

High-Fidelity Modeling and Materials Characterization of Inconel 718 Component Fabrication by Selective Laser Melting Additive Manufacturing

Prepared for: 2016 JANNAF TIM- Additive Manufacturing August 23-25, 2016

J. Vernon Cole¹, Paul W. C. Northrop, X. G. Tan, Kevin Chou⁺, Xiaoqing Wang⁺, Tahmina Keya⁺

CFD Research Corporation, †University of Alabama

Statement A: Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE - For classified documents, follow the procedures in DoD 5200.22-M, National Industrial Security Program Manual, Chapter 5, Section 7. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

Company Overview

Selective Laser Melting Additive Manufacturing

- Promise:
 - Can fabricate complex parts
 - High 'buy-to-fly' for raw materials
 - Rapid prototyping
 - Rapid build of replacement parts and/or repair
 - Design freedom relative to casting and subtractive processes

Challenges:

- Shrinkage and geometrical tolerances ⇔ post-processing
- Material quality and effective properties ⇔ qualification
- Multiple (20 or more) process variables to 'optimize'

Porosity and 'balling'

Weak bonds at

scan interfaces

Modeling Motivation and Goals **GDRG**.

- Problem and Proposed Solution:
 - Problem: Lack of understanding on the process to property relationships is leading to low yield, unacceptable part-topart variability, costly post-processing and long qualification times.
 - Solution: Develop state-of-art modeling tools to increase build success – thereby reducing variability, postprocessing, and qualification time.
- Modeling tools can give guidance on both component design and build design parameters
 - Will residual stress and materials parameters allow for successful build?
 - What defects are likely to affect material quality?
 - What post-processing is needed?

- Approach based on measurement and validation, application-driven code development for useful software and workflow
- Emphasize build analysis: can you make the as-designed part with acceptable residual stress, if so are materials adequate

EBSD Microstructure of As-Fabricated Inconel-718

• X plane: Columnar structure, Weld-bead feature, with random texture

Middle Top

Тор

• Z plane: Regular patch pattern, random texture

Bottom

Microstructure Model Formulation

- Governing equations for phase field and solute concentration, Inconel 718 properties:
 - $\frac{\partial \emptyset}{\partial t} = -M_{\emptyset} \left[\frac{\partial f}{\partial \emptyset} \epsilon_{\emptyset}^2 \nabla^2 \emptyset \right]$

 $\frac{\partial C}{\partial t} = \nabla \cdot \left[M_{c} c (1-c) \nabla \left(\frac{\partial f}{\partial c} - \epsilon_{c}^{2} \nabla^{2} C \right) \right]$

Liquidus slope, m _l (K wt. % -1)	-10.0
Liquidus temperature, T _I (K)	1528
Solidus temperature, T _s (K)	1610
Latent heat, L (J/Kg)	227,000
Specific heat, Cp (J/Kg/K)	600
D ₁ (m ² s ⁻¹)	3.0E-9
D _s (m ² s ⁻¹)	1.0E-12
Anisotropic factor, ε	0.03
Mesh size, dx (µm)	0.2
Interface thickness, λ (μm)	1.77

• Anisotropic, dimensionless form in model:

$$\begin{split} & \left[1 + (1 - k)U\right]a_{s}(\hat{n})^{2}\frac{\partial\emptyset}{\partial t} \\ & = \vec{\nabla}.\left(a_{s}(\hat{n})^{2}\vec{\nabla}\emptyset\right) - \frac{\partial}{\partial x}\left[a_{s}(\hat{n})a_{s}(\hat{n})'\frac{\partial\emptyset}{\partial y}\right] + \frac{\partial}{\partial y}\left[a_{s}(\hat{n})a_{s}(\hat{n})'\frac{\partial\emptyset}{\partial x}\right] + \emptyset - \emptyset^{3} \\ & -\lambda(1 - \emptyset^{2})^{2}(U + \theta) \end{split}$$

$$\left(\frac{1+k}{2}\right)\frac{\partial U}{\partial t} = \vec{\nabla} \cdot \left(D\frac{1-\emptyset}{2}\vec{\nabla}U + \vec{J}_{at}\right) + \frac{1}{2}\frac{\partial}{\partial t}\{\emptyset[1+(1-k)U]\}$$

