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Real-Time Identification and Control of Satellite Signal 
Impairments—Solution and Application 

of the Stratonovich Equation 
Part 1. Theoretical Development 

 
Robert M. Manning 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135  

Abstract 
As satellite communications systems become both more complex and reliant with respect to their 

operating environment, it has become imperative to be able to identify, during real-time operation, the 
onset of one or more impairments to the quality of overall communications system integrity. One of the 
most important aspects to monitor of a satellite link operating within the Earth’s atmosphere is the signal 
fading due to the occurrence of rain and/or phase scintillations. This, of course, must be done in the 
presence of the associated measurement uncertainty or potentially faulty measurement equipment such as 
in the Advanced Communication Technology Satellite (ACTS) experiment. In the present work, an 
approach originally suggested in 1991, and apparently still considered iconoclastic, will be significantly 
developed and applied to the satellite communications link on which the deleterious composite signal fade 
is the result of one or many component fade mechanisms. Through the measurement (with the attendant 
uncertainty or ‘error’ in the measurement) of such a composite fading satellite signal, it is desired to 
extract the level of each of the individual fading mechanisms so they can be appropriately mitigated 
before they impact the overall performance of the communications network. Rather than employing 
simple-minded deterministic filtering to the real-time fading, the present approach is built around all the 
models and/or descriptions used to describe the individual fade components, including their dynamic 
evolution. The latter is usually given by a first-order Langevin equation. This circumstance allows the 
description of the associated temporal transition probability densities of each of the component processes. 
By using this description, along with the real-time measurements of the composite fade (along with the 
measurement errors), one can obtain statistical estimates of the levels of each of the component fading 
mechanisms as well as their predicted values into the future. This is all accomplished by the use of the 
well-known Stratonovich integro-differential equation that results from the model of the measured signal 
fade that is also tailored to adaptively adjust the values of the parameters used in the statistical models of 
the individual fade mechanisms. Three examples of increasing complexity are addressed and solved for 
the iterative determination of fade component levels from the measured composite signal fade in the 
presence of measurement error and, in the last case, with uncertainty in the model parameters.  

1.0 Introduction 
The propagation impairments that are peculiar in and above the 30/20 GHz Ka-band are of such a 

dynamic and composite nature as to require fade processing methods not found in earlier satellite link 
attenuation assessments. In particular, not only is one faced with rain attenuation characterized with 
deeper fades and “faster” dynamics as compared to that in the Ku-band, but also the phenomena of cloud 
and/or clear air scintillation (essentially, enhancements and degradations of signal level due to 
constructive and destructive interference initiated by phase perturbations of the propagating wave), with 
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effects comparable to that of rain attenuation, becomes significant, especially at 30 GHz. One must then 
be able to identify and separate these components from the composite fade since each must be dealt with 
in a different manner, e.g., rain fade by power control and scintillation by time diversity transmission. 
Even if scintillation is not by itself deleterious to communication link integrity, it must still be separated 
from the rain fade component for efficient and optimal power control implementation.  

In addition to the identification problem outlined above, one will also always encounter situations 
where the signal from which one is to obtain rain fade information is corrupted by measurement 
uncertainty or “noise” due to the measurement technique and/or equipment. What is more, if frequency 
scaling is applied to noisy attenuation data that has (before proper filtering and identification) such 
random variations, these variations can become greatly exaggerated after the scaling operation simply 
because they are not governed by the same mechanisms that are responsible for the rain attenuation 
frequency scaling law. The ever-present measurement uncertainty that prevails in the assessment of 
communications satellite link integrity must always be properly addressed before one can reliably capture 
associated performance metrics.  

1.1 The Dynamics of the ACTS Rain Attenuation Prediction Model 

The above problems all have had to be addressed within the Advanced Communication Technology 
Satellite (ACTS) Project in the design and implementation of ground terminals for the satellite. These 
have been collectively met by the formulation of the problem within the context of the ACTS Rain 
Attenuation Prediction Model (Refs. 1, 2, 3, and 4] and Nonlinear Markov Filtering Theory (Ref. 5). In 
particular, due to the structure adopted for the ACTS Rain Attenuation Prediction Model, the problem 
was couched within the context of the state variable approach of stochastic control theory, analyzed in 
terms of the optimal estimate with respect to the minimization of the least squares estimate, and 
analytically solved yielding a set of recursion relations, amenable to digital implementation, giving the 
optimal estimate of link attenuation in the presence of measurement noise. (The ‘Markov’ descriptor 
issues from the use of well-known Markov random process theory to derive the statistical estimates and 
the ‘non-linear’ descriptor comes from the non-linear functional relationship between the quantity of 
signal attenuation and the more basic parameters of the dynamic model.) Because of its close connection 
with the ACTS Rain Attenuation Prediction Model, which discerns climatological variations on the order 
of 0.5° in latitude and longitude in the continental U.S., the statistical filtering algorithm can be 
“programmed” with the attenuation statistics that are representative for any location at which it may be 
used. However, there too can be uncertainty in the calculations of the relevant statistical parameters of the 
rain attenuation process. The nature of the method used here is such that parameter uncertainty can also 
be incorporated into the filtering algorithm to make it adaptive to such incomplete knowledge.  

1.2 The Essence of the Statistical Filtering Problem and Its Comparison to Well-Known 
Fourier-Transform Filtering 

1.2.1 Fourier Transform Filtering 
Consider the well-known problem signal decomposition of the Fourier Transform filter. For example, 

let the measured or observed signal Fobs(F1, F2,t) be very simply given by 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2, , cos cosobsF F F t F t t F t t n t= ω + ω +  (1) 

where F1(t) is the first signal imbedded in the overall measurement. The value or level of this imbedded 
signal is so far unknown and, in fact, is to be ‘filtered’ out of the measurement Fobs(F1, F2,t). The only 
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thing known about F1(t) is that it is characterized by the frequency component cos(ω1t). Similarly, F2(t) is 
the second such signal with unknown value but characterized by cos(ω2t). The function n(t) is a random 
function that characterizes the measurement error or uncertainty. It is statistically defined by the 
specification of its mean value 〈n(t)〉 as well as its variance 〈n(t) n(t′)〉, 

 ( ) ( ) ( ) ( )20, nn t n t n t t t′ ′= = σ δ −  (2) 

where 2
nσ  is the variance of the measurement process. The decomposition of the measured signal given 

by Equation (1) into its separate components F1(t) and F2(t) is accomplished by the use of the Fourier 
transform relation 

 ( ) ( ) ( )expobsF F t i t dt
∞

−∞

ω = ω∫  (3) 

where the average 〈Fobs(t)〉 is taken to relegate the measurement noise contribution to zero as per 
Equation (2). So long as the temporal variation of the components F1(t) and F2(t) is such that they do not 
appreciably vary over intervals ∆t given by ∆t ≤ 1/ω1,2, then, as depicted in Figure 1, using Equation (1) in 
Equation (3) gives in the usual way, 

 ( ) ( ) ( ) ( )1 1 2 2 1,2, , 1F t F F t F t= ω = ω > ω  (4) 

Similarly, the variance of the filtered signals are 

 ( ) ( ) ( ) ( )2 22 2 2 2
1 21 2,n nF t F F t F= ω + σ = ω + σ  (5) 

Hence, the values of the previously unknown signals F1(t) and F2(t) are now known; actually, due to the 
presence of the uncertainty of the measured value of the overall signal, only the statistical values of F1(t) 
and F2(t) (i.e., the mean and variance) can be determined by this filtering process. 

In this example, the individual signals F1(t) and F2(t) are distinguished and separated by their 
frequency characteristics. This is the basis of Fourier transform filtering. The next example, and the 
subject of the present work, introduces a filtering methodology that uses other characteristics of the 
unknown signals; in this case, the characteristics are the overall statistical behavior of the signals over 
time imparted by the sources of each of the unknown signals that comprise the measurement Fobs(t). 

 
 
 

 
Figure 1.—A simple Fourier transform filter 
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1.2.2 Statistical Filtering 
A similar measured signal decomposition can be based using the statistical properties of the processes 

F1(t) and F2(t) rather than their temporal frequency properties as above. Thus, instead of cos(ω1t) 
characterizing the first unknown signal component, one now takes it to be characterized by some other 
function x1which takes the place of cos(ω1t) in the example above. That is, instead of A1(t)cos(ω1t) giving 
the form of the unknown signal, it is now just given by another function S1(x1,t) which is some given and 
known mathematical function of the characteristic x1. The characteristic function x1 that ultimately 
determines the value of S1(x1,t) can itself be defined by some mathematical representation (or model) that 
involves known parameters, i.e., x1 = f1(a1,b1,…). The similar situation holds for the second signal S2(x2,t) 
where x2 = f2(a2,b2,…) is the function that characterizes S2 just as the function cos(ω2t) did in the Fourier 
Transform example. Thus, the measured signal, Fobs(F1, F2,t) is now represented by 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 1 1 2 2 2 2, , , , , , , , , ,obsS S S t S x t S x t n t x f a b x f a b= + + = =   (6) 

where the function represented by Sobs(S1, S2,t) is the same value as that previously represented by the 
function Fobs(F1, F2,t); that is these are different functional models of the exact same observational data. In 
Equation (6), the function f1(a1,b1,…) gives the statistical quantity x1 through which the component 
process S1(x1,t) is defined. The deterministic parameters a1,b1,… that enter into the function f1 come from 
some statistical model of the process S1(x1,t). Similarly for the function f2(a2,b2,…). The measurement 
noise is as given by Equation (2). 

Since the quantity x1 is a statistical one, it can be given by a probability density function (PDF) 
p(x1Sobs) conditioned on the composite observational measurement Sobs(t). Similarly, when there are two 
such component processes S1(t) and S2(t) as above, one can imagine a two-dimensional conditional PDF  
p(x1,x2Sobs). That is, for each statistical function x1 or x2 that defines a particular component S1(x1,t) or 
S2(x2,t) (just as the functions cos(ω1t) and cos(ω2t) define the temporal frequency content of F1(t)cos(ω1t) 
and F2(t)cos(ω2t)), there is a corresponding two-dimensional PDF p(x1,x2Sobs). As shown in Figure 2, the 
use of the conditional PDF immediately gives the mean values of the component processes  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 1 2 2 2 2 1 2 1 2, , , , ,obs obsS t S x t p x x S dx dx S t S x t p x x S dx dx
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

= =∫ ∫ ∫ ∫  (7) 

 ( ) ( ) ( )( ) ( )22
1 1 1 1 1 2 1 21 , , , obsS t S x t S x t p x x S dx dx

∞ ∞

−∞ −∞

= −∫ ∫  (8) 

 ( ) ( ) ( )( ) ( )22
2 2 2 2 1 2 1 22 , , , obsS t S x t S x t p x x S dx dx

∞ ∞

−∞ −∞

= −∫ ∫  (9) 

all of which are based on the observational input Sobs(t).  
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Figure 2.—A simple statistical filter.  

1.3 A General Filter for Rain and Scintillation 

It is the purpose of this document to obtain similar functional relationships fR(aR,bR,…) and 
fS(aS,bS,…) as well as the PDF p(xR,xSAobs) for the rain fade component AR(xR,t) as well as the 
scintillation component AS(xR,t) of an overall measured signal fade Aobs(AR, AS,t) on a satellite link. Here, 
the functions AR(xR,t), AS(xS,t), etc., now take the place of S1(x1,t) and S2(x2,t) in the example above. The 
functions fR(aR,bR,…) and fS(aS,bS,…) will be given by mathematical models specific to the rain and 
scintillation processes.  

A dynamic model of rain attenuation, originally developed for the dynamics portion of the ACTS 
Rain Attenuation Prediction Model, treats the rain attenuation process as a Dynamic Markov process 
which is based on a first-order differential equation, known as the Langevin equation, which gives the 
statistics of the dynamic rain attenuation process; this equation is represented by the function fR(…). A 
similar equation and functional relationship fS(…)can be written for the dynamic scintillation process. 
From these differential equations for the processes xR and xS, one can proceed to derive a similar 
differential equation for the related conditional PDF p(xR,xSAobs). To accomplish this, the Langevin 
equations for xR and xS are first used to obtain what is known as the Kolmogorov equation that gives the 
transition PDF p(xR(t1), xS(t1)xR(t0), xS(t0)) for the processes from one time instant t0 to a later time instant 
t1. It is through the use of this particular PDF that all the fade dynamics of the ACTS Rain Model were 
evaluated. But for the problem considered in this document, this is not enough. One must augment the 
description of this transition process with the uncertain (noisy) measured values of the composite fade 
Aobs(t) so as to replace each of the required conditional values xR(t0), xS(t0) with a single composite 
quantity. Such similar motivation inspired R. L. Stratonovich and his colleagues (Refs. 6 to 8) in the 
1950s to develop from the Kolmogorov equation a prescription which relies on noisy measured input 
values to help determine the resulting PDF p(xR,xSAobs). (This approach was used by R. Kalman for the 
development of the simplistic linear filter applications of this theory.) 

1.4 Making the Technique Adaptive 

In addition to the real-time estimation of rain attenuation and scintillation levels, the approach can 
also be made adaptive, that is, giving it the ability to detect and correct for errors in the values of the 
coefficients used in the process models of the individual fade components. This is easily accomplished by 
taking the source of variance of the parameter uncertainty to be itself a Markov random process governed 
by, once again, a Langevin stochastic differential equation, etc. Adding a single adaptive adjustment to 
the rain and scintillation filter for one of the parameters results in a three-component Markov filter. For 
every parameter taken to be uncertain and requiring an adaptive adjustment, one more Markov process 
must be added. The use of this approach will be made in what is to follow. 
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1.5 Some Nomenclature and the Approach Used in the Remainder of the Work 

In the development that is to follow, expressions of the form 

 ( ) ( ) ( ) ( ), , , ,obs R S R R S SA A A t A x t A x t n t= + +  (10) 

are called the observation model. The component functions AR(xR,t) and AS(xR,t) are called, respectively, 
the models of rain attenuation and scintillation. The individual equations of the form 

 ( ) ( ), , , , ,R R R R S S S Sx f a b x f a b= =   (11) 

are called the process models, i.e., the prescriptions for the statistical processes that drive the rain 
attenuation and scintillation. Finally, n(t) along with the specifications 

 ( ) ( ) ( ) ( )20, nn t n t n t t t′ ′= = σ δ −  (12) 

constitute the measurement noise model. 
This work will begin with the simplest application of Nonlinear Markov filter theory which is the one 

originally put forward (Ref. 4). Here, only the rain attenuation component is considered; the observation 
model is simply  

 ( ) ( ) ( ), ,obs R R RA A t A x t n t= +  (13) 

with only one process model xR = fR(aR,bR,…). The detailed development of the Kolmogorov equation 
from the Langevin equation is given in Appendix A for both the single-component example as well as the 
more general multi-component case. Appendix B details the connection of the Kolmogorov equation to 
the actual measurement process by deriving the Stratonovich equation. Finally, the Stratonovich equation 
is solved in Appendix C and application is made of the solution to the iterative discrete-sampling real-
time measurement and filtering process. The results of the appendices are then applied to this one-
component case to derive an iterative filter for rain attenuation. 

