based its 

recommendations? 

2) Exploration: Did the pilot request ACFP evaluations 

and routings or ATIS data for any other airport than the one 

initially recommended by the ACFP? 

3) Agreement: Did the pilot execute the diversion 

recommended by the ACFP? 

 

 



 
 

 
 

 
Fig. 2.    Screen capture of ACFP query result in the Baseline (top), Value 

(middle), and Logic (bottom) transparency conditions. 

 

 

 

 

III. RESULTS 

A. Trust 

Pilots’ trust increased with higher levels of Transparency. 
As also reported by Lyons and colleagues [18] in a separate 

examination of data from this study, there was a statistically 
significant effect of Transparency on trust, F (2, 22) = 4.39, p < 
0.05, with highest trust in the Logic condition and lowest trust 
in the Baseline condition (Figure 3).  

For each pilot there were six replications of the six 
conditions defined by the 3 (Transparency - Baseline, Value, 
Logic) x 2 (Risk - Low or High) design.  These replications 
were converted to probabilities for the three behavioral 
measures: verification, exploration, and agreement. This was 
done by simply taking the number of times the pilots verified a 
recommendation, explored new options, or agreed with a 
recommendation, and dividing this total by six. Initial 
examination of this data revealed it to have substantially non-
normal distributions due to a strong positive skew in the 
probabilities (e.g., many probabilities of 1.0).  When tests of 
normality were conducted on the behavioral measures for each 
of the six conditions, the tests rejected normality (p < .05) in 
two of six conditions for the verification data, in three of six 
conditions for the exploration data, and in five of six conditions 
for the agreement data.  Based on this we decided to utilize 
non-parametric tests in our analyses. 

B. Verification 

Pilots were more likely to verify recommendations from the 
ACFP that had low levels of Transparency, and also when the 
recommendation had a High Risk (see Fig. 4, top). In the Low 
Transparency Baseline scenarios pilots were more likely to 
verify the ACFP recommendation (62%-65% of the time) 
compared to High Transparency Value and Logic scenarios 
(28% - 44% of the time). When a Friedman paired sample test 
was used to evaluate this transparency effect it was found to be 
statistically significant (p = 0.015).  Pilots were also more 
likely to verify ACFP recommendations when they were High 
Risk (49%) versus Low Risk (43%), but, a Wilcoxon signed 
rank test did not find this effect significant (p > 0.10).  A closer 
examination of the means showed that an effect of risk might 
have been confined to the two higher levels of Transparency, 
but Wilcoxon signed rank tests that examined the effects of risk 
within only the Value and the Logic conditions failed to 
confirm this (p > 0.10). 

C. Exploration 

Pilots were less prone to explore non-recommended 
diversion options for Low Risk aircraft within the two higher 
Transparency conditions (Value and Logic), than for Low Risk 
aircraft in the Baseline.  On the other hand, for High Risk 
aircraft the tendency to explore other options was high, and 
approximately equal, in all three Transparency conditions 
(Figure 4, middle). A Friedman paired sample test showed no 
statistically significant main effect of Transparency (p > 0.10), 
but a Wilcoxon paired sample test did show a significant main 
effect of Risk (p = 0.006).  However, there is a clear indication 
of an interaction where the effect of Risk is confined to the 
High Transparency condition.  This was confirmed with 
separate follow-up Friedman tests examining the effect of 
Transparency for the High and Low Risk aircraft. These found 
that there was no effect of Transparency for the High Risk 
aircraft (Baseline = 73%, Value = 76% Logic = 78%, p > 0.10), 
but a significant effect of Transparency for the Low Risk 
aircraft (Baseline = 74%, Value = 38%, Logic = 37%, 

 
Fig. 1.    Labeled image of the ground control station used by participants. 

 



p=0.018). As with verification, higher levels of Transparency 
at the lower risk level led pilots to take the recommendations 
with less follow-up checking.  However, unlike the tendency 
for verification to decrease at the higher levels of Transparency 
when risk was high, the pilots continued to explore other 
options across all levels of Transparency for planes given a 
higher risk recommendation.  

D. Agreement 

The probability that pilots would chose to land on the same 
runway as that recommended by the ACFP increased as a 
function of Risk, and as a function of  Transparency for the two 
higher levels of Transparency (Value and Logic, see Fig. 4, 
bottom), although there was no evidence of an increase in the 
Baseline condition.  A Wilcoxon paired sample test found the 
main effect of Risk to be statistically significant (p=0.046), 
while a Friedman paired sample test found no statistically 
significant effect of Transparency (p > 0.10).   

