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Abstract— The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 

PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the 

quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) 

to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to 

calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data 

satisfies its requirements.  

 

Index Terms—SMAP, Microwave Radiometer, Calibration, Validation, Simulation, Radiometry 

 

I. INTRODUCTION 

SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and 

Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, 

Space Studies Board, National Academies Press, 2007). The primary science objective of SMAP is to provide global maps of 

soil moisture every 2~3 days with an uncertainty of less than 0.04 m
3
m

-3
. The SMAP mission was designed to have 

complementary spaceborne L-band radar and radiometer instruments that share a rotating 6-m mesh reflector antenna (Entekhabi 
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et al., 2010). The mission’s observatory was launched into a 685-km near sun-synchronous 6 AM/PM orbit on January 31, 2015. 

The radar and radiometer provide simultaneous brightness temperature and backscatter measurements at spatial resolutions of 

about 3 and 40 km, respectively. Considering the relative sensitivity of the radar and radiometer measurements to soil moisture, 

surface roughness and vegetation scattering, the radar and radiometer measurements are designed to be combined to derive 

enhanced soil moisture mapping with a 10 km intermediate resolution. For the radiometer, this objective requires radiometric 

uncertainty of better than 1.3 K (with fore and aft observations averaging) with spatial resolution of approximately 40-km and 

geolocation accuracy of at least 4 km (Entekhabi et al., 2010). The SMAP mission high-level science requirements and derived 

instrument requirements related to the radiometer are shown in Table 1.  

 

Table 1. SMAP Radiometer Science/Instrument Requirements. 

Scientific Measurement Requirements Instrument Functional Requirements 

Soil Moisture: 

0.04 m
3
m

-3
 volumetric uncertainty (1-σ) in the top 5 

cm for vegetation water content ≤ 5 kg m
-2

; 

Hydroclimatology at 40-km resolution 

L-Band Radiometer (1.41 GHz): 

Polarization: V, H, T3 and T4 

Resolution ≤ 40 km 

Radiometric Uncertainty* ≤ 1.3 K 

Constant 40° incidence angle** 

Sample diurnal cycle at consistent time of day 

(6am/6pm Equator crossing); 

Global, 3-day (or better) revisit 

Swath Width: 1000 km 

Minimize Faraday rotation  

Observation over minimum of three annual cycles Baseline three-year mission life 

* Includes precision and calibration stability     

** Defined without regard to local topographic variation 

 

SMAP’s L-band radiometer was commissioned in March 2015 and as of June 2016 has been operational for more than a year. 

Early in its mission, SMAP provided 10-km resolution soil moisture globally every three days using a combined active-passive 

microwave instrument comprising an unfocused synthetic aperture radar (SAR) and a radiometer. In July the radar ceased 

transmissions and has remained in receive-only mode since. By itself the radiometer enables 40-km resolution soil moisture with 

the same three-day global coverage. Nonetheless, with its conical-scanning (real aperture) antenna and advanced RFI mitigation 

capabilities, the SMAP radiometer is providing high-quality brightness temperature measurements of Earth’s land, ice and ocean 

surfaces. 
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The SMAP radiometer design presents unique calibration challenges and solutions. At L-band, emissions from unwanted 

sources such as the galaxy, Sun, Moon need to be removed (Wentz et al, 2012). The mesh reflector antenna used by SMAP 

presents a different calibration challenge with respect to its thermal and emissive behavior. The scanning mechanism though aids 

in calibration by providing independent fore and aft looks. The radiometer incorporates special flight hardware which enables 

advanced Radio Frequency Interference (RFI) detection and mitigation in ground processing. Temporal and spectral bins which 

contain interference are discarded and the rest of the spectrogram is combined to form an uncalibrated measurement (Piepmeier 

et al, 2016). Periodic cold-sky maneuvers are performed which provide an independent point for evaluating relative and absolute 

calibration. 

This paper covers the main features of the SMAP radiometer algorithm from TA to TB. This includes TA forward models, 

antenna calibration method, radiometer internal calibration sources calibration, and results of calibration and validation activities. 

Section II covers the radiometer L1B algorithm to get the Earth’s surface brightness temperature from RFI mitigated radiometer 

antenna temperature. Section III introduces the two TA forward models used to generate expected antenna temperatures for 

calibration and validation. The radiometer pre-launch calibration method and results of the calibration/validation are described in 

Section IV. Summary of outstanding calibration issues and conclusions are discussed in Section V.  

II. LEVEL 1B ALGORITHM (TA TO TB) 

In order to go from TA to TB, we mostly rely on pre-launch or modeled values. Significant calibration factors such as backlobe 

spillover, internal calibration source, and Faraday rotation correction need external modeled calibration sources (e.g. cold-sky, 

Amazon, or Ocean) to compare measurements. 

