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Selective Laser Melting Additive 
Manufacturing 

• Promise: 
– Can fabricate complex parts 

– High ‘buy-to-fly’ for raw 
materials 

– Rapid prototyping 

– Rapid build of replacement parts 
and/or repair 

– Design freedom relative to 
casting and subtractive processes 

 

• Challenges: 
– Shrinkage and geometrical 

tolerances  post-processing 

– Material quality and effective 
properties  qualification 

– Multiple (20 or more) process 
variables to ‘optimize’ 3 
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Weak bonds at 
scan interfaces 

Porosity and ‘balling’ 



Modeling Motivation and Goals 

• Problem and Proposed Solution: 
– Problem: Lack of understanding on the process to property 

relationships is leading to low yield, unacceptable part-to-
part variability, costly post-processing and long 
qualification times. 

– Solution: Develop state-of-art modeling tools to increase 
build success – thereby reducing variability, post-
processing, and qualification time. 
 

• Modeling tools can give guidance on both component 
design and build design parameters  
– Will residual stress and materials parameters allow for 

successful build? 
– What defects are likely to affect material quality? 
– What post-processing is needed? 

 4 



Approach 

• Approach based on measurement and validation, application-driven code 
development for useful software and workflow 

• Emphasize build analysis:  can you make the as-designed part with 
acceptable residual stress, if so are materials adequate  
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EBSD Microstructure of As-Fabricated 
Inconel-718 
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• X plane:  Columnar structure, Weld-bead feature, with random texture 

• Z plane: Regular patch pattern, random texture  

Bottom Top Middle Bottom Middle Top 

Bottom Top 



Microstructure Model Formulation 

• Anisotropic, dimensionless form in model: 

 

• Governing equations for phase field and solute concentration, 
Inconel 718 properties: 

 

 

C0 (wt. %) 5.0 
K 0.5 
Liquidus slope, ml  (K wt. % -1) -10.0 
Liquidus temperature, Tl (K) 1528 
Solidus temperature, Ts (K) 1610 
Latent heat, L (J/Kg  ) 227,000 
Specific heat, Cp (J/Kg/K) 600 
Dl (m

2s-1) 3.0E-9 
Ds (m

2s-1) 1.0E-12 
Anisotropic factor, ε 0.03 
Mesh size, dx (µm) 0.2 
Interface thickness, λ (µm) 1.77 
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Microstructure Characterization & 
Modeling 

• Micrographs of as-fabricated Inconel 718 consistent with EBSD:  

– Axial 50-100 mm grains in growth direction; equiaxed from above; g g’’ and 
Metal Carbide with Laves phase     

 

• Phase field models of Inconel 718 solidification:  

Near Top 
Growth ↑ 

Near Bottom 
Growth ↑ 

Near Bottom 
Growth→ 

Near Top 
Growth→ 
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Cooling Rate Effects on Grain Size 

∆T 0.55 ∆T 0.75 
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Nuclei Effects on Grain Morphology 

8 



 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Microstructure Link to Melt Pool 

• Phase field models of Inconel 718 solidification:  
– Cooling rate range determined from thermal model 

 

• 2D Cartesian SLM thermal model for dimensionless 
temperature gradient 

Cooling Rate Effects on Grain Size 

G=5400 K/mm G=9100 K/mm 
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Mesoscale Model Formulation 

• Conservation of Total Mass: 

 

 

• Conservation of Secondary Fluid Mass: 

 

 

• Conservation of Mass-Averaged Momentum 

 

 

• Conservation of Mass-Averaged Enthalpy 
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Mesoscale Laser-Particle Model 

• Simulate melting and reflow of metal powder particles to identify 
conditions causing voids or incomplete melting 

– VOF interface tracking routine coupled with laser source, heat transfer, phase 
change thermodynamics, fluid dynamics, surface tension 

– Implemented m(T) for particles, laser source, phase change thermo 

Static solid Inconel 718 via 
high-viscosity fluid verified 
for 3D simulation 

Melting of discrete particles and 
void formation as laser scans 

Initial Condition 

Particle 2 Melted 

2-4 Melted, Void 
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Thermal Model Formulation 

• Conservation of Energy (Heat equation): 

 

 

 

 

 

 

• Moving beam (laser, electron) heating source term 
– Local heating dependent on beam width and 

penetration depth 
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Thermomechanical Model: 
Demonstrations 