IV. DISCUSSION 

This study envisioned a future concept of operations in 
which a ground operator is charged with a hybrid duty 
composed of present day airline dispatcher and pilot first 
officer roles. In this study we examined this concept by placing 
pilots in a high-fidelity environment and requiring them to 
execute diversion decisions under time pressure for multiple 
aircraft. In a real-world setting, the ground operator would be 
in communication with the pilot in the air as well as  with air 
traffic controllers (ATCs) in order to coordinate decisions. 
Because this study had transport pilots (i.e., not dispatchers) 
performing the role of a ground operator who has executive 
authority (i.e., makes diversion decisions without coordinating 
with pilots or ATCs), the simulation described here did not 
fully examine the trust and behaviors of a hypothetical ground 
operator, a civil aviation position that does not yet exist. As 
such, this study was only a first look at possible ground 
operator behavior for subcomponents of the ground operator’s 
tasks and responsibilities. Despite these differences from the 
proposed real-world position, this is a critical extension of prior 
trust-transparency research because of the use of actual 
operators, a high-fidelity simulation, and ecologically-valid 
constraints.  Further, this study extends prior trust-transparency 
work [17], [18] with the inclusion of reliance metrics. Notably, 
the impact of reliance was evaluated as a function of both the 
level of risk associated with a decision as well as the level of 
transparency associated with the automation recommendation. 
The remainder of this discussion will consider the findings as 
they related to pilot verification and exploration, or Information 
Seeking; pilot decisions on where to divert an aircraft, or Flight 
Decisions; and ACFP Design. 

A. Information Seeking 

The Baseline conditions showed no trends associated with 
Risk, with pilots verifying 61%-65% of the time, and exploring 
73%-74% of the time.  This is probably not surprising since no 
risk evaluation was provided for Baseline, but it does suggest 
that the pilots were insensitive to the risk that the ACFP was 
identifying (but not displaying). Otherwise, one could expect 
the tendency to explore or verify to have been affected.  On the 
other hand there were clear effects associated with Risk in the 

Value and Logic conditions.  For the Low Risk aircraft, the 
tendency to explore and verify were much less than in the 
Baseline condition, but otherwise similar, with pilots verifying 
28%-34% of the time, and exploring 37%-38% of the time.  
The decrease shows that the pilots invested much less time and 
effort if they were shown a low risk rating by the ACFP.  This 
in and of itself is also not that surprising, particularly given that 
they were under time pressure and knew that they would have 
High Risk aircraft to which they would have to attend.  The 
lack of any significant differences between the Value and 
Logic conditions indicates that the Logic statements played 
little or no role in the pilots’ decisions to verify these risk 
statements, or explore for better options      

When we turn our attention to how pilots dealt with High 
Risk aircraft in the Value and Logic scenarios we see a slightly 
different picture. Verification behavior does go up, 41%-44% 
(again no real difference between the two), but remains 
substantially below the 65% rate for the High Risk aircraft in 
the Baseline scenario.  It seems that pilots still had a fair degree 
of trust in the risk estimate rendered by the ACFP, and again 
the impact of the Logic statements played little or no role in 
pilots’ decisions to verify. On the other hand, exploration 
behavior for High Risk aircraft in the Value and Logic 
scenarios is much higher (76%-78%) and not statistically 
different from that found in the Baseline scenario (73%).    This 
change in exploration behavior as a function of aircraft Risk 
within both the Value and Logic scenarios, when compared 
with the lack of such an effect for verification behavior within 
these scenarios, highlights an important distinction between 
verification and exploration. That is, it seems that despite the 
apparent trust that the pilots had in the ACFP to make a decent 
estimation of risk, this did not translate into trust that the ACFP 
could find the best alternative destination.  In particular, one 
post-hoc hypothesis supported by this data is that if the pilots 
had trust in the initial risk estimate, and risk was low, then they 
could just go on to accept that recommendation; but if risk 
level was high, then they felt compelled to look for a better 
option. But this brings up the question of why this should be 
the case. Further research is indicated.   