The flow of the TA to TB in the radiometer level 1B algorithm is shown in Figure 2.1. The input is the calibrated and RFI 

filtered antenna temperature (TA) and the output is the brightness temperature (TB) of the Earth’s surface. There are three major 

correction algorithms: Antenna Pattern Correction (APC), Faraday rotation correction and atmospheric correction. The basis for 

these correction algorithms is described in (Piepmeier et al, 2016), and is outlined here to clarify the post-launch calibration 

algorithm. 

 

 

 

Figure 2.1:  Diagram of the radiometer L1A/B correction algorithms 
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1. APC Correction 

The APC algorithm flow is illustrated in Figure 2.2. This algorithm deconvolves sidelobes and removes cross-polarized 

contamination from the calibrated antenna temperature (TA) to produce the mainbeam-only apparent temperature at the top of 

ionosphere. During this process, the contributions from the Sun/Moon/galaxy are removed, and the correction due to reflector 

emissivity is also applied before the implementation of the Earth sidelobe correction. 

The antenna temperature from the Earth surface is then given by 

𝑇𝐴,𝑒𝑎𝑟𝑡ℎ = 𝑇𝐴
′ − 𝑇𝐴,𝐷𝑖𝑟𝑆𝑢𝑛 − 𝑇𝐴,𝐷𝑖𝑟𝐺𝑎𝑙 − 𝑇𝐴,𝑅𝑒𝑓𝑆𝑢𝑛 − 𝑇𝐴,𝑅𝑒𝑓𝑀𝑜𝑜𝑛 − 𝑇𝐴,𝑅𝑒𝑓𝐺𝑎𝑙          (2.1) 

where 𝑇𝐴
′ is the antenna temperature after reflector emissivity correction. 𝑇𝐴,𝐷𝑖𝑟𝑆𝑢𝑛 and 𝑇𝐴,𝐷𝑖𝑟𝐺𝑎𝑙 are the antenna temperature 

directly from the Sun and the galaxy including the cosmic microwave background, respectively, while 𝑇𝐴,𝑅𝑒𝑓𝑆𝑢𝑛, 𝑇𝐴,𝑅𝑒𝑓𝑀𝑜𝑜𝑛, and 

𝑇𝐴,𝑅𝑒𝑓𝐺𝑎𝑙  are the antenna temperature after reflection off the Earth into the antenna from, respectively, the Sun, the Moon, and the 

galaxy.  
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Figure 2.2.  SMAP radiometer APC algorithm flow 

 

In order to convert onto 𝑇𝐴,𝑒𝑎𝑟𝑡ℎ to obtain the apparent temperature at the top of ionosphere, 𝑇𝑎𝑝,𝑡𝑜𝑖, a constant 44 APC 

matrix derived from global simulations based on pre-launch models of the antenna pattern. Results from previous radiometers 

have shown that this transformation can be approximated quite well using the following matrix transformation  (Dinnat et al, 

2007; Meissner et al, 2010).   
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𝑇𝑎𝑝,𝑡𝑜𝑖,𝑣

𝑇𝑎𝑝,𝑡𝑜𝑖,ℎ
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𝑇𝐴,𝑒𝑎𝑟𝑡ℎ,𝑣

𝑇𝐴,𝑒𝑎𝑟𝑡ℎ,ℎ

𝑇𝐴,𝑒𝑎𝑟𝑡ℎ,3

𝑇𝐴,𝑒𝑎𝑟𝑡ℎ,4]
 
 
 

                    (2.2) 

2. Faraday Rotation Correction 

Once the apparent temperature at the top of ionosphere is obtained, a Faraday rotation correction needs to be performed. 

Faraday rotation is a well-known phenomenon associated with wave propagation through an ionized medium subject to a 

stationary magnetic field, and the medium can alter the polarization state of the wave. L-band signals experience larger Faraday 

rotation relative to higher microwave frequencies. The amount of polarization rotation change can be expressed as  

𝑄𝑎𝑝,𝑡𝑜𝑖 = √(𝑇𝑎𝑝,𝑡𝑜𝑖,𝑣 − 𝑇𝑎𝑝,𝑡𝑜𝑖,ℎ)
2 + 𝑇𝑎𝑝,𝑡𝑜𝑖,3

2                  (2.3) 

The Faraday rotation can be corrected by computing the apparent temperature at the top of atmosphere 𝑇𝑎𝑝,𝑡𝑜𝑎 from the  𝑇𝑎𝑝,𝑡𝑜𝑖 

(Yueh, 2000). 