The next case to be considered will be the one with the two-component process of Equation (10) for 
both rain attenuation as well as scintillation. The analysis is the same as that of the one-component 
process but is rendered a bit more complicated by two components which now constitute a vector 
treatment of the dynamic equations rather than a scalar treatment. Also, there is an additional 
complication that enters due to the potential cross-correlation that may exist between the two processes of 
attenuation and scintillation. These nuances are thoroughly treated in the appendices. These results are 
then used to construct an iterative filter for both attenuation and scintillation. 

Finally, the case of an adaptive filter for attenuation and scintillation is considered. Here, one of the 
constant parameters that are taken to characterize the rain attenuation process is now treated as one that is 
known only as ‘on the average’. Possible variations of its value are now incorporated into the filter by 
simply treating the parameter variation as driven by another Markov process. This adaptive case adds one 
more Markov process to the filter and becomes a three-component filter.  

In all the cases considered here and in the future, only satellite signal fading due to non-modulation 
based variations need be considered. The ability to rid a satellite downlink signal of power fluctuations 
due to the attendant modulation has been dealt with elsewhere (Ref. 9). 
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2.0 A Simple Example to Introduce the Method—Identification of Rain 
Attenuation on Communications Satellite Links Using Nonlinear 
Markov Filtering 

The problem to be addressed here is the following: Consider the measurement of the temporal 
behavior of attenuation due to rain fade on a satellite link. The measured or observational attenuation 
Aobs(t) is taken to be composed of the actual attenuation AR(t) and a measurement uncertainty n(t). For 
example, if the attenuation measurement is derived by a frequency scaling procedure, the measurement 
uncertainty is the uncertainty inherent in the frequency scaling relationship, in addition to the error 
imposed by the equipment used. Hence, one can write 

 ( ) ( ) ( )tntAtA Robs +=  (14) 

Based on the temporal portion of the ACTS Rain Attenuation Prediction Model (Ref. 1), the actual 
attenuation AR(t) is given by a first order Markov Process 

 ( )tx
dt

dx
RRRR

R ξγ+γ−= 2  (15) 

where the process variable is related to the attenuation via the non-linear prescription 

 ( ) ( )( )ln, exp
RR R mR A RA x t A x t= σ  (16) 

which, of course, derives from the log-normal nature of the rain fade, i.e., 

 

( )( ) ( )
ln

ln ln

R

R mR
R

A

A t A
x

−
=

σ
 (17) 

Equation (15) is the relation that is represented by (xR = fR(aR,bR,…) where aR ≡ AmR and ln RR Ab ≡ σ . The 

value for the mean attenuation AmR and the standard deviation of rain attenuation ln RAσ are not only 
functions of the operating frequency and propagation link geometry, they are also dependent on the 
geographical location of the satellite terminal. The stochastic function ξR(t) that drives the Markov 
process is defined by 

 ( ) ( ) ( ) ( )0,R R Rt t tξ = ξ ξ + τ = δ τ  (18) 

i.e., a Gaussian (white noise) process characterized by an error variance of unity. The temporal decay 
factor γR ≈ 0.0538 min-1 as determined by attenuation dynamics at 20 and 30 GHz (Refs. 1 and 3). The 
characteristic attenuation parameters 

RmAA , 
RAlnσ , and Rγ  are all found for a given location and link 

geometry from the ACTS Rain Model (Ref. 2). The problem can now be stated: Given the measurement 
of Aobs(t) and the model of the actual rain attenuation given by Equations (14)-(18), what is the value of 
the actual attenuation AR(t) corresponding to the measurement with the defined uncertainty? The rigorous 
solution to this rather simplistic problem is given in Appendix A.  

The statistical process described by Equation (15) has associated with it a conditional transition PDF 
giving the statistics connected with the evolution of the value of xR(t) at a specific time t0 to a future time 
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t, t0 < t. The proper and rigorous use of the information afforded by the random variable xR(t) is through 
the use of the governing transition PDF. As derived in Appendix A, this transition PDF is given as the 
solution to Equation (A28), i.e.,  

 

( ) ( )0 0
0 0 0

, ,
, , ,

R

R
x R

x t x t
D x t x t t t

t
∂

 = > ∂  
(19) 

where [ ]RxD   is the Kolmogorov differential operator defined by 

 
( ) ( ) ( )20 0 0 0

0 0 2

, , , ,
, ,

R

R R R
x R R R

R R

x p x t x t p x t x t
D p x t x t

x x
∂ ∂

  ≡ γ + γ  ∂ ∂
 

(20) 

Equation (19) is known as the Forward Kolmogorov Equation which is associated with the Langevin-type 
equation given by Equation (15). The solution to Equation (19) was discussed in detail in (Ref. 3) and is 
given by 

 ( ) ( )
( ) ( )( )

( )

2
0 0

0 0 2 2

1, , exp
2 2

R tR
R

x t e x t
p x t x t

t t

−γ ∆ −
 = −
 πσ ∆ σ ∆
 

 (21) 

where 

 ( ) ( )2 01 exp 2 ,Rt t t t tσ ∆ ≡ − − γ ∆ ∆ ≡ −  (22) 

Using now Equation (16) to relate the process values xR to that of the attenuation values AR(t) yields the 
conditional transition PDF that contains all the dynamical behavior of attenuation due to rain, i.e.,  

 ( ) ( )
( )( ) ( )( )( )

( )

2

0 0 2 2
ln ln

ln ln1, , exp
2 2

R mR
R

A A

A t A t
p A t A t

t t

 − ∆ = − πσ ∆ σ ∆
  

 (23) 

where the time dependent mean attenuation and variance of attenuation are respectively given by 

 ( ) ( ) ( )1 2 2 20 ln ln, 1tR tR Re e tmR mR A AA t A A t e−γ ∆ −γ ∆− − γ ∆∆ ≡ σ ∆ = σ −  (24) 

In the limit as ∆t → ∞, the time interval essentially represented that during a year and all the time 
dependent statistical parameters approach their yearly (static) values, i.e., ( )mR mRA t A∆ →  and 

( )2 2
ln lnA Atσ ∆ → σ , and the PDF of Equation (23) transitioned into the well-known log-normal distribution 

that is the basis of the ACTS attenuation model as well as other such models. The use of Equations (21)-
(24) allowed the derivation of many dynamically based link performance parameters such as fade 
durations, etc. However, of interest here is how this dynamic description can be used to filter or identify a 
rain attenuation process from the noisy observed attenuation Aobs(t). (This ability will prove itself when 
there are additional processes associated with that if just the rain attenuation.) 

In order to apply Equation (19) to the actual measurement process, one must first admit into the 
analysis the fact that the sampled value of the observed attenuation Aobs(ti) at a particular time instant ti 
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has corresponding to it, through Equation (17), a corresponding sampled value of the process xR(t). The 
modification of Equation (19) to the use of measured random variables characterized by a measurement 
uncertainty is discussed in Appendix B. There, the relation known as the Stratonovich Equation is 
derived, viz, 

 
( ) ( ) ( ) ( ) ( ) ( ),

, , , , ,R
x R R R R R R

p x t
D p x t x t x t p x t dx p x t

t

∞

−∞

 ∂
′ ′ ′=   + φ − φ  ∂   

∫  (25) 

where ( ) ( )( ), ,R R obs ip x t p x t A t≡  (it is implicit that t > ti) is the transition PDF conditioned on the 

observational measurement Aobs(ti) which enters into Equation (25) through 

 ( ) ( ) ( )( )2

2
1, ,

2R obs R R
n

x t A t A x tφ ≡ − −
σ

 (26) 

where the functional AR(xR,t) is given by Equation (16). Thus, the Stratonovich equation replaces the 
Kolmogorov equation in the case where the (noisy) measurement Aobs(t) of a modeled function AR(xR,t) of 
the process xR is available.  

One can now specify the optimal estimate (in the mean-square sense) 

 ( ) ( ) ( ),R R R Rx t x t p x t dx
∞

−∞

≡ ∫  (27) 

of xR corresponding to the measured value Aobs(t) as well as the related variance 

 ( ) ( )2 ,R R R Rx x p x t dx
∞

−∞

σ ≡ −∫  (28) 

which is the error variance of the optimal estimate. Appendix C gives a detailed solution to the 
Stratonovich equation for the general case of a many-component (i.e., multi-dimensional) case yielding 
analytical expressions for Equations (27) and (28). This general solution will be used below for the two-
and three-component cases to be examined. For this particular example of only one component, the 
results of Appendix C can easily be adapted for the one-dimensional case as given by Equation (25). 
Applying the solutions for this one-dimensional discrete-time case obtained in Appendix C, i.e., 
employing the one-dimensional, single-component forms of Equations (C47), (C48), (C42) and (C43), 
one obtains the following recursive filter for rain attenuation 

Optimal Estimate: 

 ( ) ( ) ( ) ( ) ( ) ( )1 exp expR i R R i R i ix t t x t t t a t+ = −γ ∆ + −γ ∆ σ  (29) 

Error Covariance of Optimal Estimate: 

 ( ) ( ) ( )( ) 1
11i i it H t b t −

−+σ = −  (30) 

Error Covariance of Extrapolated Estimate: 
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 ( ) ( ) ( ) ( )1exp 2i R iH t t t D t−= − γ ∆ σ + ∆  (31) 
Error Covariance Due to Diffusion: 

 ( ) ( ) ( )( )exp 2 1 exp 2R RD t t t∆ = − γ ∆ − − γ ∆  (32) 

Here, the following definitions made: The fundamental transition matrix is just the scalar 

 ( ) ( )exp Rt tΦ ∆ = −γ ∆  (33) 

Using Equation (26) in Equations (C45) and (C46) give 

 ( ) ( ) ( )ln
2
A

R R R
n

a t A x x tσ
= Ξ ∆

σ
  (34) 

and 

 ( ) ( ) ( ) ( )( )
2
ln

2
A

R R R R R
n

b t A x x A x t
σ

= Ξ − ∆
σ

 (35) 

where ( ) ( ) ( )R obs R Rx A t A xΞ ≡ −  is the discriminator which compares the measured value of 
attenuation to the predicted value.  

The flow-chart of the algorithmic implementation of this iterative process is shown in Figure 3. Here, 
the element  

  

is an inverter and D represents Equation (32). The element shown by 

  

represents a time delay of ∆t and Φ ≡ exp(–γR∆t). The other designations are self-explanatory from the 
text. 

This example demonstrates how the rain attenuation component is statistically separated from the 
measurement that convolves uncertainty. This identification and separation of the random processes of the 
actual rain attenuation from the measured data will allow, for example, the optimal use of a predictive 
procedure to obtain values of AR(〈xR〉) into the future so as to counter the control delay in the use of some 
mitigation procedure – in this case, link power control. The level of power control is driven by the filtered 
values AR(〈xR〉). 

The utility of the method becomes apparent when two or more components enter into the composite 
fading process that is measured.  
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Figure 3.—Optimal estimate recursive 1-component nonlinear Markov filter. 

3.0 Identification of Rain Attenuation and Phase Scintillation on 
Communications Satellite Links Using Nonlinear Markov Filtering  

When two or more random processes combine to form an overall satellite link attenuation that is 
measured, the advantages of using non-linear Markov filtering become apparent. Consider the case where 
both 1) signal attenuation due to rain and 2) signal fades and enhancements due to atmospheric and cloud 
scintillation can simultaneously perturb an atmospheric propagation link of a satellite communications 
system as shown in Figure 4. Thus, the composite fade seen at an earth terminal can be given as 

 ( ) ( ) ( ) ( )tntAtAtA SRobs ++=  (36) 

where Aobs(t) is the overall observed fade, AR(t) is that due to rain, and AS(t) is that due to phase 
scintillation.  
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Figure 4.—Total link attenuation as seen by Earth terminal. 

 
Scintillation is characterized by rapid (on the order of Hertz) fades and enhancements due to dynamic 

phase perturbations of the signal wave front propagation through the atmosphere. Scintillation can be 
caused by clear-air turbulence as well as scattering through clouds. Thus, unlike the rain attenuation 
process, one must also account for signal enhancements, precluding a statistical description using a log-
normal PDF. For purposes of this work, the scintillation process will be taken to be an exponential PDF 
that will allow both enhancements and degradations. Thus, the statistical process to be adopted here will 
be of the same structure as that of rain attenuation used above, with the exception that instead of the 
process being related to the associated fade as given by Equation (17), the scintillation process xS(t) is 
connected to the signal fades and enhancements AS(t) by 

 ( ) ( )S mS
S

S

A t A
x t

−
=

σ
 (37) 

where AmS is the mean level of scintillation when it occurs and σS is the variance of fluctuations. It 
remains to verify this approach and obtain the governing dynamical parameters as was done for rain 
attenuation and this will form the subject of a future study.  