• Base Capabilities 
– Mesh Adaptation 

for speedup - 3x 
faster than fixed 
grid  

 
 

– Extrusion to 
address new 
powder layer 
 

• Demonstrations: 
– Hatch scan for 2 

cm line build 
– Thermomechanical 

Coupling 

 

 

13 

Layer 1 Layer 2 

Scan 1 Scan 3 
Transverse 
Stresses 

2 cm long x 2mm deep 



EBAM Temperature and Melt Pool 

• Good agreement of peak 
temperature 
– Sensitive to effective conductivity in 

melt 

– Slightly longer plateau in liquid-
solid 2-phase region 
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2.114mm x 0.555mm x 0.140mm 

Benchmark, agrees with experiment 

Temperature, K 



Thermomechanical Application 

• Demonstration applications by UA to analyze hatch 
scan patter effects on T uniformity, stress 

– 6x6 mm scanned region, 8x8 mm base 

– Beam diameter 400 mm, power/area into beam consistent 
with Concept 3 typical operating conditions 
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Islands (2x2 mm) Lines Rotating Lines In-Out or Out-In 



• Line scan patterns gave lowest max T during scanning due to 
small part size, long beam line 
– Resulted in lowest distortion for those cases 

 

Thermomechanical Application 
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Island T mid-scan Rotating 67° T mid-scan Out-In T mid-scan 

Rotating 45° deflection Island deflection 



Thermal Model Accuracy/Efficiency 

• Resolving the laser spot energy input in position and time 
imposes a CFL constraint – very small simulation time steps 

 

 

 

 

 

• Alternative:  follow beam path and integrate heat input over 
longer time step   

17 

T profile after hatch scan, ‘brute force’ T profile after hatch scan, large t 

T profile after hatch scan, 
adaptive quadrature with 
large t 



Thermal Model Accuracy/Efficiency 

• Current approaches for more 
practical application: 

– Others:  Overset grids, move a 
high-resolution ‘block’ with the 
spot 

 

 

 

 

 

– CFDRC: Adaptive meshing, 
dynamically refine near beam 
spot, coarsen away 

 

 

 

 

• CFDRC Adaptive integration: 

– User-specified tolerance for total 
heat input accuracy 

– Captures T history during  cooling 
and solidification 

 

 

 

 

 

– Order 5x speedup in clock time 

 

 

 

 

 

Method Time step,  
Δt (s) 

CPU / Sim   
time (s/s) 

Relative  
Speed-up 

Accuracy 

Point Input 5E-5 9.3E5 --  
1E-3 1.1E5 8.90  

Adaptive 
Integration 

5E-5 1.7E6 0.56  
1E-3 1.8E5 5.25  

10x speedup possible when combined with 
adaptive meshing 18 



Overhang First Layer Effects 
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• Manufacturing an overhang adds significant challenges  

• Powder does not conduct heat well 
– Increases temperature of melt pool 

– A support may be required to serve as a heat sink 

Phase  
(blue=powder, purple=solidified) 

Temperature 

2872 



Overhang First Layer Effects 
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• High stresses in the overhang  
– Limited support from powder 
– High thermal gradients 
– Thermal expansion 

• Result in large deflections 

Von Mises Stress Vertical Deflection 



Dimensional Tolerance 
Characterization – NIST Test Article 

• Parts fabricated by ASRC and MSFC  

–  ≈1% tolerances after stress relief heat treatment 
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Position Error Size Error 



Summary 

• The CFDRC-UA team is developing modeling tools to address SLM 
process performance at each critical level: 
– Microstructure:  material properties 
– Mesoscale:  material quality  
– Component:  manufacturability and dimensional tolerances 

 
 
 
 
 
 
 

• Companion experimental efforts in process monitoring and material 
characterization provide learning for material qualification and data 
for model validation 

• Next step is to put the pieces together and apply to test builds 
• Outcome will be advanced tools to inform design and process 
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Processing Property 

Structure 

Test structure for material 
characterization vs. build height 
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Test structure for material 
characterization vs. build height 

NIST  test article for 
feature tolerances 



Questions? 

 

 

 

 

 

• Contact Information: 

– Vernon Cole, CFDRC 

– Email:  vernon.cole@cfdrc.com  
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