[
 
 
 
𝑇𝑎𝑝,𝑡𝑜𝑎,𝑣

𝑇𝑎𝑝,𝑡𝑜𝑎,ℎ

𝑇𝑎𝑝,𝑡𝑜𝑎,3

𝑇𝑎𝑝,𝑡𝑜𝑎,4]
 
 
 

=

[
 
 
 
(𝑇𝑎𝑝,𝑡𝑜𝑖,𝑣 + 𝑇𝑎𝑝,𝑡𝑜𝑖,ℎ + 𝑄𝑎𝑝,𝑡𝑜𝑖)/2

(𝑇𝑎𝑝,𝑡𝑜𝑖,𝑣 + 𝑇𝑎𝑝,𝑡𝑜𝑖,ℎ − 𝑄𝑎𝑝,𝑡𝑜𝑖)/2

0
𝑇𝑎𝑝,𝑡𝑜𝑖,4 ]

 
 
 
                  (2.4) 

A critical assumption for this correction is that the 3
rd

 Stokes parameter from the Earth’s surface is small.  

 

3. Atmospheric Correction 

At L-band, the atmospheric downwelling brightness is almost the same as the upwelling brightness. With this simplification, 

the atmospheric correction is given by 

𝑇𝐵 =
𝑇𝑠𝑢𝑟𝑓

𝑇𝑠𝑢𝑟𝑓−𝑇𝑢𝑝
∙ [𝐿 ∙ 𝑇𝑎𝑝,𝑡𝑜𝑖 − (1 + 𝐿) ∙ 𝑇𝑢𝑝]                  (2.5) 

where TB is the desired Earth surface brightness corrected for atmospheric effects. Tsurf refers to the physical temperature at the 

bottom of the atmosphere near the Earth’s surface for land and the SST for ocean. The atmospheric upwelling brightness, Tup, 

and total attenuation, L, are modeled in (Peng et al, 2013) and discussed in section III.   

 

III. TA FORWARD MODELS 

The goal of the radiometer post-launch calibration is to adjust radiometer calibration factors (internal calibration sources, 

antenna pattern, etc.) by comparing radiometer measurements to modeled values over desired targets. The modeled values are 

generated by simulation. Considering the simulation speed, and visiting time and frequency over the calibration targets which 
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will be introduced in Section IV, two simulators are used. The first one is the detailed simulator which computes the antenna 

temperature using 2-D integration over all 4 steradians of antenna pattern, and the second is the simplified version of the 

detailed simulator due to real-time simulation consideration. 

1. Detailed simulator 

The detailed simulator is a forward algorithm to compute the antenna temperature with the given parameterized surrounding 

environment (the Earth’s surface, atmosphere, ionosphere, the Sun/Moon/galaxy), and it is modified from the Aquarius simulator 

(LeVine et al, 2011) by adopting the SMAP specifications, such as its antenna pattern with narrower mainbeam, conical scan, 

etc. Efforts were spent on increasing the computational speed of the simulator including adding parallel-computing ability and 

using a simplified radiative transfer model (Peng et al, 2013) which is also used in the SMAP level 1B algorithm (Piepmeier et 

al). 

For land surfaces, the Microwave Emission Model (MEM) (Njoku et al, 1999) with the Mironov dielectric model (Mironov et 

al, 2013) is used in the simulator. The land ancillary parameters include surface temperature, soil moisture, sand and clay 

fraction, open water fraction, vegetation water content and land roughness.  The Earth’s surface brightness temperature is 

computed at the top of the Earth’s surface layer (e.g. vegetation) at a given incidence angle which depends on the relative 

position to the SMAP spacecraft. The brightness temperature for a given resolution cell, which size is determined by the antenna 

pointing direction and resolution, is the combination of TB from land and TB from water weighted by the water faction.  

Instead of being computed using the IRI-2000 model which is used in the Aquarius simulator, for SMAP the TEC data is 

directly downloaded from the International GNSS Service (IGS) (Schaer et al, 1998) and then it is used to compute the Faraday 

rotation angle in order to account for the Faraday rotation effect. 

Due to multiple factors (program language, short radiometer integration time per measurement, limited computation resources, 

etc), the detailed simulator can’t achieve real-time simulation with few computation cores. So the detailed simulator is only used 

for special cases that requires high precision and simulation fidelity, e.g., Cold Sky Calibration (CSC). 

2. Simplified simulator 

The simplified simulator is used to compute the antenna temperature starting from the Earth’s surface brightness temperature 

at the antenna boresight. The Land TB is derived from the Nature Run version 3 dataset (Reichle et al, 2014) if the land is in a 

non-freeze/thaw state; otherwise, fill values which signify no data are used. Similarly ocean TB is computed using the L-band 

Geophysical Model Function reported in (Yueh et al, 2013). 

In general, the simulation in the simplified simulator is the inverse of the SMAP radiometer L1B algorithm from TA to TB, 

shown in Figures 2.1 and 2.2, except that the atmospheric radiative transfer model is slightly different and the Faraday rotation 
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angle is used to simulate the Faraday rotation effect.  