Thus, the model of phase scintillation is given by 

 ( ) ( )txAtA SSSmS σ+= ,  (38) 

The associated process model (representing the function ( ), ,S S S Sx f a b=   used earlier in the 
comparison with Fourier filtering) is taken to be given by first order stochastic differential equation 

 ( )tx
dt

dx
SSSS

S ξγ+γ−= 2  (39) 

where the corresponding random function ( )tSξ  is defined by 
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 ( ) ( ) ( ) ( )τδ=τ+ξξ=ξ ttt SSS ,0  (40) 

A rain attenuation/phase scintillation correlation must also be allowed for; after all, since clouds can be 
the source of scintillation and clouds are present for rain, a correlation may prevail between the two 
processes sources. This is simply introduced into the model by requiring 

 ( ) ( ) ( )R S RSt t Bξ ξ + τ = δ τ  (41) 

where BRS is the correlation coefficient. The temporal coefficient γS can be determined by the same 
considerations that were used to determine that for the rain attenuation (Refs. 1 and 3); since the dynamics 
associated with scintillation are much faster than with rain attenuation, one can expect to have 1/γS ~1 sec, 
i.e., γS ~ 60 min–1. This is vastly different from that for rain attenuation where γR ≈ 0.0538 min–1 . 
However, as previously mentioned, a further study will be required to determine the model parameter 
values AmS, σS, γS, and BRS. Equation (36) now becomes 

 ( ) ( ) ( ) ( ) ( ) ( ), , ,obs R R S SA t A x t A x t n t A x t n t= + + ≡ +  (42) 

The governing Langevin equation is now given by the vector relationship 

 ( )x x G t
t

∂
= −Γ + ξ

∂
, ( ), T

R Sx x x=  (43) 

where  

 
0

0
R

S

Γ ≡  
γ 

 γ 

, 
2 0

0 2
R

S

G ≡  
γ 

  γ 

, ( )
( )
( )

R

S

t
t
t

ξ ≡  
ξ 

 ξ 

 (44) 

Hidden in the matrix ( )tξ  of driving noise values, whose individual components satisfy 

 ( ) 0i tξ = , ( ) ( ) ( )i it t t t′ ′ξ ξ = δ − , ,i R S=  (45) 

is the cross-correlation of the noise components 

 ( ) ( ) ( )R S RSt t B t t′ ′ξ ξ = δ −  (46) 

where BRS = BSR is the corresponding correlation coefficient. This circumstance is introduced into the 
problem by defining the overall statistics governing the matrix ( )tξ  by 

 ( ) ( ) ( )Tt t B t t′ ′ξ ξ = δ −  (47) 

where B  is the process correlation coefficient which enters into the diffusion matrix given by Equation 
(A47), where for this example, 
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 2 2
R RS R S

SR R S S

K
B

B

=  
γ γ γ 

  γ γ γ 

 (48) 

The fundamental transition matrix is  

 ( )
( )

( )
exp 0

0 exp
R

S

t
t

t

Φ ∆ =  
−γ ∆ 

 −γ ∆ 

 (49) 

Using Equation (42) in Equation (C3b) and this intermediate result in Equation (C45) yields 

 ( )
( )
( )

R

S

a t
a t
a t

=  
 
 
 

 (50) 

where 

 ( ) ( ) ( ) ( )ln
2

, A
R R R

R nx x

x t
a t A x x t

x
=

∂φ σ
≡ = Ξ ∆

∂ σ
 (51) 

and 

 ( ) ( ) ( )2

, S
S

S nx x

x t
a t x t

x
=

∂φ σ
≡ = Ξ ∆

∂ σ
 (52) 

where the associated discriminator which provides for the ‘correction term’ in the optimal estimation 
process is now given by ( ) ( ) ( ) ( )obs R R S Sx A t A x A xΞ ≡ − − . Similarly, using Equation (42) in 
Equation (C46), through the use of Equation (C3b), results in 

 ( ) ( ) ( ) ( )( ),
, ,

T

R S

R

S

x t
b t a x t a x t

x x
x

x

 ∂φ ∂
= =    ∂∂ ∂    ∂ 

 ∂ ∂ 

 (53) 

Thus, 

 ( ) ( ) ( ) ( ) ( )( )
2
ln

11 2
R A

R R R R
R nx x

a x
b x A x x A x t

x
=

∂ σ
= = Ξ − ∆

∂ σ
 (54) 

 ( ) ( ) ( )ln
12 2

S AS
R R

R nx x

a x
b x A x t

x
=

∂ σ σ
= = − ∆

∂ σ
 (55) 
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 ( ) ( ) ( )ln
21 2

R AS
R R

S nx x

a x
b x A x t

x
=

∂ σ σ
= = − ∆

∂ σ
 (56) 

 ( ) ( ) 2

22 2
S S

S nx x

a x
b x t

x
=

∂ σ
= = − ∆

∂ σ
 (57) 

Finally, using the two-dimensional forms of Equations (C47), (C48), (C42) and (C43) to obtain the 
recursive filter for rain attenuation and scintillation gives 

Optimal Estimate: 

 ( ) ( ) ( ) ( ) ( ) ( )1i i i ix t t x t t t a t+ = Φ ∆ + Φ ∆ σ  (58) 

Error Covariance of Optimal Estimate: 

 ( ) ( ) ( )( ) 1
1

1i i it H t b t
−

−
+σ = −  (59) 

Error Covariance of Extrapolated Estimate: 

 ( ) ( ) ( ) ( ) ( )1
T

i iH t t t t D t−= Φ ∆ σ Φ ∆ + ∆  (60) 

Error Covariance Due to Diffusion: 

 ( )
11 12

21 22

D t
D D
D D

∆ =  
 
 
 

 (61) 

where 

 ( ) ( )( )11 exp 2 1 exp 2R RD t t≡ − γ ∆ − − γ ∆  (62) 

 ( )( ) ( )( )( )12 2 exp 1 expR S
RS R S R S

R S
D B t t

γ γ
≡ − γ + γ ∆ − − γ + γ ∆

γ + γ
 (63) 

 ( )( ) ( )( )( )21 2 exp 1 expR S
SR R S R S

R S
D B t t

γ γ
≡ − γ + γ ∆ − − γ + γ ∆

γ + γ
 (64) 

 ( ) ( )( )22 exp 2 1 exp 2S SD t t≡ − γ ∆ − − γ ∆  (65) 

The flow-chart of the algorithmic implementation of this iterative process is displayed in Figure 5(a) and 
(b). Here, DRR ≡ D11, DRS ≡ D12, DSR ≡ D21, and DSS ≡ D22. Also, ΦR ≡ exp (–γR∆t) and ΦS ≡ exp (–γS∆t). 
Figure 5 shows how complicated the filter implementation becomes by just adding an additional Markov 
component. 
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(a) 

 
(b) 

Figure 5.—(a) Optimal estimate recursive 2-component non-linear Markov filter. (b) Error covariance iteration for 2-
component non-linear Markov filter. 
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4.0 The Filtering of Rain Attenuation, Scintillation and the Adaptive 
Determination of the Value of Average Attenuation Due to Rain  

The methodology afforded by the present approach to the solution of the Stratonovich equation is also 
flexible enough to allow for the adaptive adjustment of the constant parameters that enter into the 
attenuation and scintillation models. The variation that is admitted to these parameters is essentially taken 
to also be governed by a Langevin-type process. In the example to follow, the case of the adaptive 
adjustment of the input parameter AmR, i.e., the mean attenuation expected to be seen on the satellite link, 
will be considered. Such a potential adjustment would be required if, for example, an extreme 
climatological variation such as a drought that affected the rain rate were to occur. 

Here, the observation model is the same as the case of Equation (42) but with an additional Markov 
process added to the rain attenuation model of Equation (16), i.e., the process xmR that describes potential 
deviations from the assigned average attenuation due to rain  

 ( ) ( ) ( ) ( )( )ln, expR R R R mR mR mR A RA x A x x A x x t→ = + σ  (66) 

The rain attenuation model now has two statistical processes that determine its behavior, i.e., xR and the 
additional process xmR that adjusts the corrections to the mean value parameter AmR if deemed necessary 
by the statistical behavior of the measurement of the composite process Aobs(t). 

Substituting Equation (66) into Equation (C3b) thus gives 

 ( ) ( ) ( ) ( )( )2

2
1, , , ,

2 obs R R mR S S
n

x t A t A x x t A x tφ ≡ − − −
σ

. (67) 

The correction term xmR for the parameter AmR is such that the climatic process responsible for such a 
variation occurs over the course of several months or years. Hence, the corresponding drift coefficient γmR 
in the single component Langevin equation describing such a process, viz, 

 ( )2mR
mR mR mR

x x t
t

∂
= −γ + γ ξ

∂
 (68) 

will be very small. This is similar to that of the rain attenuation component where, in many applications, 
γR∆t << 1 and one can neglect the temporal variation. Although the rain attenuation component can be 
characterized by γR∆t << 1, the drift coefficient γR is small but not zero; it is γR ≈ 0.0538 min–1 = 9.0×10–4 
sec–1. However, over the period of a climatological variation in the rainrate process that ultimately 
determines AmR (Refs. 1 and 2) (which is typically over a period of a year), one will have γR ≈ 1.9×10–6 
min–1 = 3.1×10–8 sec–1. Thus, the process xmR is expected to operate very slowly relative to the others that 
prevail. Hence, letting γmR → 0, Equation (68) becomes 

 0mRx
t

∂
=

∂
 (69) 

The corresponding Langevin equation for the entire composite process ( ), , T
R S mRx x x x= is now given 

by 
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 ( )x x G t
t

∂
= −Γ + ξ

∂
 (70) 

with 

 
0 0

0 0
0 0 0

R

S

γ 
 Γ ≡ γ 
 
 

, 
2 0 0

0 2 0
0 0 0

R

SG

 γ
 

≡ γ 
  
 

, ( )
( )
( )

0

R

S

t
t t

ξ 
 ξ ≡ ξ 
 
 

 (71a) 

Also, one now has a different form for the correlation matrix B , 

 ( ) ( ) ( )Tt t B t t′ ′ξ ξ = δ − , 
1 0

1 0
0 0 0

RS

SR

B
B B

 
 =  
 
 

 (71b) 

thus giving 

 2

0

2 0
0 0 0

R RS R S

T
SR R S S

B

K GB G B

 γ γ γ
 

= = γ γ γ 
  
 

 (72) 

The fundamental transition matrix is given in this case by 

 ( )
( )

( )
exp 0 0

0 exp 0
0 0 1

R

S

t
t t

 −γ ∆ 
 Φ ∆ = −γ ∆ 
 
 

 (73) 

It is now required to obtain expressions for the now three-dimensional column matrix ( )a t  given by (see 
Eq. (C45)) 

 ( )
( )
( )
( ),

R

S

m R

a t
a t a t

a t

 
 =  
 
 

 (74) 

 ( ) ( ) ( ) ( ) ( ) ( )
,

,

, , ,
, ,R S m R

R S m R

x t x t x t
a t a t a t

x x x
∂φ ∂φ ∂φ

= = =
∂ ∂ ∂

 (75) 

Using Equation (67) in Equation (75) yields for these matrix components 

 ( ) ( ) ( )ln
2

,A
R R R mR

n
a t A x x x tσ

= Ξ ∆
σ

 (76) 
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 ( ) ( )2
S

S
n

a t x tσ
= Ξ ∆

σ
 (77) 

 ( ) ( ) ( ), ln2
expS

m R A R
n

a t x x tσ
= σ Ξ ∆

σ
 (78) 

In this example, the discriminator that drives the ‘corrector’ portion of the overall Markov filter is now 
given by 

 ( ) ( ) ( ) ( ),obs R R mR S Sx A t A x x A xΞ ≡ − −  (79) 

Finally, using Equation (67) in Equation (C46) gives 

 ( ) ( ) ( ) ( ) ( )( ),

,

,
, , ,

RT

R S m R
S

m R

x
x t

b t a x t a x t a x txx x

x

 ∂
 ∂
  ∂φ ∂ ∂= =    ∂∂ ∂   
 ∂ ∂ 

 (80) 

Thus, 

 ( ) ( ) ( ) ( ) ( )( )
2
ln

11 2
, ,R A

R R mR R R mR
R nx x

a x
b x A x x x A x x t

x
=

∂ σ
= = Ξ − ∆

∂ σ
 (81) 

 ( ) ( ) ( )ln
12 2

,S AS
R R mR

R nx x

a x
b x A x x t

x
=

∂ σ σ
= = − ∆

∂ σ
 (82) 

 ( ) ( ) ( ) ( ) ( )( ), ln
13 ln2

exp ,m R A
A R R R mR

R nx x

a x
b x x x A x x t

x
=

∂ σ
= = σ Ξ − ∆

∂ σ
 (83) 

 ( ) ( ) ( )ln
21 2

,R AS
R R mR

S nx x

a x
b x A x x t

x
=

∂ σ σ
= = − ∆

∂ σ
 (84) 

 ( ) ( ) 2

22 2
S S

S nx x

a x
b x t

x
=

∂ σ
= = − ∆

∂ σ
 (85) 

 ( ) ( ) ( ),
23 ln2

expm R S
A R

S nx x

a x
b x x t

x
=

∂ σ
= = − σ ∆

∂ σ
 (86) 
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 ( ) ( ) ( ) ( ) ( )( )ln
31 ln2

exp ,R A
A R R R mR

mR nx x

a x
b x x x A x x t

x
=

∂ σ
= = σ Ξ − ∆

∂ σ
 (87) 

 ( ) ( ) ( )ln
21 2

,R AS
R R mR

S nx x

a x
b x A x x t

x
=

∂ σ σ
= = − ∆

∂ σ
 (88) 

 ( ) ( ) ( ),
33 ln2

1 exp 2m R
A R

mR nx x

a x
b x x t

x
=

∂
= = − σ ∆

∂ σ
 (89) 

The error covariance due to diffusion ( )D t∆  is different than the general form given by 
Equations (C49) due to the fact that there is no diffusion term, nor noise correlation, associated with the 
process xmR, i.e., Bm,Rj = 0 for j = R, S, m, R. Thus, going back to the general Equation (C43) gives 

 ( )
11 12

21 22

0
0

0 0 0

D D
D t D D

 
 ∆ =  
 
 

 (90) 

where the non-zero elements of this matrix are given by Equations (62)-(65). 
Application of the iterative Markov filtering equations now yields the form that is isomorphic to that 

of Equations (58)-(61). However, for the present example, some of the filtering equations will be written 
out in individual component form so their overall morphology can be seen. The expressions for the 
coefficients of the matrix a  will also be rewritten to highlight the role of the correction discriminator. 