0.5

Microstructure Characterization & Modeling

- Micrographs of as-fabricated Inconel 718 consistent with EBSD:
 - Axial 50-100 mm grains in growth direction; equiaxed from above; $\gamma \gamma''$ and Metal Carbide with Laves phase

• Phase field models of Inconel 718 solidification:

Cooling Rate Effects on Grain Size

Nuclei Effects on Grain Morphology

Microstructure Link to Melt Pool **GPRG**.

2D Cartesian SLM thermal model for dimensionless temperature gradient

THE UNIVERSITY OF ALABAMA

- $X T_P$ B r A Liquid T_L
- Phase field models of Inconel 718 solidification:
 - Cooling rate range determined from thermal model

Mesoscale Model Formulation

• Conservation of Total Mass:

$$\frac{\partial}{\partial t}(\rho) + \nabla \cdot \left(\rho \vec{V}\right) = S$$

- Conservation of Secondary Fluid Mass:
 - $\frac{\partial F}{\partial t} + \vec{\nabla} \cdot \left(\vec{V}F\right) = \frac{\dot{m}}{\rho_l}$
- Conservation of Mass-Averaged Momentum $\frac{\partial}{\partial t} \left(\rho \vec{V} \right) + \nabla \cdot \left(\rho \vec{V} \vec{V} - \mu \nabla \vec{V} \right) = \left(-\nabla P + \rho \vec{g} \right) + \vec{B}$
- Conservation of Mass-Averaged Enthalpy $\frac{\partial}{\partial t}(\rho h) + \vec{\nabla} \cdot (\rho \vec{V} h) = \vec{\nabla} \cdot \vec{\mathbf{q}} + \tau : \vec{\nabla} \vec{V} + \frac{\mathrm{d}p}{\mathrm{d}t} + \dot{Q}$

Surface tension as a body force

Mesoscale Laser-Particle Model

- Simulate melting and reflow of metal powder particles to identify conditions causing voids or incomplete melting
 - VOF interface tracking routine coupled with laser source, heat transfer, phase change thermodynamics, fluid dynamics, surface tension
 - Implemented $\mu(T)$ for particles, laser source, phase change thermo

Melting of discrete particles and void formation as laser scans

Static solid Inconel 718 via high-viscosity fluid verified for 3D simulation

Thermal Model Formulation

- Conservation of Energy (Heat equation):
 - The phase change is accounted for by increasing Cp_{eff} between the liquidus and solidus temperatures so that total enthalpy is conserved:

$$h = \int_{0}^{T} C_{p,eff} dT = \int_{0}^{T} C_{p} dT + \Delta H_{f} f$$

$$\frac{\partial}{\partial t} \left[\rho C_p T \right] = \nabla \cdot k \nabla T + \dot{Q}$$

 $\frac{\partial}{\partial t} \left[\rho C_p T \right] = -\nabla \cdot q + \dot{Q}$

 $\vec{q} = -k\nabla T$

with *f* being the solid fraction

- Moving beam (laser, electron) heating source term
 - Local heating dependent on beam width and penetration depth