Instead of functions of near surface air parameters (temperature, pressure, and water vapor density), the 

upwelling/downwelling brightness temperature and loss factor in the atmospheric radiative transfer model are, at a given 

incidence angle, functions of the Earth’s surface elevation. At 40 incidence angle, the upwelling TB and loss factor are given by 

𝑇𝑢𝑝𝑤𝑒𝑙𝑙𝑖𝑛𝑔 =0.0400𝐻2 − 0.5422𝐻 + 2.7755                 (2a) 

𝐿 = 1.6495 × 10−4𝐻2 − 0.0021𝐻 + 1.0109                (2b) 

where H is the altitude of the earth surface in kilometer. For L-band emissions, the downwelling TB is nearly the same as the 

upwelling TB. The expressions of 𝑇𝑢𝑝𝑤𝑒𝑙𝑙𝑖𝑛𝑔  and L in Equation (2) were developed using the same radiosonde dataset as that 

used in (Peng et al, 2013).  The atmospheric correction using Equation (2) has precision 0.069 K with assumption that the earth 

surface brightness is 242 K and the physical temperature of the Earth’s surface is 300 K. The precision satisfies the requirement 

of 0.1 K error budget for the SMAP atmospheric correction. 

The simplified simulator can achieve real-time simulation for each footprint in normal science mode. Simulation data is 

available if the SMAP radiometer is in normal science mode. 

 

IV. CALIBRATION ALGORITHM, VALIDATION AND RESULTS 

1. Calibration algorithm and targets 

a) Calibration using external targets 

SMAP uses global ocean and Cold Sky (CS) measurements as its primary external references to refine pre-launch calibration 

coefficients including the APC matrix, similarly to the approach used for Aquarius (Dinnat et al, 2015). The global ocean, open 

water 200-km away from coastlines, are shown as blue in Figure 4.1a.  Sea ice and heavy rain zone are excluded as well. The 

global ocean is used to identify any potential drifts in the calibration, and also aids in adjusting the corrections for extra-

terrestrial error sources. 

The CSC maneuvers involve pitching SMAP to observe the cosmic microwave background (CMB). CSC maneuvers are 

normally performed monthly with 110 pitch angle and an ocean background to minimize the backlobe uncertainty on predicted 

antenna temperatures. SMAP also performs a special CSC maneuver at 180 pitch angle with the backlobe observing a transition 

from ocean to Amazonian rain forest to provide information to refine the APC matrix.  
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(a) (b) 

Figure 4.1: Calibration Targets for monitoring TND calibration bias and drift.  (a) Global ocean mask in blue, heavy 

rain zone in green; (b) Map of celestial TB in equatorial coordinate system  

 

The radiometer’s calibration sources are adjusted if there is a bias between the radiometer measurements and the modeled 

values over desired targets. After the antenna pattern is calibrated by using the special CSC, the bias is assumed to be caused 

only by the uncertainty in the temperature of the noise diode (TND), while the baseline values of the reflector and radome loss 

factor are used during this phase. Adjustment to TND could mitigate the bias and the adjustment is given by   

∆𝑇𝑁𝐷 = 𝐿𝑅𝐹
−1 (

𝐶𝑟𝑒𝑓+𝑁𝐷−𝐶𝑟𝑒𝑓

𝐶𝐴−𝐶𝑟𝑒𝑓
) (𝑇𝐴,𝑒𝑥𝑝 − 𝑇𝐴)                  (4.1) 

where 𝐿𝑅𝐹  is the loss of the radiometer RF front end. Count values 𝐶𝑥 (x = A, ref, ref+ND) are the radiometer output counts for 

the antenna, reference load, and reference load with noise diode on states, respectively. 𝑇𝐴,𝑒𝑥𝑝 is the modeled antenna 

temperature from the simulator, while 𝑇𝐴 is the radiometer measurements. 

 

b) Subband calibration 

The SMAP radiometer provides science telemetry for the fullband channel (24 MHz wide) and 16 subband channels each 1.5 

MHz wide. The radiometer has two operation modes (a high-rate mode and a low-rate mode) due to downlink data rate 

limitation. In high-rate mode both fullband and subband measurements are included in the telemetry.  In low rate mode fullband 

data is always available while subband data is only available over land, coastal ocean and selected calibration/validation areas in 

the ocean.  The reported TA in the radiometer L1B data product is the mean of the RFI-free subband measurements if available; 

otherwise it is from the full band measurements. All of the fullband and subband measurements should therefore have the same 

calibrated TAs.  

The fullband and subband channels can be calibrated using the above calibration approach with external calibration targets. 