Optimal Estimate: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
, ,

exp exp , ,R i R i R R Rj j R i S i mR i
j R S mR

x t x t t t c x t x t x t+
=

= −γ ∆ + −γ ∆ σ Ξ∑  (91) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
, ,

exp exp , ,S i S i S S Sj j R i S i mR i
j R S mR

x t x t t t c x t x t x t+
=

= −γ ∆ + −γ ∆ σ Ξ∑  (92) 

 ( ) ( ) ( ) ( ) ( )( )1
, ,

, ,mR i mR i mR j j R i S i mR i
j R S mR

x t x t c x t x t x t+
=

= + σ Ξ∑  (93) 

with 

 ( ) ( ) ( ) ( )( )lnexpobs mR mR A R mS S Sx A t A x x t A xΞ ≡ − + σ − − σ  (94) 

where, from Equations (76)-(78), the coefficients cj multiplying the discriminator corrector factor are 
given by  

 ( )ln
2

,A
R R R mR

n
c A x x tσ

≡ ∆
σ

, 2
S

S
n

c tσ
≡ ∆

σ
, ( )ln2

expS
mR A R

n
c x tσ

≡ σ ∆
σ

 (95) 
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Error Covariance of Optimal Estimate: 

 ( ) ( ) ( )( ) 1
1

1i i it H t b t
−

−
+σ = −  (96) 

Here, the correction discriminator ( )( )ix tΞ  also comes in through the values of the components of ( )ib t . 

Error Covariance of Extrapolated Estimate: 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

RR i RS i R mR i
T

i i SR i SS i S mR i

mR R i mR S i mR mR i

H t H t H t
H t t t t D t H t H t H t

H t H t H t
−

 
 

= Φ ∆ σ Φ ∆ + ∆ =  
 
 

 (97) 

where 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( )( ) ( )( )( )
( ) ( ) ( )

( ) ( ) ( )( )

( )( ) ( )( )( )
( )

1

1

1

1

exp 2 exp 2 1 exp 2

exp

2 exp 1 exp

exp

exp

2 exp 1 exp

RR i RR i R R R

RS i RS i R S

R S
RS R S R S

R S

R mR i R mR i R

SR i SR i R S

R S
SR R S R S

R S

SS i SS

H t t t t t

H t t t

B t t

H t t t

H t t t

B t t

H t t

−

−

−

−

= σ − γ ∆ + − γ ∆ − − γ ∆

= σ − γ + γ ∆

γ γ
+ − γ + γ ∆ − − γ + γ ∆

γ + γ

= σ −γ ∆

= σ − γ + γ ∆

γ γ
+ − γ + γ ∆ − − γ + γ ∆

γ + γ

= σ ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1

1

1

1

1

exp 2 exp 2 1 exp 2

exp

exp

exp

i S S S

S mR i S mR i S

mR R i mR R i R

mR S i mR S i S

mR mR i mR mR i

t t t

H t t t

H t t t

H t t t

H t t

−

−

−

−

−

− γ ∆ + − γ ∆ − − γ ∆

= σ −γ ∆

= σ −γ ∆

= σ −γ ∆

= σ

 (98) 

Error Covariance Due to Diffusion: 

 ( )
11 12

21 22

0
0

0 0 0

D D
D t D D

 
 ∆ =  
 
 

 (99) 

The flowchart of the implementation of these adaptive filter equations is shown in Figure 6(a) and (b).  
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(a)  

(b)  
Figure 6.—(a) Optimal estimate recursive 3-component non-linear Markov filter. (b) Error covariance iteration for 3-

component nonlinear Markov filter. (b) Error covariance iteration for 3-component nonlinear Markov filter. 
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5.0 Software Implementation of the Adaptive Filter Equations (91) to (99) 
and Their Application to Measured Satellite Link Fade 

The 3-component Markov filter described in Section 4.0 will be implemented and tested with 
observational signal fades that include both rain attenuation and scintillation, as well as intentionally 
introduced uncertainty in the specification of the expected mean rain attenuation. This will form the 
subject to Part 2 of this work. However, time will be taken here to briefly describe the considerations that 
prevail for this software implementation. (Both the 1-component and 2-component Markov filters 
discussed above are subsets of the 3-component filter and can be easily emulated by setting appropriate 
coefficients to zero in the 3-component case.)  

To this end, the various matrices that must be dealt with will be first introduced. With the exception 
of the calculation of the components comprising the observation-based quantities that enter into the ( )a t  

and ( )b t  matrices, all other calculations that are required can be easily implemented using, e.g., 
MATLAB (The MathWorks, Inc.). This calculation procedure is recursively applied at each of the 
sampling times ti separated by the sampling interval ∆t ≡ ti – ti – 1.  

5.1 Constant Matrices 

a) One first defines the Temporal Transfer Matrix ( )tΦ ∆ , a 3 x 3 matrix of constants giving the 

temporal evolution of the Markov Processes across a fixed time interval ∆t ≡ ti – ti – 1 from one clock cycle 
ti – 1 to the next ti. As per Equation (73),  

 ( ) ( )expt tΦ ∆ = −Γ ∆   

where Γ  is a 3 x 3 matrix of constant drift coefficients, 

 
0 0

0 0
0 0 0

R

S

γ 
 Γ = γ 
 
 

  

Typical numerical values are γR ≈ 9.0×10–4 sec–1 and γS ≈ 1.0 sec–1.  
b) The Matrix of Error Covariance due to Diffusion ( )D t∆ , a 3 x 3 matrix of constants giving the 

errors defined in Equation (90), that are incurred within the filtering process due to the diffusion term 
within the original Langevin equation over the constant time interval ∆t 

 ( )
( ) ( )
( ) ( )

11 12

21 22

0
0

0 0 0

D t D t
D t D t D t

 ∆ ∆ 
 ∆ = ∆ ∆ 
 
 

  

where, from Equations (62)-(65), 

 ( ) ( ) ( )( )11 exp 2 1 exp 2R RD t t t∆ = − γ ∆ − − γ ∆  
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 ( ) ( ) ( )( ) ( )( )( )12 21 2 exp 1 expR S
R S R S

R S
D t D t B t t

γ γ
∆ = ∆ = − γ + γ ∆ − − γ + γ ∆

γ + γ
 

 ( ) ( ) ( )( )22 exp 2 1 exp 2S SD t t t∆ = − γ ∆ − − γ ∆   

Here, B < 1 is the correlation coefficient between the rain and scintillation processes. Until otherwise 
determined from observational data, one can take B ≈ 0.75.  

5.2 Matrices Whose Elements are Defined By and Given By Individual Equations; The 
Observation Model and the Filter Discriminator 

a) The Matrix of the Discriminator Gradient ( )ia t , a 3 x 1 matrix whose calculated elements give the 
gradient of the filter discriminator characteristic with respect to the process variables 

 ( )
( )
( )
( )

R i

i S i

mR i

a t
a t a t

a t

 
 =  
 
 

  

b) The Matrix of the Discriminator Second-Order Cross-Gradient ( )ib t , a 3 x 3 matrix whose 
calculated elements give the second-order gradient of the discriminator characteristic with respect to all 
possible cross-correlated process variables 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

i i i

i i i i

i i i

b t b t b t
b t b t b t b t

b t b t b t

 
 =  
 
 

  

Before the iterative process of the Markov filter can be implemented, it is required to connect the matrix 
elements of ( )ia t  and ( )ib t  to those of the optimal estimates given by Equations (76)-(89). This is 
where the discriminator exists, i.e., the comparison between 1) the predicted levels of the relevant 
component processes that yield a predicted observation and 2) the actual observation. The resulting value 
of this discrimination determines the required adjustments to be made by the filter during the iterative 
procedure at each clock sampling cycle and is the key to the entire process. This is where the use of the 
measured signal attenuation is employed. 

In what is to follow, the 3 x 1 matrix of optimal estimates, i.e., 

 ( )
( )
( )
( )

R i

i S i

mR i

x t

x t x t

x t

 
 

=  
  
 

  

the components of which enter into and are iteratively calculated by the filter Equations (91)-(93), will 
simply be denoted by 
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 ( )
( )
( )
( )

1

2

3

i

i i

i

x t
x t x t

x t

 
 =  
 
 

 

for notational convenience. Thus, from Equation (66), the two optimal estimate components x1(ti) and 
x3(ti) go into determining the observation model for rain attenuation 

 ( ) ( )( ) ( )( )3 ln 1expR i mR i A iA t A x t x t= + σ   

where AmR and σlnA are attenuation constants, due to the rain process, that are specific to the geographical 
location as well as the frequency of operation of the satellite link. Similarly for scintillation, it is 
determined by the component x2(ti) and the associated attenuation is modeled by Equation (38), viz, 

 ( ) ( )2S i mS S iA t A x t= + σ   

where AmS and σS are the constants of the scintillation model. (The numerical values of these constants 
are, at this point, unknown but can easily be estimated and will be done so in Part 2.) These two process 
models finally enter into the discriminator characteristic defined by Equation (67) 

 ( ) ( ) ( ) ( ) ( ) ( )2
2

1 ,
2 obs R S

n
t t t A t A t A tφ = − Ξ Ξ = − −

σ
  

where Ξ(t) is the discriminator and 2
nσ  is the variance of the measurement uncertainty. Following the 

prescription given by Equations (74)-(78), 

 
( ) ( ) ( )( ) ( )ln

1 1 32
,A

i R i i i
n

a t A x t x t t tσ
= Ξ ∆

σ  

 ( ) ( )2 2
S

i i
n

a t t tσ
= Ξ ∆

σ
 

 ( ) ( )( ) ( )3 ln 12
expS

A i i
n

a t x t t tσ
= σ Ξ ∆

σ
  

Similarly, from Equations (80)-(89), 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
2
ln

11 1 3 1 32
, ,A

i R i i i R i i
n

b t A x t x t t A x t x t t
σ

= Ξ − ∆
σ

 

 ( ) ( ) ( )( )ln
12 1 32

,AS
i R i i

n
b t A x t x t t

σ σ
= − ∆

σ
 

 ( ) ( )( ) ( ) ( ) ( )( )( )ln
13 ln 1 1 32

exp ,A
i A i i R i i

n
b t x t t A x t x t t

σ
= σ Ξ − ∆

σ
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 ( ) ( ) ( )( )ln
21 1 32

,AS
i R i i

n
b t A x t x t t

σ σ
= − ∆

σ
 

 ( )
2

22 2
S

i
n

b t t
σ

= − ∆
σ

 

 ( ) ( )( )23 ln 12
expS

i A i
n

b t x t t
σ

= − σ ∆
σ

 

 
( ) ( )( ) ( ) ( ) ( )( )( )ln

31 ln 1 1 32
exp ,A

i A i i R i i
n

b t x t t A x t x t t
σ

= σ Ξ − ∆
σ  

 ( ) ( ) ( )( )ln
32 1 32

,AS
i R i i

n
b t A x t x t t

σ σ
= − ∆

σ
 

 ( ) ( )( )33 ln 12
1 exp 2i A i

n
b t x t t= − σ ∆

σ
 

Remember, the constants AmR, AmS, σlnA, σS, and 2
nσ  and, of course, the actual measured data Aobs(t) are all 

given inputs to the calculation procedure. These matrix element expressions must be specifically coded 
and assigned to the appropriate matrix. The corresponding flow-chart for the calculations of these matrix 
elements at the sample time ti is shown below. 

5.3 Matrices Whose Elements are Directly Calculated by the Recursive Filter Equations 

a) The Matrix of Optimal Estimates ( )ix t , a 3 x 1 matrix whose calculated elements are the optimal 
estimates at the clock sample time ti from the filter of the rain and scintillation processes as well as the 
adaptively estimated mean vale of the rain attenuation process has already been introduced above, i.e.,  

 ( )
( )
( )
( )

1

2

3

i

i i

i

x t
x t x t

x t

 
 =  
 
 

 

b) The Matrix of Error Covariance of the Optimal Estimate ( )itσ , a 3 x 3 matrix whose calculated 
elements are the errors associated with the optimal estimates at the i-th clock cycle. Its elements are 
defined by 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

i i i

i i i i

i i i

t t t
t t t t

t t t

 σ σ σ 
 σ = σ σ σ 
 σ σ σ 
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Figure 7.—Determination of the matrix components for ( )ia t  and ( )ib t  using the optimal estimates 

for ( )ix t  and the observational measurement Aobs(ti). 

 
c) The Matrix of Error Covariance of Extrapolated Estimate ( )iH t , a 3 x 3 matrix whose calculated 

elements are the errors associated with the extrapolated estimates at the i-th clock cycle. Its elements are 
defined by 

 ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

31 32 33

i i i

i i i i

i i i

H t H t H t
H t H t H t H t

H t H t H t

 
 =  
 
 

  

The values of the components for the matrices ( )1it +σ  and ( )1iH t +  are iteratively calculated from 

previous values ( )itσ  and ( )iH t , as well as those of ( )1ix t +  and ( )ix t , by application of the filter 
equations given by Equations (91)-(99), i.e.,  

 ( ) ( ) ( ) ( ) ( ) ( )1i i i ix t t x t t t a t+ = Φ ∆ + Φ ∆ σ  

 
( ) ( ) ( )( ) 1

1
1i i it H t b t

−
−

+σ = −
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 ( ) ( ) ( ) ( ) ( )1
T

i iH t t t t D t+ = Φ ∆ σ Φ ∆ + ∆  

which are easily implemented in MATLAB. 
Part 2 of this work will use this procedure to evaluate the performance of the various filters that 

emanate from the general 3-component case using a database of the temporal evolution of signal fades on 
a satellite downlink to effectively separate the various fade components. 

6.0 Conclusion  
The integro-differential Stratonovich equation giving the observation driven temporal PDF of a multi-

component Markov process was solved to obtain optimal estimates and associated error covariance’s of 
the individual Markov components. The iterative discrete-time formulation of this general solution was 
then obtained. This was applied to a fading satellite communications link in which the overall fade is due 
to two separate fade mechanisms that are assumed to prevail, i.e., attenuation due to rain and phase 
scintillation. Using physics-based observation models, iterative algorithms are derived to isolate these two 
fade processes. It was then shown how the two-component Markov filter can be modified to be made 
adaptive, i.e., allowed to adjust for variations about the mean values originally assigned to the filter 
coefficients.  