$$\dot{Q} = P_{abs}q(r(t))f(z)$$

CFDRG

Thermomechanical Model: Demonstrations

- Base Capabilities
 - Mesh Adaptation for speedup - 3x faster than fixed grid
 - Extrusion to address new powder layer
- Temperature Fixed Mesh Solution Adapted 3316 3000 3000-2500-₽ 2000 2000 Surfai 1500-20 b 1000-1000 500-297.4 -0.4 -0.2 0.2 0 Distance from Beam Center, mm heat_temp 9048 900-800-700-600-500-400-Layer 1 Layer 2 300-273 s0 stressYY 1.159E+07 Temperature Temperature 600 600--5E+07-550-550--1E+08 500-500-Scan 1 Scan 3 -1.5E+08 450-450--2E+08-400-400-Transverse-2-5E+08-350-350--3E+08-300 300 - 3.5<mark>E+08</mark>-Stresses 298 298 - 3.983E+08 2 cm long x 2mm deep
- Demonstrations:
 - Hatch scan for 2 cm line build
 - Thermomechanical Coupling

EBAM Temperature and Melt Pool **CFDRC**.

- Good agreement of peak temperature
 - Sensitive to effective conductivity in melt
 - Slightly longer plateau in liquidsolid 2-phase region

Benchmark, agrees with experiment

Temperature, K

2.114mm x 0.555mm x 0.140mm

Thermomechanical Application

- Demonstration applications by UA to analyze hatch scan patter effects on T uniformity, stress
 - 6x6 mm scanned region, 8x8 mm base
 - Beam diameter 400 μm , power/area into beam consistent with Concept 3 typical operating conditions

Thermomechanical Application

- Line scan patterns gave lowest max T during scanning due to small part size, long beam line
 - Resulted in lowest distortion for those cases

Thermal Model Accuracy/Efficiency

 Resolving the laser spot energy input in position and time imposes a CFL constraint – very small simulation time steps

T profile after hatch scan, 'brute force'

T profile after hatch scan, large Δt

 Alternative: follow beam path and integrate heat input over longer time step

T profile after hatch scan, adaptive quadrature with large Δt

Thermal Model Accuracy/Efficiency

- Current approaches for more practical application:
 - Others: Overset grids, move a high-resolution 'block' with the spot

CFDRC: Adaptive meshing,

- **CFDRC Adaptive integration:**
 - User-specified tolerance for total heat input accuracy
 - Captures T history during cooling and solidification

Order 5x speedup in clock time

Method	Time step,	CPU / Sim	Relative	Accuracy
	Δt (s)	time (s/s)	Speed-up	
Point Input	5E-5	9.3E5		$\checkmark\checkmark$
	1E-3	1.1E5	8.90	×
Adaptive	5E-5	1.7E6	0.56	$\checkmark\checkmark$
Integration	1E-3	1.8E5	5.25	 ✓

10x speedup possible when combined with adaptive meshing

Overhang First Layer Effects

Phase (blue=powder, purple=solidified)

Temperature

- Manufacturing an overhang adds significant challenges
- Powder does not conduct heat well
 - Increases temperature of melt pool
 - A support may be required to serve as a heat sink

Overhang First Layer Effects

- High stresses in the overhang
 - Limited support from powder
 - High thermal gradients
 - Thermal expansion
- Result in large deflections

- Parts fabricated by ASRC and MSFC
 - ≈1% tolerances after stress relief heat treatment

Summary

- The CFDRC-UA team is developing modeling tools to address SLM process performance at each critical level:
 - Microstructure: material properties
 - Mesoscale: material quality
 - Component: manufacturability and dimensional tolerances

Test structure for material characterization vs. build height

- Companion experimental efforts in process monitoring and material characterization provide learning for material qualification and data for model validation
- Next step is to put the pieces together and apply to test builds
- Outcome will be advanced tools to inform design and process

Acknowledgments

- Funded under NASA STTR NNX15CM17c
 - John Vickers (TM), Stacey Bagg, Doug Wells, Brian West, and Ken Cooper for valuable input and feedback
- Arctic Slope Technical Services (ASRC)
 - Sample part builds, process developer's perspective on needs, and Concept Laser SLM tool access

- Contact Information:
 - Vernon Cole, CFDRC
 - Email: vernon.cole@cfdrc.com