For the 16 subbands, each of them can also be radiometrically calibrated with respect to the full band. The advantage of this 

subband calibration approach is that the fullband measurements always exist and they have full dynamic range which includes 
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the measurements over external calibration targets. The relation between the fullband measurement and subband measurements 

can be modeled as 

𝑇𝐴,𝑓𝑏 = a𝑇𝐴,𝑠𝑏 + b                       (4.2) 

where 𝑇𝐴,𝑓𝑏, 𝑇𝐴,𝑠𝑏 are the antenna temperatures of the fullband and a single subband, respectively. The constants a and b are 

subband-dependent, and they can be estimated by 

 �̅�𝐴,𝑓𝑏 = [�̅�𝐴,𝑠𝑏 𝐼] [
𝑎
𝑏
]                       (4.3) 

where �̅�𝐴,𝑓𝑏, �̅�𝐴,𝑠𝑏 are N1 vectors of the fullband and subband measurements, respectively. N is the number of measurements, 

and I is an N1 vector of number 1. 

The constants a and b are estimated by computing the inverse of Equation (4.3), or 

[
𝑎
𝑏
] = (𝐸𝑡𝐸)−1𝐸𝑡�̅�𝐴,𝑓𝑏                       (4.4) 

where 𝐸 = [�̅�𝐴,𝑠𝑏 𝐼], and the superscript t denotes matrix transpose.  

The brightness temperatures of the subband calibration sources will be adjusted as 

  𝑇′𝑛𝑑,𝑠𝑏 = 𝑎𝑇𝑛𝑑,𝑠𝑏                         (4.5a) 

 𝑇′𝑟𝑒𝑓,𝑠𝑏 = 𝑇𝑟𝑒𝑓,𝑠𝑏 + (𝑎 − 1)𝑇𝑟𝑒𝑓,𝑠𝑏 + 𝑏                 (4.5b) 

where 𝑇𝑛𝑑,𝑠𝑏 and   𝑇′𝑛𝑑,𝑠𝑏 are the brightness temperatures of the subband noise diode before and after the adjustment, 

respectively. 𝑇𝑟𝑒𝑓,𝑠𝑏 and  𝑇′𝑟𝑒𝑓,𝑠𝑏 are the brightness temperatures of the subband reference load before and after the adjustment, 

respectively. 

The radiometer measurements used in the subband calibration should be RFI-free and with antenna boresight or reflected 

antenna boresight off the Earth’s surface away from the galactic plane. The requirement of RFI-free is due to that RFI signal is 

not wide band white Gaussian noise signal, and it might be strong beyond the linear range of the radiometer receiver. The other 

requirement is because of the neutral hydrogen (HI) which is abundant along the galactic plane, and the emission from HI has 

narrow bandwidth around 1.42 GHz (LeVine et al, 2004) which can also distort calibration. 
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2. Calibration and results 

a) Initial calibration to set Tnd and Tref 

Before the reflector was deployed, the SMAP radiometer had been powered on with the feedhorn pointed to the Cold Sky. The 

internal noise diode was calibrated using CS for both the fullband and the subbands. The performance is described in (Piepmeier 

et al, 2015) 

Figure 4.3 shows the difference between the fullband and subband TAs after the reflector was deployed and fully spun-up, the 

subband TAs are not the same as the fullband TA, and their difference is shown in blue in Figure 4.3. The difference might due to 

two factors: 1) The mainbeam efficiency of the antenna is frequency-dependent. At lower frequency, the antenna mainbeam is 

wider so that its mainbeam efficiency is lower; 2) there might be standing wave between the reflector and the radiometer receiver 

since the TA difference vs subband index presents a sinusoidal behavior. 

  

 

Figure 4.3  TA difference between subbands and fullband TAs. (blue) before and (green) after subband calibration adjustment. 

(left) V-pol;  (right) H-pol 
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The subband calibration described in Section 4.1.b was applied after the reflector deployment. The values of the constants a 

and b for all of the subbands are shown in Figure 4.4. The TA differences between the subbands and the fullband shown in green 

in Figure 4.3 are reduced significantly. 

 

Figure 4.4   Subband calibration coefficients. 

 

b) Geolocation assessment 

The accuracy of the geolocation in the reported radiometer L1B dataset was computed prior to all of the radiometer electronic 

calibration, since the expected antenna temperature is computed (or selected) based on the reported geolocation of its 

corresponding footprint. SMAP requires footprint geolocation knowledge uncertainty of less than 4 km in the L1B data product. 

The accuracy of the geolocation data was verified via a comparison of the reported geolocation of the instrument’s footprints 

against the radiometric antenna (or brightness) temperature data at and near straight coastlines (at the spatial resolution of the 

footprint) and free of near-shore islands or lakes/rivers. Antenna temperatures undergo a quick change as a reasonably symmetric 

antenna scans across coastlines which represent a high-contrast scene. The change corresponds to the convolution of the antenna 

pattern with a step function, which is mathematically represented as a sigmoid curve (Moradi et al, 51; Poe et al, 2008; Purdy et 

al, 2006; Wiebe et al, 2008). The midpoint of the sigmoid represents both the largest gradient in temperature and the location of 

the land/water boundary, and the location (latitude/longitude) is determined from the Global Self-consistent Hierarchical High-

resolution Shoreline (GSHHS) map with 40-meter resolution (Wessel et al, 1996). The uncertainty is then obtained by comparing 

the location to the reported location in the L1B data file. 