The specific filters presented here, as well as others with some variations of their observation and/or 
process models, will be the subject of a further investigation to follow in Part 2. Here, the various filters 
that can be derived will be applied to and tested with noisy measured time-series of signal levels of 
observed on a fading satellite link. The ‘various filters’ will comprise filter constructions other than those 
presented here, by using many variations of the theme presented here. For example, the scintillation 
model required to construct the scintillation portion of the filter may turn out to be of a different form 
than given by Equation (38). Or the model used for the adaptive adjustment of AmR may be much more 
complicated than that given by Equation (66); it may be better represented by a Weiner process based 
approach. Or the statistics assumed to prevail for the random driving functions of the various Langevin 
equation components, i.e., 

 ( ) ( ) ( )i it t t t′ ′ξ ξ = δ −  

may indeed have variances that are not equal to unity, i.e.,  

 ( ) ( ) ( )2
i i it t t t′ ′ξ ξ = σ δ −  

or may not even by given by a ‘white-noise’  δ-correlated process, i.e.,  

 ( ) ( ) ( )i it t W t t′ ′ξ ξ = −  

where W(t – t′) can be defined by any number of statistical characterizations. The numerical analysis 
afforded in Part 2 will help direct these different possibilities. What has been established here, however, is 
the fundamental methodology to be employed in the analytical derivation of Markov filters. 
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.—From the Langevin Stochastic Differential Equation 
for a Random Process to the Kolmogorov Equation for the 

Transition Probability Density Function for the Process 
The purpose of this appendix is to establish the connection between the Langevin stochastic 

differential equation for the random drift/diffusion process vector ( )x t  

 ( )x x G t
t

∂
= −Γ + ξ

∂
 

where 

 
R

S

N

Γ ≡  
γ 

 γ
 
 
 γ 



  and  
1

2

2 0 0

0 2 0
0

0 0 2 N

G ≡  
γ 

 
γ 

 
 
 γ 





  



 

and the related transition PDF ( )0 0, ,p x t x t , from which the statistics of ( )x t  can be obtained, given by 

the Kolmogorov equation, 

 
( ) ( ) ( )( ) ( ) ( )0 0

1 0 0 2 0 0
, , 1, , , ,

2

N N N

i iji i ji i j

p x t x t
K p x t x t K p x t x t

t x x x
∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂  ∑ ∑∑  

where 

 ( ) ( )1 ,K x t x t= −Γ  and ( )( )2 , 2 ij i j
ij

K x t B= γ γ  

in which B  is the matrix whose elements are correlation coefficients connecting all the elements of the 
stochastic noise vector ( )tξ  

 ( ) ( ) ( ) , 1i j ij iit t B t t B′ ′ξ ξ = δ − =  

The derivation of the Kolmogorov equation, a differential equation specifying the PDF for a random 
process given by (or defined by) a Langevin equation will be given in this appendix. For simplicity, a 
one-dimensional process will be used in the derivation. The extension to a multi-dimensions process will 
then be discussed as there exist a few subtleties in considering more than one process. The material in this 
appendix augments and replaces the development given in Appendix A of Reference 3. 

A.1 The Kolmogorov Equation Corresponding to a One-Dimensional Langevin 
Equation 

Consider the Langevin equation for single random function (process) xR(t), such as that for the rain 
attenuation process, given by 
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 ( ) ( ) ( ), ,R
R R R

x x t g x t t
t

∂
= ψ + ξ

∂
 (A1) 

where ψ(xR,t) and g(xR,t) are both deterministic functions, in general, of both xR(t) as well as the time. (In 
the rain attenuation case, one simply has ψ(xR,t) = –γR xR and ( ), 2R Rg x t = γ  where γR is the temporal 
constant associated with the rain dynamics.) The statistics of the process given by Equation (A1) are 
determined by the prescription 

 ( ) 0R tξ =  and ( ) ( ) ( )R Rt t t t′ ′ξ ξ = δ −   (A2) 

Equation (A2) defines the process as a ‘white noise’ process. 
A description of the temporal evolution of the process xR(t) as a function of time t must necessarily be 

done via a statistical approach due to the random function ξR(t) driving the process through Equation 
(A1). Thus, the following problem can be formulated: Given that xR(t) has some given value x0 = xR(t0) at 
time t = t0, what is the probability (governed by the statistics of ξR(t)) that x1 = xR(t1) at a later time t = t1? 
Let p(x1,t1x0,t0) be the conditional probability density function (PDF), which must be determined, that 
gives the probability p(x1,t1x0,t0)dx1 that, given x0 at t0, one finds xR in the range x1 ≤ xR ≤ x1 + dx1 at a 
later time t = t1. Now all the information that can be gleaned from what is known about the random 
process xR(t) is given by Equations (A1) and (A2). In order to extract such information, one must 
complicate the formulation a bit in order to form a mathematically sound problem statement. In addition 
to the process value x1 = xR(t1) at time t1, conditioned on x0 = xR(t0), one must additionally consider the 
similar problem of the process value x2 = xR(t2) at a time t2 = t1 + ∆t given that x1 = xR(t1). Here, ∆t is a 
general time interval which will be used in the derivation to follow. Thus, one can form the product of 
two such conditional PDF factors, p(x2,t1 + ∆tx1,t1) p(x1,t1x0,t0)dx1. This is the PDF of x2 = xR(t2) = 
xR(t1 + ∆t) given that x1 + dx1 = xR(t1) which itself is conditioned on x0 = xR(t0). Implicit in this formulation 
is the fact that the process values xR(t) are uncorrelated at the times t0, t1, or t2. That is, the process xR(t) is 
taken to be a Markov random process. Considering all possible values x1 that xR(t) can assume at t = t1, 
one can write 

 ( ) ( ) ( )2 1 0 0 2 1 1 1 1 1 0 0 1, , , , , ,p x t t x t p x t t x t p x t x t dx
∞

−∞

+ ∆ = + ∆∫  (A3) 

which is known as the Chapman-Kolmogorov equation for the transition PDF p(x,tx0,t0) of the 
continuous Markov process xR(t).  

Given the behavior of the PDF for xR(t) as described by the Chapman-Kolmogorov equation, 
Equation (A3), as well as the stochastic differential equation that defines the process, Equation (A1), an 
equation connecting p(x,tx0,t0) to the parameters of Equation (A1) can be obtained. In what is to follow, 
one will simply write x in place of xR. To this end, consider the integral relation defined by  

 [ ] ( ) ( )0 0
0

, ,p x t x t
I x R x dx

t

∞

−∞

∂
≡

∂∫  (A4) 

where R(x) is an arbitrary function that goes to zero as x → +∞. Using the definition of the difference 
quotient 
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( ) ( ) ( )0 0 0 0 0 0

0

, , , , , ,
lim
t

p x t x t p x t t x t p x t x t
t t∆ →

∂ + ∆ −
=

∂ ∆
 (A5) 

as well as Equation (A3) in Equation (A4) gives 

 ( ) ( ) ( ) ( )0 0 0 0
0 0

0

, , , , , ,
, ,

lim
t

p x t t x t p x t x t dx p x t x t
p x t x t

t t

∞

−∞

∆ →

′ ′ ′+ ∆ −
∂

=
∂ ∆

∫
 (A6) 

Using this expression in Equation (A4) yields 

 [ ] ( ) ( ) ( ) ( ) ( )0 0 0 0 0
0

1lim , , , , , ,
t

I x R x p x t t x t dx p x t x t dx p x t x t R x dx
t

∞ ∞ ∞

∆ →
−∞ −∞ −∞

 
′ ′ ′ = + ∆ −

 ∆  
∫ ∫ ∫  (A7) 

Expanding the arbitrary function into a Taylor series about x′, 

 ( ) ( ) ( ) ( ) ( ) ( )
2

2
2

R x R x
R x R x x x x x

x x
′ ′∂ ∂

′ ′ ′≈ + − + − +
′ ′∂ ∂

 (A8) 

and putting this into Equation (A7) results in 

 

[ ] ( ) ( ) ( )

( ) ( ) ( ) ( )

0
0

2
2

0 02 0

1lim , ,

1 1lim , , , ,
2

t

t

R x
I x x x p x t t x t dx

x t

R x
x x p x t t x t dx p x t x t dx

x t

∞ ∞

∆ →
−∞ −∞

∞

∆ →
−∞

 ′∂
′ ′= − + ∆

 ′∂ ∆
′∂

′ ′ ′ ′+ − + ∆
′∂ ∆ 

∫ ∫

∫
 (A9) 

Finally, defining the conditional mean and variance, respectively, as 

 ( ) ( ) ( )1 , , ,k x t t x x p x t t x t dx
∞

−∞

′ ′ ′+ ∆ ≡ − + ∆∫  (A10) 

and 

 ( ) ( ) ( )2
2 , , ,k x t t x x p x t t x t dx

∞

−∞

′ ′ ′+ ∆ ≡ − + ∆∫  (A11) 

and letting their temporal limits be given by 

 ( ) ( )1 1
0

1, lim ,
t

K x t k x t t
t∆ →

′ ′≡ + ∆
∆

 (A12) 

and 

 ( ) ( )2 2
0

1, lim ,
t

K x t k x t t
t∆ →

′ ′≡ + ∆
∆

 (A13) 
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gives 

 [ ] ( ) ( ) ( ) ( ) ( ) ( )
2

0 1 0 0 2 0 02
1, , , , , ,
2

R x R x
I x K x t p x t x t dx K x t p x t x t dx

x x

∞ ∞

−∞ −∞

′ ′∂ ∂
′ ′ ′ ′ ′ ′= +

′ ′∂ ∂∫ ∫  (A14) 

It is now a simple matter to integrate Equation (A14) using the assumed asymptotic properties of R(x). 
The first term on the right side of Equation (A14) can be integrated by parts once and the second term 
integrated by parts twice, noting in both cases all the terms at x → ±∞ vanish. Thus, 

 ( ) ( ) ( ) ( )
( ) ( )( )1 0 0

1 0 0
, , ,

, , ,
K x t p x t x tR x

K x t p x t x t dx R x dx
x x

∞ ∞

−∞ −∞

′ ′∂′∂
′ ′ ′ ′ ′= −

′ ′∂ ∂∫ ∫  (A15) 

and 

 ( ) ( ) ( ) ( )
( ) ( )( )22 2 0 0

2 0 02 2

, , ,1 1, , ,
2 2

K x t p x t x tR x
K x t p x t x t dx R x dx

x x

∞ ∞

−∞ −∞

′ ′∂′∂
′ ′ ′ ′ ′=

′ ′∂ ∂∫ ∫  (A16) 

allowing Equation (A14) to be become 

 [ ] ( )
( ) ( ) ( ) ( )2

1 0 0 2 0 0
0 2

, , , , , ,1
2

K x t p x t x t K x t p x t x t
I x R x dx

x x

∞

−∞

 ′ ′ ′ ′∂ ∂
′ ′= − +  ′ ′∂ ∂ 

∫  (A17) 

Using this relation back in Equation (A4), one obtains 

 ( ) ( ) ( ) ( ) ( ) ( )2
0 0 1 0 0 2 0 0

2

, , , , , , , ,1 0
2

p x t x t K x t p x t x t K x t p x t x t
R x dx

t x x

∞

−∞

 ′ ′ ′ ′ ′∂ ∂ ∂
′ ′+ − = ′ ′∂ ∂ ∂ 

∫  (A18) 

Since at the outset the function R(x) was taken to be arbitrary, the only way Equation (A18) can vanish is 
if the quantity within the parenthesis of the integrand vanishes. Thus, reinstating the notation x = xR, one 
has that  

 
( ) ( ) ( ) ( ) ( )2

0 0 1 0 0 2 0 0
2

, , , , , , , ,1
2

R R R R R

R R

p x t x t K x t p x t x t K x t p x t x t
t x x

∂ ∂ ∂
= − +

∂ ∂ ∂
 (A19) 

giving the sought-after relationship between the transition PDF p(xR,tx0,t0) of the random process and 
the parameters of the stochastic differential equation specifying the dynamics of the process. This relation 
is the Kolmogorov equation (sometimes termed the forward Kolmogorov equation) for the PDF that 
describes the transition through time of the Markov random process xR(t). It now remains to finish that 
connection by applying Equation (A1) to the assignments given by Equations (A10)-(A13).  

Equation (A10) is a specification (actually, a definition) for the ensemble average of the difference 
∆x = x – x′ that occurs over the time interval ∆t. Thus, ( )1 ,k x t t x′ + ∆ = ∆  and Equation (A12) gives 

 ( )1
0

, lim R
R

t

x
K x t

t∆ →

∆
′ ≡

∆
 (A20) 
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Similarly, ( ) ( )2
2 ,k x t t x′ + ∆ = ∆  and by Equation (A13) 

 ( )
( )2

2
0

, lim
R

R
t

x
K x t

t∆ →

∆
′ ≡

∆
 (A21) 

The incorporation of the Langevin parameters into the Kolmogorov equation commences with simply 
integrating Equation (A1) over the small time interval ∆t and averaging: 

 ( ) ( ) ( ) ( ), , ,
t t t t t t

R R R R R
t t t

x x t dt g x t t dt x t dt
+∆ +∆ +∆

′ ′ ′ ′ ′ ′ ′∆ = ψ + ξ = ψ∫ ∫ ∫  (A22) 

since ψ(xR,t′) and g(xR,t′) are deterministic functions and ( ) 0R t′ξ =  by Equation (A2). But if ∆t is small 

enough such that the function ψ(xR,t′) does not appreciably change over this interval, one has 

 ( ) ( ), ,
t t

R R R
t

x x t dt x t t
+∆

′ ′∆ = ψ ≈ ψ ∆∫  (A23) 

yielding 

 ( ) ( )1
0

, lim ,R
R R

t

x
K x t x t

t∆ →

∆
′ ≡ = ψ

∆
 (A24) 

Applying the same procedure for ( )2
Rx∆  as required by Equation (A21) gives, upon using 

( ) ( ) ( )R Rt t t t′ ′ξ ξ = δ −  of Equation (A2),  

 ( ) ( )( ) ( )2 22 2, ,R R Rx x t t g x t t′∆ = ψ ∆ + ∆  (A25) 

Hence, 

 ( )
( )

( )
2

2
2

0
, lim ,

R
R R

t

x
K x t g x t

t∆ →

∆
′ ≡ =

∆
 (A26) 

Finally, the Kolmogorov equation for the one-dimensional process xR(t) defined by Equation (A1) is, by 
Equations (A19), (A24), and (A26), 

 
( ) ( ) ( ) ( ) ( )2 2

0 0 0 0 0 0
2

, , , , , , , ,1
2

R R R R R

R R

p x t x t x t p x t x t g x t p x t x t
t x x

∂ ∂ψ ∂
= − +

∂ ∂ ∂
 (A27) 

As described in the text, one specifically has for the case of rain attenuation, ψ(xR,t) = –γR xR and 
( ), 2R Rg x t = γ  from which the conditional PDF for rain attenuation is given by 
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( ) ( ) ( )2

0 0 0 0 0 0
2

, , , , , ,R R R R
R R

R R

p x t x t x p x t x t p x t x t
t x x

∂ ∂ ∂
= γ + γ

∂ ∂ ∂
 (A28) 

the solution of which provides the PDF describing all the temporal dynamics of the ACTS Rain 
Attenuation Model. The form of this drift/diffusion process simplifies the structure of the theory, 
especially in the case of multi-dimensional processes operating to give a single composite process as will 
be shown in what is to follow. 