B. Flight Decisions 

Finally, we need to turn our attention to how the 
Transparency and Risk factors affected whether the pilots 
actually took the ACFP diversion recommendation. This data 
was the most difficult to analyze because of overall high rates 
agreement, ranging between 73% and 95%.  For example Low 
Risk aircraft in the Baseline, Value and Logic scenarios, 
generated particularly skewed data with, respectively, 5, 8, and 
7 out of 12 pilots agreeing with the recommended alternative 
100% of the time; while the numbers for the High Risk data 
were 5, 6, and 2 out of 12.  Despite this, the non-parametric 
analysis of the agreement data showed a significant effect of 
Risk on decision making, with pilots’ diversion choices 
agreeing with the recommended diversions less often for the 
High Risk aircraft (73%-86%) than for the Low Risk aircraft 
(79%-95%).  While we found no significant impact of 
Transparency level, the data suggest that this effect of Risk was 
confined to the Value and Logic scenarios, an interaction that 
our non-parametric analysis was ill-equipped to detect. An 
inspection of Figure 4 (bottom) shows this interaction, 



revealing no effect of Risk on agreement in the Baseline 
scenarios (both 21%), and with agreement going down as risk 
goes up for the Value and Logic scenarios. This pattern can be 
understood in light of the pilots’ information seeking behavior, 
where verification and exploration behaviors increased as risk 
increased. Specifically, a post-hoc hypothesis suggested here is 
that pilots’ confidence in the solutions being presented by the 
ACFP decreased with higher risk and this led to a higher 
rejection of the recommendations.  This of course would not be 
represented in the Baseline condition due to the already noted 
insensitivity of pilots to diversion risk in the absence of an 
ACFP risk evaluation. 

C. ACFP Design 

The design for transparency of the ACFP, specifically in 
the Logic condition, and in overall ground station components, 
represents a practical implementation of the SA-based Agent 
Transparency concept advocated by [10]: Level 1 SA is 
provided by the TSD, ACL; Level 2 SA is provided by the 
reasoning statements returned from ACFP for the enroute, 
approach, and landing phases of flight; and Level 3 SA is 
provided by the probability statement for successful landing on 
the first approach. The automation’s reasoning or diversions 
additionally represents a partial implementation of Goritzlehner 
et al.’s [21] recommendation that proper automation 
transparency involves the system revealing its inner workings. 

From semi-structured interviews conducted following the 
simulation, pilots in the experiment provided feedback and 
suggestions for improvement on the ACFP interface design. 
Most common among pilots’ comments was the desire for 
reduction of workload by reducing the number of menus one 
has to access in order to obtain information required to execute 
decisions. In order to properly evaluate a recommendation 
given by ACFP, pilots would have to access menus to retrieve 
ATIS broadcasts in the local area and review approach plates 
for ACFP’s suggestion as well as possible alternatives. Many 

pilots expressed a desire that ACFP coordinate with relevant 
components of the ground station so that 1) all ATIS 
broadcasts/METAR data for local airports be displayed 
continually and 2) that the airport and approach plate charts for 
the ACFP recommended landing site automatically be returned 
alongside the ACFP output. Additionally, during pilot testing 
of our experimental scenarios prior to running our study, two 
subject matter experts indicated that they would like ACFP to 
be customizable so that it weighted certain factors (e.g., 
crosswinds, approach weather, airport facilities, etc.) more 
highly than others according to either personal preferences or 
situational need. Pilots were also asked about their decision-
making strategies when executing diversion decisions during 
actual flight. Pilots primarily reported that they do not have a 
generalized strategy for diversion planning in emergency 
situations due to the fact that diversion decisions must be 
situation-specific. Nevertheless, top factors reported to be 
important in an emergency include distance to the landing site 
and whether the diversion airport has services and facilities for 
their airline. 

D. Conclusion 

Our finding that transparency played a significant role in 
trust in and agreement with ACFP diversion recommendations 
allows us to build upon design elements for displays that 
encourage appropriate behavior while lightening the workload 
of an aviation professional partly responsible for the safety of 
multiple aircraft. 

One particular noteworthy finding is that pilots seemed to 
accept risk evaluations, but for some reason this did not 
translate into an acceptance that the automation had found the 
best alternative, particularly when the risk was high. Clearly 
there was something more complex going on in their 
evaluations. Reliance, and by implication trust, therefore must 
be seen as a more nuanced attribute. 



 
Fig. 3.    Means for trust by condition (taken from [18]). 

 

 

  

 
  

 
  

 
Fig. 4.    Mean probabilities for ACFP recommendation verification 

(top), exploration (middle), and agreement (bottom) by 

transparency condition and risk level.  

 

 

This aspect of the system can be improved to better inform 
the user of the logic and decision making model employed by 
the ACFP, as is evidenced by one pilot suggesting, during his 
post-simulation interview, a decision model that is effectively 
equivalent to the one actually employed by the ACFP. 
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