

Collaborative Engineering in a Large Geographically Distributed Organization

Session: Digital System Integration (DSI) Across a Full Lifecycle

State of the Art

- Many organizations are geographically distributed
 - Nationally
 - Government Agencies
 - Corporations
 - Internationally
 - Multinational ventures
 - Corporations
- Even small businesses often support customers located in different geographical locations
- Engineering projects are distributed across many locations

Arianespace From http://www.arianespace.com/join-our-team/

Find a NASA Center

(Click on Center location to view Center pages)

Boeing Corporate Presence From http://www.boeing.com/company/general-info/

Integrating Geographically Dispersed Engineering Projects

- Engineering work packages are often based on discipline expertise at different locations
 - Avionics
 - Communications
 - Environment
 - Fluids
 - Materials
 - Operations
 - Propulsion
 - Software
 - Structures
 - Test
 - Vehicle Management
- System Models provide the medium to
 - Allocate system functions and Integrate discipline designs
 - Engineer the system at the system level

Contraction .

https://www.plm.automation.siemens.com/en_us/plm/fea.shtml

Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics – AIAA 2015

http://www.nasa.gov/directorates/heo/scan/services/networks/txt_tdrs.html

System Understanding

System Models Contain an Understanding of the System

- Allow systems engineers to:
 - Define system functions based on the system state variables
 - Understand stakeholders expectations on system value (i.e., capabilities)
 - Integrate discipline engineering models into a system level physics based model (e.g., system exergy)
 - Design and Analyze system responses and behaviors at the System level

System Modeling

- Modeling at the system level enable collaborative engineering across discipline locations
 - Each location can work on their portion of the system within the defined system constraints
 - Goal Function Tree provides the integrating structure for the development and operational support
 - » System Goals provide overall system integration objectives
 - » System functions provide system development and support allocation across geographic locations
 - » System state variables provide context for geographically dispersed activities
 - Disciplines own state variables and ranges
 - Systems Engineering owns the interaction of state variables which leads to constraints on ranges

System Modeling

- Modeling at the system level enable collaborative engineering across discipline locations
 - Each location has a different value understanding of the system which can create system integration issues
 - Can be discipline based
 - Can be corporately based
 - Can be geographical region or national based
 - System value models provide a medium to incorporate these values into a common understanding
 - » Differences can be recognized and managed
 - Possible path to a normative system value representation (research topic)