 The selected coastlines and 13 half-orbits for geolocation assessment are shown in Figure 4.5. The common characteristic 

among these 13 orbits is a near-perpendicular or near-parallel direction of the satellite ground track with respect to the coastline. 
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This ensures that either the edge or the central part of the swath crosses perpendicular to the geographical coastline during the 

antenna azimuthal scan. The average uncertainty of all detections is 2.7 km after applying a 0.13 degree counterclockwise yaw 

correction – a remarkably small error (less than 7% of footprint size) that can be considered the theoretically achievable limit by 

the algorithm on the SMAP footprint. 

    

Figure 4.5: The selected half-orbits with ground tracks either near-perpendicular or near-parallel to geographical coastlines.   

 

c) Front-end loss calibration 

Besides the input signal, a microwave radiometer is also sensitive to its physical temperature change. The front-end loss 

calibration compensates for the TA change due to the variation of the physical temperature of the radiometer RF front-end. Figure 

4.6(b) shows the RF element temperatures during a planned bake-out.  Before bake-out the SAR transmitter was also turned off. 

The global TA (Figure 4.6(b)) over the ocean shows two separate impacts due to these events. 

1) A drop in the measured TA with respect to the modeled TA when the SAR transmitter was turned off, and 

2) A rise in the measured TA with respect to the modeled TA when the RF bake-out was occurring. 

The TA bias due to the SAR transmitter being turned off is an expected occurrence from pre-launch data analysis. The 

radiometer data calibration parameters have been set based on the SAR transmitter being turned on. On July 7, 2015 (not shown 

in Figure 4.6), the SAR transmitter encountered an anomaly that turned off the radar, causing a shift in radiometer calibration. 

The data compensates for this anomaly by adjusting the TND values to account for the offset bias. The result is shown in Figure 

4.11 (b). 
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(a)

(b) 

(c) 
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Figure 4.6: (a) Daily averaged global ocean TA indicating TA biases due to SAR transmitter being turned off (Apr 

3, 2015) and on (Apr 13, 2015) and radiometer bake-out (Apr 6 to Apr 10, 2015). (b) Front-end temperature of the 

RF components over the same period. (c) Daily averaged global ocean TA indicating TA biases during bake-out 

after the adjustment of the RF front-end thermal coefficients. 

 

The second front-end impact observed from Figure 4.6 is the change in TA bias with change in the RF temperature 

components. The RF front-end thermal calibration coefficients cannot completely compensate for the changing thermal 

environment of the RF components. Thermal coefficients to the RF front-end parts are adjusted to compensate the impact of this 

event. The result of this update is shown in Figure 4.6(c).  

 

d) Antenna pattern calibration 

A special CSC designed to assess the uncertainty on the antenna pattern was conducted on Jun 22, 2015 with the spacecraft 

flying over a transition between ocean and land (Amazonian rain forest, Figure 4.7) pitched at 180. The observation over the 

transition from ocean to land is shown in Figure 4.8(a). The CSC uses the very large contrast in TB between water and land to 

assess the fraction of antenna power pointing toward the Earth. The difference (or TA, = TA-TA_exp) of V-pol between the 

observation and the model is shown in Figure 4.8(b). From ocean to land, the TA is changed -0.63 K and -0.43 K for V and H 

polarizations, respectively. This is due to the uncertainty in the modeled antenna pattern. Scaling factors are applied to antenna 

pattern with 0.967 for V-pol and 0.948 for H-pol to the antenna backlobe, and 1.0027 for V-pol and 1.0042 for H-pol to the rest 

part of the antenna pattern. The purpose of this correction is to keep TA unchanged during ocean-land crossing.  
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Figure 4.7: SMAP spacecraft ground track over the Earth (left) and the celestial sky (right, color map reports the cold sky TB) for 

the ocean-land crossing CSC on Jun 22, 2015. 

 

 

Figure 4.8: (left) SMAP observations over a transition between ocean and land. (right) The difference between the observation 

and the model over the transition from ocean to land is reported in blue. Integrated Water Fraction (IWF) defined as the 

integration of water fraction on the Earth’s surface over the Visible Disk (the portion of antenna pattern intercepted by the 

Earth), or ∫ 𝑤𝑓𝑑𝛺
𝑉𝐷

∫ 𝑑𝛺
𝑉𝐷

⁄ , is in green. Land region is with IWF < 0.25 and ocean region is with IWF > 0.75. 