A.2 Extension to the Treatment of Several Processes - The Kolmogorov Equation 
Corresponding to a Multi-Dimensional Langevin Equation 

The procedure used above to obtain the Kolmogorov equation for a one-dimensional, single-
component Markov process can be easily repeated for the general case of a several component process 
given by the vector Langevin equation 

 ( ) ( ) ( ), ,x x t g x t t
t

∂
= ψ + ξ

∂
 (A29) 

where x  is the column vector (i.e., a matrix) 

 ( )
( )
( )

( )

R

S

Z

x x t
x t
x t

x t

= =  
 
 
 
 
 
 



 (A30) 

and similarly for  

 ( )
( )
( )

( )

,
,
,

,

R R

S S

Z Z

x t
x t
x t

x t

ψ =  
ψ 

 ψ 
 
 ψ 



 (A31) 

For most cases in which Markov processes apply, the matrix ( ),g x t  is of the form 

 ( )
( )

( )

( )

,
, 0 0

0 , 0
0

0 0 0 ,

R R

S S

Z Z

g x t
g x t

g x t

g x t

=  
 
 
 
 
 
 





  

 (A32) 

The nuance of this multi-dimensional case that enters is the fact that the stochastic noise terms that enter 
into the matrix 
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 ( )
( )
( )

( )

R

S

Z

t
t
t

t

ξ =  
ξ 

 ξ 
 
 ξ 



 (A33) 

comes with more complicated statistical properties. As before, one still has ( ) 0i tξ =  for each element 

but must now allow for possible cross-correlation to exist between different components ξi(t). This cross-
correlation is captured by the requirement that 

 ( ) ( ) ( )i j ijt t B t t′ ′ξ ξ = δ − , i.e., ( ) ( ) ( )Tt t B t t′ ′ξ ξ = δ −  (A34) 

where Bij are the correlation coefficients and
 
the subscript T denotes the transpose of the column matrix. 

The only proviso on the values of Bij is, of course, Bii = 1.  
Following the steps that lead to Equation (A19) gives for the multi-dimensional Kolmogorov 

equation specifying the corresponding multi-dimensional conditional transition PDF ( )0 0, ,x t x t  

 
( ) ( ) ( )( ) ( ) ( )0 0

1 0 0 2 0 0
, , 1, , , ,

2i iji i ji i j

p x t x t
K p x t x t K p x t x t

t x x x
∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂  ∑ ∑∑  (A35) 

where, as before, 

 ( )1
0

, lim
t

x
K x t

t∆ →

∆
=

∆
 and ( )

( )2

2
0

, lim
t

x
K x t

t∆ →

∆
=

∆
. (A36) 

The evaluation of ( )1 ,K x t  yields, as before, 

 ( ) ( )1 , ,K x t x t= ψ  (A37) 

but the similar evaluation of ( )2 ,K x t  involves the cross-correlations of the ξi(t) components. In 
particular, 

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

2

2

, , , ,

, , , ,

T

t t t t t t t t
T T T

t t t t

T T

x x x

x t x t dt dt g x t t t g x t dt dt

x t x t t g x t B g x t t

+∆ +∆ +∆ +∆

∆ = ∆ ∆ =

′ ′′ ′ ′′ ′ ′ ′′ ′′ ′ ′′= ψ ψ + ξ ξ

′ ′′ ′ ′′≈ ψ ψ ∆ + ∆

∫ ∫ ∫ ∫  (A38) 

giving 

 ( )2 ,K x t = ( ) ( ), ,Tg x t B g x t′ ′′  (A39) 
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To simplify matters, the function ( ),x tψ  that enters the Langevin equation, known as the drift term, 
is of the multiplicative form  

 ( )
1 1

2 2

,

N N

x t x
x
x

x

ψ = ≡ −Γ 
−γ 

 −γ
 
 
 −γ 



  (A40) 

which allows for the introduction of the diagonal matrix for the drift coefficients 

 
R

S

N

Γ ≡  
γ 

 γ
 
 
 γ 



 (A41) 

The corresponding matrix of diffusion coefficients ( ),g x t  can also be specialized by requiring that they 
result in solutions for the transition PDFs from the Kolmogorov equation that are of exponential form 
(Ref. 3): 

 ( )
1

2

,
2 0 0

0 2 0
0

0 0 2 N

g x t G= ≡  
γ 

 
γ 

 
 
 γ 





  



 (A42) 

Equations (A40)-(A42) apply to the multi-dimensional drift/diffusion processes that are of the same class 
as those for rain attenuation and phase scintillation. Thus, in this case, which will be taken to prevail for 
the purposes of analysis in this document, the Langevin equation can be written 

 ( )x x G t
t

∂
= −Γ + ξ

∂
 (A43) 

where, as before, 

 ( )
( )
( )

( )

1

2

N

t
t
t

t

ξ =  
ξ 

 ξ 
 
 ξ 



, ( ) 0i tξ =  , ( ) ( ) ( )i j ijt t B t t′ ′ξ ξ = δ − , 1iiB =  (A44) 

Additionally, Equation (A37) now becomes 
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 ( ) ( )1 ,K x t x t= −Γ  (A45) 

Similarly, explicitly writing the correlation matrix 

 
1

1

1

RS RZ

SR SZ

ZR ZS

B
B B

B B

B B

=  
 
 
 
 
 
 





   



 (A46) 

Equation (39) gives 

 ( )( )2 , 2 ij i j
ij

K x t B= γ γ  (A47) 
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.—Solution of the Kolmogorov Equation for Transition 
Probabilities of a Process Using Measurements of the Results 

of That Process—The Stratonovich Equation 
The purpose of this appendix is to present the derivation of how the Kolmogorov equation,  

 
( ) ( ) ( )( ) ( ) ( )0 0

1 0 0 2 0 0
, , 1, , , ,

2

N N N

i iji i ji i j

p x t x t
K p x t x t K p x t x t

t x x x
∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂  ∑ ∑∑  

giving the conditional transition PDF ( )0 0, ,p x t x t  of the random process ( )x t , is augmented with actual 

observational measurements of the results of that process to aid in the realistic determination of 

( )0 0, ,p x t x t  in specific applications. This derivation will then give rise to the Stratonovich equation for 

the PDF ( ),p x t  

 
( ) ( ) ( ) ( ) ( ) ( ),

, , , , ,x
p x t

D p x t x t x t p x t dx p x t
t

∞

−∞

 ∂
′ ′ ′=   + φ − φ  ∂   

∫  

where 

 ( ) ( ) ( )( ) ( ) ( )1 2
1, , ,
2

N N N

x i iji i ji i j
D p x t K p x t K p x t

x x x
∂ ∂ ∂    ≡ − +    ∂ ∂ ∂  ∑ ∑∑  

is the Kolmogorov operator and 

 ( ) ( ) ( )( )2

2
1, ,

2 obs
n

x t A t A x tφ ≡ − −
σ

 

provides the connection to the observed (measured) result Aobs(t) of the composite process x  through the 
comparison to the observation model ( ),A x t  evaluated by previously determined values of x . The 
solution and application of this prescription to satellite signal fade identification is given is Appendix C. 

Note how the conditional PDF ( )0 0, ,p x t x t  of the Kolmogorov equation becomes the PDF ( ),p x t  

in the Stratonovich equation since the results giving ( )0 0, ,p x t x t  are now conditioned on the 

observational inputs. This appendix will provide the fundamental derivation of the Stratonovich equation 
from the Kolmogorov equation for the probability density function for the components of a multi-
dimensional Markov process.  

B.1 The Problem to be Solved 

Consider the observation of measurement of the attenuation Aobs(ti) at a time instant ti. This measured 
attenuation can be the result of one or several atmospheric components that enter into the actual value that 
is measured. In an effort to describe such an attenuation process, a mathematical model will be used that 
attempts to describe the convolution of all the processes that go into the determination of the actual 
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attenuation. For example, when the two processes of attenuation due to rain and due to scintillation enter, 
one attempts to model the attenuation seen at ti as 

 ( ) ( ) ( )i R i S iA t A t A t= +  (B1) 

where AR(ti) is that portion of the observation model that attempts to describe the level of rain attenuation 
and AS(ti) is that portion that attempts to give attenuation due to scintillation. Each of the models AR(ti) 
and AS(ti) are functions of corresponding underlying Markov processes xR(ti) and xS(ti) given by the 
Langevin equation of Equation (A43) and defined by Equations (A41), (A42) and (A44). Hence, 
AR(ti) ≡ AR(xR(ti)) and AS(ti) ≡ AS(xs(ti)) and Equation (B1) becomes  

 ( )( ) ( )( ) ( )( )i R R i S S iA x t A x t A x t= +  (B2) 

where ( ), T
R Sx x x=  is the matrix of the composite Markov process and T indicates the transpose. Thus, if 

one has faith that the model processes are reasonably correct, than one can relate the observed attenuation 
Aobs(ti) to that modeled ( )( )iA x t  by the use of the observation model 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( )obs i i i R R i s s i iA t A x t n t A x t A x t n t= + = + +  (B3) 

where n(ti) is the uncertainty in the attenuation measurement as compared to that modeled; it constitute 
the measurement ‘noise’ which, for purposes in the present work, is statistically defined by 

 ( ) ( ) ( ) ( )20, nn t n t n t t t′ ′= = σ δ −  (B4) 

where 2
nσ  is the variance of the uncertainty of the measurement process. The Langevin equation of 

Equations (A29) or (A43) along with Equations (A41), (A42) and (A44) are defined as the process 
model. The problem required to be addressed and solved can now be stated. 

The need for all the formalism created for the process model and observation model is made apparent 
by the need to be able to properly separate one individual attenuation component, e.g., AR(xR(ti)) from 
another , e.g., AS(xs(ti)) given only the measured noisy composite observational attenuation Aobs(ti) at a 
series of time instants tj from the past j < i to the present i. 

B.2 The Statistical Formulation of the Solution 

From the problem statement given above and the fact that the entire process model Appendix A is 
available for the subsequent statistical evolution of the component processes, one reduces the problem to 
that of finding the particular Markov components xR(ti) and xS(ti) at time ti from the set  

 { } ( ) ( ) ( ){ }1 0, ,obs obs i obs i obsiA A t A t A t−≡   (B5) 

of consecutive instantaneous observations Aobs(t) up to the time instant ti. Now, for no other reason than 
being advantageous to have, consider the conditional probability density function ( ) { }( )i obs ip x t A  which 

gives the optimal estimate 
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 ( ) ( ) { }( )i i obs ix t p x t A dx
∞

−∞

= ∫   (B6) 

derived from the minimization of the mean squared error. Here the infinite limits of the integral represent 
the entire range of values of the components of the matrix x . One can then define and write the 
compound PDF 

 
( ) ( ) { }( ) ( ) { }( ) ( ) { } ( )( )

( ) { }( ) ( ) { } ( )( )
1 1 1

1 1

, ,

,

i obs i obs i obs obs i obs ii i i

obs i obs i obs obs ii i

p x t A t A p x t A p A t A x t

p A t A p x t A A t
− − −

− −

=

=
 (B7) 

in which the probability of compound events is employed and the intervening PDF’s have obvious 
meaning. Since the noise n(ti) is a sequence of random uncorrelated events, the quantity Aobs(ti) will not be 
dependent on previous ( ){ } 1obs i

A t
−

 values so  

 
( ) { } ( )( ) ( ) ( )( )

( ) { } ( )( ) ( ) { }( )

1

1

,

,

obs i obs i obs i ii

i obs obs i i obsi i

p A t A x t p A t x t

p x t A A t p x t A

−

−

=

=

 (B8) 

Thus, from Equations (B7) and (B8), 

 ( ) { }( ) ( ) { }( ) ( ) ( )( )
( ) { }( )

1

1

i obs obs i ii
i obs i

obs i obs i

p x t A p A t x t
p x t A

p A t A
−

−

=  (B9) 

The PDF ( ) { }( )1obs i obs ip A t A −
 is easily dealt with by noting that is, by hypothesis, independent to the 

process matrix ( )x t  at any time instant. It is, with respect to the evolution of ( )x t , a constant. Hence, 

( ) { }( ) 1
11obs i obs ip A t A C−

− =  where C1 is a constant allowing Equation (9) to be written 

 ( ) { }( ) ( ) ( )( ) ( ) { }( )1 1i obs obs i i i obsi ip x t A C p A t x t p x t A −=  (B10) 

As for the remaining PDF ( ) ( )( )obs i ip A t x t , it is noted that, by definition, it is the PDF governing the 
measured attenuation Aobs(ti) at the time interval ti.conditioned on the prevailing value of the associated 
process ( )ix t  at time ti. By the observation model of Equation (B3), one has ( ) ( )( ) ( )obs i i iA t A x t n t− = . 

Hence, the statistics of the PDF governing a given value of ( )ix t  that results in the value of Aobs(ti) is the 
same that those governing the measurement noise n(ti), i.e., is given by a Gaussian PDF. Hence, it is of 
the form 

 ( ) ( )( ) ( ) ( )( )( )2

2 2
exp

2
obs

obs i i
obs i i

A

A t A x t
p A t x t C

 − = − σ 
 

 (B11) 
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The associated variance 2
obsAσ within the Gaussian PDF, connected to the noise statistics given by 

Equation (B4), can only be related, in this discrete case, to the interval ∆t = ti – ti–1, i.e., 

 ( ) ( )
2

2
obs

n
A n t n t t

t
σ

σ = + ∆
∆

 (B12) 

Hence, one can write 

 ( ) ( )( ) ( ) ( )( )( )
( )( )

2

2 22
exp exp

2
obs i i

obs i i i
n

A t A x t
p A t x t C t C t t

 − = − ∆ = φ ∆ σ 
 

 (B13) 

where ( )
( ) ( )( )( )2

22
obs i i

i
n

A t A x t
t

−
φ ≡ −

σ
 . Finally, Equation (B10) becomes 

 ( ) { }( ) ( )( ) ( ) { }( )3 1expi obs i i obsi ip x t A C t t p x t A −= φ ∆  (B14) 

where C3 is another constant. The PDF on the right side of Equation (B14) will now be further reduced. 
Given the fact that this PDF is conditioned on events that occur up to the time instant ti –1, one can write 

( ) ( )1i ix t x t t−= + ∆  occurring on both sides of Equation (B14). Hence, 

 ( ) { }( ) ( )( ) ( ) { }( )1 3 1 1expi obs i i obsi ip x t t A C t t p x t A− − −+ ∆ = φ ∆  (B15) 

The relationship written in this form yields the key to connecting the present development to the process 
model of Appendix A that will yield a differential equation for the conditional PDF from which, using 
Equation (B6), the equations for optimal estimates of the particular Markov components ( ), T

R Sx x x=  
can be obtained, thus separating the individual contributions that enter into the composite measured 
quantity Aobs.  

B.3 Connecting the Foregoing to the Process Model and Obtaining the Stratonovich 
Equation for the Conditional Transition Probability Density Functions 

To this end, note the PDF on the right side of Equation (B15); it gives the statistics of x  at time ti –1 + 
∆t based on the set of observational inputs { } 1obs iA −  at time ti –1. Thus, in this instance, x (ti –1 + ∆t) is an 

extrapolated estimate of the process x  based on previous observations. Now the only information 
concerning the evolution of the process x  from ti –1 to ti –1 + ∆t comes from the Langevin equation, 
Equation (A29) or Equation (A43) of Appendix A. Therefore, for times t within the interval 
ti – 1 ≤ t ≤ ti – 1 + ∆t, the PDF ( ) { }( )1obs ip x t A −

 is determined by the Kolmogorov equation that 

corresponds to the Langevin equation. That is, using Equation (A35), 

( ) { }( ) ( ) ( ) { }( )( ) ( ) ( ) { }( )1
1 21 1

1
2

N N Nobs i
obs obsi ii iji i ji i j

p x t A
K p x t A K p x t A

t x x x
−

− −

∂ ∂ ∂ ∂  = −  ∂ ∂ ∂ ∂  ∑ ∑∑  (B16)
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for ti – 1 ≤ t ≤ ti – 1 + ∆t and the initial condition ( ) { }( )1 1i obs ip x t A− −
. One now expands about the time 

interval ∆t as follows: 

 
( ) { }( ) ( ) { }( ) ( ) { }( )

( ) { }( ) ( ) { }( )
1

1
1 11 1

1 11 1

i

obs i
i obs i obsi i

t t

i obs x i obsi i

p x t A
p x t t A p x t A t

t

p x t A D p x t A t
−

−
− −− −

=

− −− −

∂
+ ∆ ≈ + ∆ +

∂

 ≈ + ∆ + 





 (B17) 

where the Kolmogorov operator [ ]xD   is defined by  

 

( ) { }( ) ( ) ( ) { }( )( )

( ) ( ) { }( )

11 1

2 1
1
2

N

x obs obsi ii
ii

N N

obs iiji ji j

D p x t A K p x t A
x

K p x t A
x x

− −

−

∂  ≡ −  ∂

∂ ∂  +  ∂ ∂  

∑

∑∑
 (B18) 

Substituting Equation (B17) into Equation (B15) and similarly using the expansion ( )( )exp it tφ ∆ ≈

( )1 it t+ φ ∆ +  yields 

( ) { }( ) ( ) { }( ) ( ) { }( )(
( ) { }( ) ( ) )

1 3 1 11 1

1 1

i obs i obs x i obsi i i

i obs ii

p x t t A C p x t A D p x t A t

p x t A t t

− − −− −

− −

 + ∆ ≈ + ∆ 

+ φ ∆
 (B19) 

With the promise that the end of the analysis is near, one now needs to evaluate the constant C3. Using the 
fact that  

 
( ) { }( )

( ) { }( )1
1

obs i
x obs i

p x t A
D p x t A

t
−

−

∂
 =  ∂

 (B20) 

and, by normalization of the PDF’s, 

 ( ) { }( )1 1obs ip x t A dx
∞

−
−∞

=∫  (B21) 

gives 

 ( ) { }( )1 0x obs iD p x t A dx
∞

−
−∞

  = ∫  (B22) 

Using these circumstances and integrating Equation (B19) by x  yields 

 ( ) ( ) { }( ) ( ) ( ) { }( )
1

3 1 1 1 11 11 1i i obs i i obsi iC t t p x t A dx t t p x t A dx
−∞ ∞

− − − −− −
−∞ −∞

 
 = + ∆ φ ≈ − ∆ φ
 
 

∫ ∫  (B23) 
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Substituting this expression into Equation (B19) and rearranging terms results in 

( ) { }( ) ( ) { }( ) ( ) { }( )(
( ) ( ) ( ) { }( ) ( ) { }( )

1 1 11 1

1 1 1 11 1

i obs i obs x i obsi i i

i i i obs i obsi i

p x t t A p x t A t D p x t A

t t p x t A dx p x t A

− − −− −

∞

− − − −− −
−∞

 + ∆ − ≈ ∆  

 
 + φ − φ

  
∫

 (B24) 

Finally dividing through by ∆t and taking the limit ∆t → 0 (implicitly ridding of the need to specify the 
discrete nature of the time indicator i) gives the differential equation specifying the conditional PDF of 
the process x , 

 ( ) ( ) ( ) ( ) ( ) ( ),
, , , , ,x

p x t
D p x t x t x t p x t dx p x t

t

∞

−∞

 ∂
′ ′ ′=   + φ − φ  ∂   

∫  (B25) 

where the implicit conditional PDF ( ),p x t  is defined by 

 ( ) { }( ){ } ( ) { }( ) ( )1 10
lim ,i obs obsit

p x t A p x t A p x t− −∆ →
= ≡  (B26) 

Equation (B25) is the Stratonovich equation whose solution yields the PDF ( ),p x t  for the vector process 

( )x t  whose effect and determination on the measured composite process Aobs(t) is given through the 
discriminator function 

 ( ) ( ) ( )( )2

2
1, ,

2 obs
n

x t A t A x tφ ≡ − −
σ

 (B27) 

which prominently enters Equation (B25). 
The development given above essentially followed the construction of Stratonovich in his original 

work in 1959. The appropriate references are the collected English translations of the papers published in 
Reference 6 as well as, of course, the Russian original References 7 and 8. 
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.—The Stratonovich Equation for the Optimal Estimates and 
Related Error Covariances of the Individual Component Process  

Levels of a Measured Fade on a Satellite Link—Its Solution  
and the Related Discrete-Time Recursive Filter 

This appendix will concern itself with the solution for the PDF ( ),p x t  given by Stratonovich 
integro-differential equation, derived in Appendix B, and its application to the derivation of the optimal 

estimate matrix ( )x t = ( ) ( )( ),
T

R Sx t x t  as well as the covariance matrix ( )tσ  for a two-component 

Markov process, using the basic observational measurements of the composite quantity Aobs(t) with a 
measurement uncertainty 2

nσ . In discrete-time form for digital application for the combined noisy 
measurement of rain attenuation and phase scintillation, the equations for the resulting recursive filter are 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1, ,i i i i i i i ix t t t x t t t t a t+ + += Φ + Φ σ  

 ( ) ( ) ( )1 11i i it H t b t− −+σ = −  

 ( ) ( ) ( ) ( )1 1 1, ,Ti i i i i iH t t t t t t D− − −= Φ σ Φ +  

 ( )( ) ( )( ) ( )( )( )2 exp 1 exp , , ,j k
ij j k j k

jk j k
D t B t t j k R S

γ γ
∆ = − γ + γ ∆ − − γ + γ ∆ =

γ + γ
 

 ( ) ( ), i
i

x x

x t
a t t

x
=

∂φ
= ∆

∂
, ( ) ( ), T

i
i

x x

x t
b t t

x x
=

 ∂φ ∂ = ∆  ∂ ∂  
 

 ( ) ( ) ( )( )2

2
1, ,

2 obs
n

x t A t A x tφ ≡ − −
σ

 

 ( ) ( )( ) ( )ln, exp
RmR A R mS S SA x t A x t A x t= σ + + σ  

 ( ) ( )( )0 0, exp ,t t t t t tΦ = −Γ ∆ ∆ ≡ −  

 
0

0
R

S

Γ =  
γ 

 γ 

 

The Stratonovich equation derived in Appendix B will now be solved for the PDF ( ),p x t  of the 
process x  with the goal of finding the corresponding optimal estimate 

 ( )( ) ( ) ( ),j jj
x t x t p x t dx

∞

−∞

≡ ∫  (C1) 
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as well as the associated error covariance 

 ( ) ( )( ) ( ),j j k k j kjk
x x x x p x t dx dx

∞ ∞

−∞ −∞

σ ≡ − −∫ ∫  (C2) 

using the measured values of the composite quantity Aobs(t). This will culminate in the specification and 
algorithm for a recursive discrete-time filter that can be applied in real-time to filter a composite fading 
signal and act on the level of the components in an appropriate manner. From the results of Appendix B, 
one has for the Stratonovich equation 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 2
1 1 1

, 1, , , ,
2

N N N

i iji i ji i j

p x t
K p x t K p x t x t t p x t

t x x x= = =

∂ ∂ ∂ ∂    = − + + φ − φ   ∂ ∂ ∂ ∂  ∑ ∑∑   (C3a) 

 ( ) ( ) ( )( )2

2
1, ,

2 obs
n

x t A t A x tφ ≡ − −
σ

 (C3b) 

 ( ) ( ) ( ), ,t x t p x t dx
∞

−∞

φ ≡ φ∫  (C3c) 

Although in what is to follow, an attempt is made to keep the arguments general, the final goal is 
always for the two-component Markov process for both rain attenuation and phase scintillation. It is now 
desired to obtain from the statistical description of the Markov process afforded by Equation (C3) the 
corresponding optimal estimates of the mean of the process as well as the associated covariance. The 
transition probability density determined by Equation (C3) contains all the necessary information with 
which to accomplish this task. Of course, there is no known analytical solution to the integro-differential 
equation of Equation (C3) so use of the quantity ( ),p x t  must be done using Equation (C3) directly. 

To this end, define the characteristic functional ( ),u tΘ  for an N-component process given by 

 ( ) ( )
1

, exp ,
N

j j
j

u t i u x p x t dx
∞

=−∞

 
 Θ ≡
 
 
∑∫  (C4) 

Multiplying Equation (C3) by 
1

exp
N

j j
j

i u x
=

 
 
 
 
∑  and integrating with respect to xj (i.e., over each of the 

components xj) simply gives for the left hand side 

 ( )
1

,
exp

N

j j
j

p x t
i u x dx

t t

∞

=−∞

 ∂ ∂Θ
  =
 ∂ ∂ 
∑∫  (C5) 

Similarly, the first term on the right side of Equation (C3) becomes, after an integration by parts, 

 ( ) ( )( ) ( )1 1
1 1 1 1

, exp exp
N N N N

k k j k kj j
jj k j k

K p x t i u x dx i u K i u x
x

∞

= = = =−∞

   ∂
− =      ∂    

∑ ∑ ∑ ∑∫   (C6) 
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The second term is manipulated in the same way but this time with two integrations by parts to obtain 

( ) ( ) ( )2 2
1 1 1 1 1 1

1 1, exp exp
2 2

N N N N N N

l l j k l l
jk jkj kj k l j k l

K p x t i u x dx u u K i u x
x x

∞

= = = = = =−∞

   ∂ ∂   = −        ∂ ∂      
∑∑ ∑ ∑∑ ∑∫  (C7) 

Finally, the last term in Equation (C3) becomes 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, , exp , exp ,
N N

l l l l
l l

x t t p x t i u x dx x t i u x t u t
∞

= =−∞

   
 φ − φ = φ − φ Θ        

   
∑ ∑∫   (C8) 

Hence, Equation (C3) becomes in characteristic functional form 

 

( ) ( )

( ) ( ) ( )

1 2
1 1 1 1 1

1

1exp exp
2

, exp ,

N N N N N

j k k j k l lj jkj k j k l

N

l l
l

i u K i u x u u K i u x
t

x t i u x t u t

= = = = =

=

   ∂Θ
= −      ∂    

 
+ φ − φ Θ  

 

∑ ∑ ∑∑ ∑

∑
 (C9) 

However, it proves expedient to not use the function ( ),u tΘ  but instead the function ( )ln ,u tΘ . Thus, 

multiplying both sides of Equation (C9) by ( )( ) 1,u t −
Θ gives for the transformed characteristic functional 

( )
( )

( )

( )

( ) ( ) ( ) ( )

1
1 1

1

2
1 1 1 1

ln , ,1
,

1 exp
exp

1 exp , exp ,
2

N N

j k kN j
j k

k k
k

N N N N

j k l l l l
jkj k l l

u t u t
t u t t

i u K i u x
i u x

u u K i u x x t i u x t u t

= =

=

= = = =

∂ Θ ∂Θ
=

∂ Θ ∂

  
=        

 
   
− + φ − φ Θ           

∑ ∑
∑

∑∑ ∑ ∑

 (C10) 

It is now a simple (although tedious) matter to obtain the sought after statistical quantities ( )( ) j
x t  

and ( ) ( )( )j j k kjk
x x x xσ ≡ − − , defined by the conditional probability density 