 

In addition to the antenna pattern being calibrated by using the special CSC, it is also adjusted by considering the scanning 

effect which can be distinguished by comparing the two antenna pattern shown in Figure 4.9. The left plot is of the instantaneous 

antenna pattern, while the right one is of the effective antenna pattern obtained by integrating the instantaneous antenna pattern 

over one footprint scanning (approximately equivalent to 1.2 scan angle). With this consideration, the change of the gain matrix 

(or Stokes vector in (Piepmeier et al, 2008) integrated within the antenna mainbeam) is given by   

𝑀𝐼2𝐸 = [

  1.0002 0
0  1.0006

0.0002 0
0.0001 −0.0001

  0.0002 0.0005
−0.0001 0

1.0011 −0.0003
0.0005    1.0011

]               (4.2) 

 

The product of Equation (4.2) and the results from the special CSC gives 

𝑀𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑀𝐼2𝐸𝑀𝑆𝐶𝑆𝐶                                                               

          = [

   1.0029 0         
  0          1.0048

0.0002 0           
0.0001 −0.0001

  0.0002  0.0005
−0.0001   0        

1.0046 −0.0004
0.0005    1.0046

]               (4.3) 

where 𝑀𝑆𝐶𝑆𝐶  is the scaling matrix from the special CSC, and it is given by  
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𝑀𝑆𝐶𝑆𝐶 = [

  1.0027 0         
  0          1.0042

0             0           
0             0          

0           0        
0           0        

1.0034 0        
0             1.0034

]                (4.4) 

The inversion of the matrix 𝑀𝑎𝑑𝑗𝑢𝑠𝑡  is applied onto the APC matrix M in Equation (2.2). 

 

 

Figure 4.9  Instantaneous V-pol antenna pattern (left), and effective V-pol antenna pattern (right) considering scanning effect 

over 1.2.  

 

e) Drift and bias removal 

After the radiometer was powered on, global ocean (Figure 4.1, blue portion) has been used as an external target to monitor 

calibration bias and drift in TND. 

It was observed that the measured TA’s were drifting comparing to the ocean L-band GMF model (Yueh et al., 2013). Besides 

drift, there were also biases, which were likely due in part to standing wave between the reflector and radiometer front end, and 

error in antenna pattern. The drift and bias from Apr 1 to Jun 22, 2015 are shown in Figure 4.10, where TA (=<TA,measured - 

TA,modeled>day) are the daily averaged differences between measured and expected antenna temperatures. The biases on Apr 1, 

2015 are 0.11 K and -0.55 K for V- and H-pol measurements, respectively. The difference, TA, had been drifting at an almost 

constant rate before May 27, 2015, and then became constant, indicating that the radiometer is stable (at least temporarily). 
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Figure 4.10: Radiometer TA calibration bias and drift between April 1 and June 22 of 2015. Note: data is not shown during 

bake-out  and SAR transmitter off period 

 

It was also observed that the measured TA dropped about 1.1 K for V-pol and 1.3 K for H-pol when the radar transmitter was 

off (2 times powered-down before July 7, 2015 and permanent failure thereafter) which leads to that the physical temperature of 

the radiometer decreased and eventually stabilized at a new plateau. Even though the sensitivity of the calibration to the physical 

temperature of the radiometer is considered in the antenna temperature calibration, The drops in TA is likely due to the changes 

in the thermal gradients of the noise diode which has much larger temperature sensitivity than other RF components. 

In order to remove the drift or time-varying bias, the approach described in Section IV.1 is used to update TND daily if 

drift/bias exists or at the start time (resolution in minutes) of the half orbit with SAR transmitter on/off. A linear interpolation is 

applied to derive TA for daily data without enough data samples. Daily updated TND before November 01, 2015 is then 

smoothed by 8-day averaging and used for L1A data processing to get L1B data. The TND bias due to SAR transmitter on/off is 

compensated before the 8-day averaging is applied, and the bias is added back after the averaging. The percentage of the TND 

adjustment is shown in Figure 4.11(a) and the residual drift/bias is shown in Figure 4.11(b). The residual bias and precision of 

the calibrated TA during the first year of the SMAP mission are all less than 0.03 K for both V and H channels. Note: These 

results include the results of the front-end loss calibration discussed in Section IV.2.c and the antenna pattern calibration with 

SCS in Section IV.2.d.  
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(a) 

(b) 

Figure 4.11:  Radiometer TA calibration bias and drift correction.  (a) TND change in percentage; (b) residual TA drift/bias in 

Kelvin for (blue) V- and (green) H-pol. 

 

 

3. Validation and result 

a) Validation over normal CS  

The celestial sky at L-band (Figure 4.17, right panel) is used for the post-launch empirical calibration of the radiometer 

because it offers well-characterized TB, spatial homogeneity over large regions and very high temporal stability. It is also free of 

RFI. Normal CSC (110 pitch angle) has been used to determine the instrument bias and its stability in time. 