( ) ( )0 0, , ,p x t p x t x t≡ , where 

 ( )( ) ( ) ( ),j jj
x t x t p x t dx

∞

−∞

≡ ∫ , ( ) ( )( ) ( ),j j k k j kjk
x x x x p x t dx dx

∞ ∞

−∞ −∞

σ ≡ − −∫ ∫  (C11) 

as well as ( )tφ  given by Equation (C3). (The form of these expressions come directly from the 

requirement that the mean values are optimal in the mean-square sense. This is what is meant as ‘optimal’ 
estimates in what is to follow.) In terms of the characteristic functional Θ, 
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 ( )( )
0

1 ln

j

j
j u

x t
i u

=

∂ Θ
=

∂
, ( )

2 2

0
0

1 ln

j
k

jk uj k
u

i u u =
=

∂ Θ σ =   ∂ ∂ 
 (C12) 

Intermediate steps will not be included at this point; again, these are straightforward manipulations but 
they can be a bit tedious. Using Equation (C10) in the first relation of Equation (C12), one has the general 
result 

 
( )( )

( ) ( ) ( )1 ,j
j jj

x t
K x x x t

t

∂
= + − φ

∂
 (C13) 

or in full matrix form 

 
( ) ( ) ( )1 ,

x t
K x x x t

t
∂

= + − φ
∂

 (C14) 

Similarly, for the covariance given by the second expression of Equation (C12), using Equation (C10) 
yields 

 

( )
( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

1 1 2

,

jk
j j k kk j jk

j j k k jk

x x K x x K K
t

x x x x x t t

∂ σ
= − + − +

∂

+ − − φ − σ φ

 (C15) 

Remember that in both Equations (C13) and (C15), in general, ( )1 1K K x=  and ( )2 2K K x= . This 
situation severely complicates the solution of the problem. The necessary approximation that must be 
made in order to make any further analytical progress is to assume the following: Given that the equations 
that will be derived for the mean and covariance of the process are to be recursively solved over 
observational sampling time intervals that are small such that the processes do not significantly change, 
one will have estimates of the initial values of x  from a previous time sample. Thus, the values 

( )1 1K K x=  and ( )2 2K K x=  will be known, as well as that of ( ),x tφ  from previous (a priori) 
observations. Given the assumption that the processes do not evolve too quickly over intervals between 
observations, one can expand about the value x  these functionals in terms of Taylor series, i.e., 

 

( )( ) ( )( ) ( )
( )( )

( )( )
( )( )

1
1 1

1

2 1

1 1

1
2

N
j

k kj j kk
x x

N N
j

k k l l
k lk l

x x

K x
K x K x x x

x

K x
x x x x

x x

=
=

= =
=

∂
= + −

∂

∂
+ − − +

∂ ∂

∑

∑∑ 

 (C16) 
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 ( )( ) ( )( ) ( )
( )( )2

2 2
1

N
jk

l l
jk jk ll

x x

K x
K x K x x x

x=
=

∂
= + − +

∂∑   (C17) 

 

( ) ( ) ( ) ( )

( )( ) ( )
1

2

1 1

,
, ,

,1
2

N

j j
jj x x

N N

j j k k
j kj k x x

x t
x t x t x x

x

x t
x x x x

x x

= =

= = =

∂φ
φ = φ + −

∂

∂ φ
+ − − +

∂ ∂

∑

∑∑ 

 (C18) 

Using these relations in Equation (C13) and evaluating the resulting averages gives 

 

( )( )
( )( ) ( )

( )( )

( ) ( ) ( )( ) ( ) ( )

1
1

1 1

1
1 1

1
2

, ,

N N
j j

klj k lk l
x x

N N

jk jkjk kk kx x x x

x t K x
K x

t x x

x t x t
K x

x x

= =
=

= == =

∂ ∂
= + σ

∂ ∂ ∂

∂φ ∂φ
+ σ ≈ + σ

∂ ∂

∑∑

∑ ∑
 (C19) 

In full matrix form, Equation (C19) is 

 
( ) ( ) ( )

1
,

x x

x t x t
K x

t x
=

∂ ∂φ
= + σ

∂ ∂
 (C20) 

Solution of this equation yields the optimal estimate of the process. Similarly, using Equations (C16)–
(C18) in Equation (C15) gives, after some tedious manipulations 

 

( )
( )

( )( ) ( )
( )( )

( )( ) ( ) ( ) ( )

11

1 1

2

2
1 1

,

N N
jk jk

jl kl
l ll lx x x x

N N

jl mkjk l ml m x x

K xK x

t x x

x t
K x

x x

= == =

= = =

∂∂ σ ∂
= σ + σ

∂ ∂ ∂

∂ φ
+ + σ σ

∂ ∂

∑ ∑

∑∑
 (C21) 

where the fact was used that the Markov components xj are described by Gaussian statistics thus causing 
averages involving odd number of components xj to vanish and those involving four components are 
reduced to three products of second order averages. The matrix form of Equation (C21) is given by 

 ( ) ( ) ( ) ( )1 1
2

, T

x x x x x x

K x K x x t
K x

t x x x x
= = =

∂ ∂  ∂φ ∂σ ∂ = σ + σ + + σ σ  ∂ ∂ ∂ ∂ ∂  
 (C22) 

Solution of this differential equation gives the error covariance of the optimal estimate. Equations (C20) 
and (C22), in conjunction with Equation (C3), constitute the foundation of the non-linear Markov 
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estimation (filtering) technique that will be applied to rain attenuation, scintillation, and the additional 
scenario of the adaptive adjustment of the parameter values that enter into the observation model for 
Aobs(t).  

Before this program can be implemented, the form of the non-linear Riccati differential equation of 
Equation (C22) must be simplified. To this end, consider the multiplication of Equation (C22) by the 
inverse matrix 1−σ  from both the left and right hand sides, 

( ) ( ) ( ) ( )1 11 1 1 12
, T

x x x x x x

K x K x x t
K x

t x x x x
− − − −

= = =

 ∂ ∂  ∂φ ∂σ ∂  σ σ = σ σ + σ + σ +    ∂ ∂ ∂ ∂ ∂   
 (C23) 

Using the matrix identity 
1

1 1
t t
−

− −
∂σ ∂σ

− = σ σ
∂ ∂

 on the left side gives 

( ) ( ) ( ) ( )1 1 11 12
, T

x x x x x x

K x K x x t
K x

t x x x x
−

− −

= = =

 ∂ ∂  ∂φ ∂σ ∂  = −σ σ + σ + σ −    ∂ ∂ ∂ ∂ ∂     

 (C24) 

The expression within the parenthesis of the first term of Equation (C24) is just the linear portion of 
Equation (C22). Writing this linear portion as a partial time derivative of some new matrix H , i.e.,  

 
( ) ( ) ( )1 1

2
K x K xH K x

t x x
∂ ∂∂

≡ σ + σ +
∂ ∂ ∂

 (C25) 

Equation (C24) can be written 

 
( )1

1 1
, T

x x

x tH
t t x x
−

− −

=

 ∂φ ∂σ ∂ ∂ = −σ σ −   ∂ ∂ ∂ ∂  
 (C26) 

Applying the approximation, only in Equation (C26), that 1 1H− −σ ≈  during the time interval at which 
H t∂ ∂  is evaluated, one has, using the same matrix identity as above, 

 ( )1 1 , T

x x

x tH
t t x x
− −

=

 ∂φ ∂σ ∂ ∂ = −   ∂ ∂ ∂ ∂  
 (C27) 

Equations (C25) and (C27) replace the Riccati equation of Equation (C22) for the solution for the error 
covariance matrix σ  of the optimal estimate. The matrix H  that was introduced above is, by its 
definition, also an error covariance not of the optimal estimate but of an extrapolated estimate because, 
unlike that of σ , it is devoid of any observational support within the interval 1i it t t +≤ <  (i.e., the last term 
of Equation (C22) is missing). It is very important to remember that this circumstance forms the boundary 
condition that will prevail for the solution of Equations (C25) and (C27). The matrix H  is the error 
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covariance of the extrapolated estimate. Only after it is corrected with the observational input in 
Equation (C28) does it return to that of the optimal estimate. 

C.1 The Discrete Solutions for the Filter Equations (C20), (C25), and (C27) 

For application purposes, the differential equations derived above that give the optimal estimates of 
the mean value x  as well as the covariance σ  of the Markov process as defined by the expressions of 
Equation (C17) of the Langevin note set must now be solved as discrete equations in time. For the 
purpose of specializing the foregoing to the Markov process of the diffusion type considered for satellite 
signal attenuation discussed in Appendix A, one recalls Equations (A41) 

 
R

S

N

Γ ≡  
γ 

 γ
 
 
 γ 



 (C28) 

and correspondingly, Equation (A42) 

 
1

2

2 0 0

0 2 0
0

0 0 2 N

G ≡  
γ 

 
γ 

 
 
 γ 





  



 (C29) 

thus allowing the designation for the problem considered here 

 ( )1 ,K x t x= −Γ  (C30) 

However, what are required are the average values x , 

 ( )1 ,K x t x= −Γ  (C31) 

Finally, using the diffusion correlation coefficient matrix B  which involves the potential correlation of 
the various component processes, one has 

 ( )( )2 , 2 ij i j
ij

K x t B= γ γ  (C32) 

With these assignments now made, Equation (C20) becomes 

 ( ),

x x

x x t
x

t x
=

∂ ∂φ
= −Γ + σ

∂ ∂
 (C33) 

Discrete solutions of these type of differential matrix equations commence with the homogeneous form 
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x

x
t

∂
= −Γ

∂
 (C34) 

for which the solution is taken to be of the form 

 ( ) ( ) ( )0 0 0, ,x x t t t x t t t= = Φ ≥  (C35) 

Using this in Equation (C34) results in 

 ( ) ( ) ( )0
0

,
, 0

t t
t t x t

t

 ∂Φ
 + ΓΦ =
 ∂ 

 (C36) 

Since ( )x t  is arbitrary in this particular construction, one has for the fundamental transition matrix 

( )0,t tΦ  for the problem, 

 
( ) ( )0

0
,

,
t t

t t
t

∂Φ
= −ΓΦ

∂
 (C37) 

Furthermore, since ( ) ( ) ( )0 0 0 0,x t t t x t= Φ , one has ( )( ) ( )0 0 0, 0I t t x t− Φ =  where I  is the identity 

matrix. Hence, the initial condition is established, 

 ( )0 0,I t t= Φ  (C38) 

In the case of the form of the matrix Γ  given by Equation (C29), one has that  

 ( ) ( )( )0 0, expt t t tΦ = −Γ −  (C39) 

The discrete time solution of Equation (C33) is now straightforward. Using the transition matrix 
development given above for the homogeneous portion of Equation (C33), the complete solution becomes 

 ( ) ( ) ( ) ( ) ( ) ( )1

1 1 1
,

, ,
i

i

t

i i i i i i i
t x x

x t
x t t t x t t t t dt

x

+

+ + +

=

′∂φ
′= Φ + Φ σ

∂∫  (C40) 

giving the optimal estimate of the process. Substituting Equations (C31) and (C32) into Equation (C25) 
yields 

 2
H K
t

∂
= −σΓ − Γσ +

∂
 (C41) 

The discrete solution to this relation for the sampling time ti, as per the boundary condition considerations 
mentioned earlier, is found to be 
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 ( ) ( ) ( ) ( )1 1 1, ,Ti i i i i iH t t t t t t D− − −= Φ σ Φ +  (C42) 

where 

 ( ) ( ) ( ) ( )
1

1 2 1, , , ,
i

i

t
T Ti i i i i i

t

D t t t t K t t dt t t
+

+ +

 
 ′ ′ ′= Φ Φ Φ Φ
 
 
∫  (C43) 

is a function of the interval ∆t = ti+1 – ti and is thus a constant throughout the iterative process so long as 
the interval between samples remains constant. Here, the matrix D  is the error covariance of the process 
components related to the variations imparted by the diffusion coefficient ( )2 ,K x t ; it is thusly termed the 
error covariance due to diffusion of the process. Finally, the simple structure of Equation (C27) gives, 
again noting the boundary conditions that prevail at the sampling times as discussed earlier,  

 ( ) ( ) ( )1

1 11
,i

i

Tt

i i
t x x

x t
t H t dt

x x

+

− −+

=

′ ∂φ ∂  ′σ = −   ∂ ∂  
∫  (C44) 

which, as discussed above, is the error covariance of the optimal estimate.  
A few more points are in order before these relationships are used to reproduce previous results. First, 

the observational input discriminator function ( ),x tφ  is only sampled at discrete times ti separated by a 

constant time interval ∆t, i.e., ( ) ( ) ( ), ,ix t t t x t tφ = δ − φ ∆  for 1i it t t +≤ < . Hence, for the last term of 
Equation (C40), one has 

 ( ) ( ) ( )
1 , ,i

i

t
i

i
x x x xt

x t x t
dt t a t

x x

+

= =

′∂φ ∂φ
′ = ∆ ≡

∂ ∂∫  (C45) 

Similarly, for the last term of Equation (C44),  

 
( ) ( ) ( )

1 , ,i

i

T Tt
i

i
t x x x x

x t x t
dt t b t

x x x x

+

= =

′ ∂φ   ∂φ ∂ ∂   ′ = ∆ ≡      ∂ ∂ ∂ ∂      
∫  (C46) 

Thus, Equations (C40) and (C44) can be rewritten in the form (Ref. 5) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1, ,i i i i i i i ix t t t x t t t t a t+ + += Φ + Φ σ  (C47) 

 ( ) ( ) ( )1 11i i it H t b t− −+σ = −  (C48) 
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Second, the expression given by Equation (C43) can be simplified based on the simple structure of the 
matrix R  given by Equation (C32). Using additionally Equation (C39), the error covariance due to 
diffusion is, by its very nature, only a function of the observational sampling interval ∆t = ti+i – ti 

 ( )( ) ( )( ) ( )( )( )2 exp 1 expi j
ij i j i j

ij i j
D t B t t

γ γ
∆ = − γ + γ ∆ − − γ + γ ∆

γ + γ
 (C49) 

Remembering Equation (C3), i.e.,  

 ( ) ( ) ( )( )2

2
1, ,

2 obs
n

x t A t A x tφ ≡ − −
σ

 (C50) 

one now has all the necessary ingredients to apply this non-linear Markov filtering procedure to both the 
filtering of a multi-component diffusion process as well as the adaptive determination of the parameters 
that enter into the modeled observation function ( ),A x t .  
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