In general, normal CSC is performed monthly with the spacecraft above open-ocean to limit uncertainty due to the land 

emission model (Figure 4.12(a)). The TA drift during the first year since April, 2015 is shown in Figure 4.12(b). Besides the drift 

over time, there are biases in both V and H channels, most likely due to uncorrected reflector/radome losses and the offset in 

reference load.  
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(a) 

(b) 

 

Figure 4.12: (a) SMAP spacecraft ground track over the Earth with pitch angle reported in the colorbar and time (YYMMDD). 

(b) TA drift over CS. 

 

b) Reflected galactic correction assessment 

During the cal/val period, the map of the radio galaxy used for estimating the contribution of reflection of the galaxy off the 

Earth’s surface and into the antenna mainbeam has been modeled as the convolution of the Sky TB map with a circularly 

symmetric averaged beam pattern. This is further convolved with the smearing introduced by a 7-m/s wind over the ocean 

surface. The net effect is equivalent to a smoothed (lacking all bumps and local maxima/minima of the true beam pattern) and 

wider (about 1.3 times larger half-power-beam-width) antenna mainbeam. 

Figure 4.13 shows the result of the reflected galaxy correction in TB (V-pol here) using a representative set of consecutive 

descending orbits. The data are segregated by the antenna scan angle, which indicates whether the instrument is pointing forward 
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or backward with respect to the orbital velocity vector, and binned on a 0.25-deg grid. Within each grid cell the data are 

weighted by the inverse of their distance to the center of the grid cell. 

The stripes along the ground tracks of the orbits are caused by the reflection of the galaxy into the main antenna beam (over 

land, it might due to geography; in the high southern latitudes near Antarctica it is due to sea ice boundaries.). Under appropriate 

conditions of time-of-day illumination, and reflecting angle, the difference between TBs of a pixel as seen in a forward or 

backward look reaches up to 1 K over ocean (smaller over land due to smaller land reflectivity in general).  

 

Figure 4.13: The descending TB (V-pol) data for days 20150411-to-20150420, Data are segregated by forward/backward respect 

to orbital motion, and then averaged in 0.25-degree bins. The difference between the forward-looking data and the backward-

looking data is used to eliminate the DC component of any signal and to highlight differences. 

 

c) Uncertainty over global ocean 

Ocean is a relatively well-known and well-modeled target, and the brightness temperature variation within a footprint or 

among adjacent footprints over ocean is much smaller than that over land. Due to this, global ocean is used as the target to assess 

the uncertainty in the L1B_TB.  

For the radiometer, this science requirement for radiometric uncertainty is < 1.3 K (with fore and aft averaging) over land. The 

equivalent requirement is < 1.8 K on L1B TB basis, and <1.6 K on L1B TA considering that the antenna mainbeam efficiency is 

about 90%.  
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Ocean has a smaller TB compared to land. The equivalent requirement can be scaled according to the ocean TB and it gives < 

1.4 K over ocean on L1B land TB basis. Eight days’ data (May 01~08, 2015) are used to assess the uncertainty in SMAP 

L1B_TB.  The uncertainty (rms) is not larger than 1.2 K for both V and H pols.  

 

V. CONCLUSION/DISCUSSION 

This paper provides the analysis and assessment of the calibration quality of SMAP radiometer brightness temperatures 

available in the L1B_TB data products (Composite Release Identifier, or CRID: R13080). Calibration methods include Cold Sky 

and vicarious ocean calibration with effective antenna pattern considered. Calibration stability and quality are assessed using 

global ocean and Cold Sky targets and geolocation is verified using conventional coastal-crossing analysis.   

The instrument is performing as expected. Both geolocation accuracy and radiometric uncertainty meet the project 

requirements. Results show the geolocation performance meets the requirements with ample margin. The radiometer drift is 

monitored daily using the global ocean and monthly suing the Cold Sky. Currently, the drift is corrected by adjusting noise diode 

calibration coefficients since the noise diode’s brightness temperature has the largest uncertainty. This results in both the 

calibration drift and calibration bias over ocean not being larger than 0.03 K in the first year on orbit. However, there is bias and 

drift over the Cold Sky, and it shows that radome/reflector correction is necessary with the updated reflector thermal model. Due 

to the high correlation between reflector and radome temperature changes, further analysis is required to assign a calibration 

correction to the front-end loss elements. The radome and reflector temperatures are also orbit- and latitude-dependent, 

potentially causing geographic ocean TA biases to get aliased into the analysis. These factors must be considered before applying 

a radome/reflector correction. 

The correction for the reflected galaxy is assessed by using the fore/aft difference over ocean. Results show that it still requires 

further improvement. One such improvement could be the indexing of the effective beam pattern profile by the clock angle of the 

scan, while concurrently using the asymmetric ‘real’ beam pattern for the convolution with the wind speed and galactic signal. A 

further step could be to modify the surface reflectivity to account for varying wind speed. Alternative approaches are under 

consideration and will be further explored. 
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