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Disclaimer

* | am not an IT specialist... My background is electro-optical
systems and atmospheric optics. But currently | am facing a
problem of scientific software performance enhancement.

CAUTION

STUDENT
DRIVER

* So, please feel free to advise better compiler keys, freeware libraries,

tricks, ...

* No OpenMP is considered in this presentation. With parallel computing

one would get similar conclusion, but faster (| think so).




Radiative Transfer (RT) Code

* Numerically simulates scattering of light in planetary
atmospheres, ocean, etc.

* Used in retrieval algorithms — scientific software that fits
measurements and numerical simulations by adjusting input
for the RT code, and thus retrieves parameters of scattering
media: atmospheric aerosol, clouds, etc.

* Must be efficient: accurate (enough) and fast (invoked
hundreds, thousands, ... times)



RT Code SORD (SPIE,v9853,2016)

* Includes many features of realistic atmosphere:
height profiles, surface reflection, polarization
of light, etc;

e Used by the NASA GSFC AERONET team;
» Tested against 50 published benchmarks using ifort, pgf90, gfortran;

* Publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/
or by email request from sergey.v.korkin@nasa.gov;

e Uses the known method of Sucessive ORDeres of scattering



Successive Orders (SO)

\\@ * Computes next order from the previous one numerically;

1(0,h) = 1,(0,h) + 1(0,h) + 1,(6,h) +...

J,(h) = j p(d,h)1,(6,h,)dé

 Relatively simple for coding;
J,(hs) * Developed and widely used;
J,(h,) * Does not require external libs;

J,(0) * Has clear physical background.



Dot Product in the SO

 Scattering at each level and in each direction — Gauss summation

1

J PCat 1)V () g 3wy, 113)V (1) =P+ 1 = dot_ product(P, 1)

-1
* Estimation of number of the dot product calls:

100 Levels x 50 View directions x 10 Azimuth (Fourier) moments x 10
Scattering orders x 9 elements of the 3-by-3 Mueller matrix
(polarization) = 4.5M calls per wavelength per single run

* Spectral measurements & derivatives — efficient dot product needed



Implementation

* Direct (is it a good idea to allow
compiler to unroll loops ?)

DOT = 0.0
DO IX = 1, N
DOT = S + &
X1 (IX) *X2 (IX)
END DO

* To reduce loop overhead
(change/check index, IX) use >>

e >> Unrolled loops — factor 3

DOT = 0.
M = MOD (
DO IX =

X, 3)
M
X) *

0

N

1,

DOT3 OT3 +

1(I 2 (IX)

END DO

M1 = MX+1

DO IX = M1, NX, 3
DOT3 = DOT3 + &
X1 (IX)*X2 (IX) + &
X1 (IX+1)*X2 (IX+1) + &
X1 (IX+2)*X2 (IX+2)

END DO



Expert Opinion: DOT from BLAS
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clean-up loop

m = mod(n,5) 1. Is the factor 5 always the best ?
IF (m.NE.@) THEN
00 i = 1,m
dtemp = dtemp + dx(i)*dy(1i)

END DO
IF (n.LT.5) THEN 2, If not, which one is the best ?
ddot=dtemp
RETURN
END IF
END IF ,
mpl = m + 1 3. Why 5 ... ? I don’t know...

DO i = mpl,n,5

dtemp = dtemp + dx(i)*dy(1) + dx(i+1)*dy(i+l) +
dx(i+2)*dy(i+2) + dx(i+3)*dy(i+3) + dx(i+d)*dy(i+4)

EMD DO



Benchmark Scenarios

Light Scattering Particles Number of Optical Layers
Mixture (5) More (4)
Dust (1) «t

2 Layers (4)

Water Cloud (4) Rayleigh (16)

Fine Spheres (9)

Fine Spheroids (9) 1. kayer36)

Surface Reflectance Source of Benchmark Results
Ocean (3) RT codes (5)

- (8‘ .
Black (33)

Published (39)

e Korkin et al.
(2016), SPIE
v.9853, 985305
reports 44
benchmarks;

°* + 6 hew
benchmarks
including realistic
height profiles: see
Korkin et al., This
Conference, Paper
No. 10001-10;

* 50 scenarios total.



Implementations of DDOT

* Direct implementation: A;*B,+A,*B, + ... + A *B,

* Unrolled loops with a factor of 2, 4, 8, 16 (Gauss quadrature)

* Built in Fortran DOT_PRODUCT(A, B) and SUM(A*B)

* BLAS DDOT: unrolling factor 5

* BLAS DDOT for both increments = 1: DDOT(N, DX, INCX, DY, INCY)
See e.q. Severence & Dowd, 1998, Hager & Wellein, 2011 etc.



Hardware & Software

Machine 1 = “ifort”: Intel® i7-2720QM CPU, 2.2GHz, Windows 7 64 bit; Intel Visual
Fortran Compiler 11.0.072 integrated with Microsoft Visual Studio 2008. Configure
Optimization for “Maximize Speed”. The RT code SORD was developed on Machine 1.

Machine 2 = “pgf 90”: Intel® Xeon E7-4890 v2 CPU, 2.8 GHz, Linux
2.6 64 bit; The Portland Group Fortran 90/95 compiler 7.1-4.
Compiler keys: -O3 —Mipa=fast, inline = Msmartalloc.

The NASA GSFC AERONET team uses this machine for data
processing and research.
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Understanding of Results

Run time ~ few seconds in each test Ti ming:
W17 32 510
m50 48 50  On both machines -
w53 48 50  CPU_TIME from Fortran;

Total time, seconds
o = MW BN =l

On the Linux machine —
time command (close to
the CPU_TIME readings)
©
“y



Understanding of Results

Run time ~ few seconds in each test

7" Run time for m17 32 510
2 6 ,
£° test#53 m50 48 50
2 ° using dot5 I m53_48 50
5% (modified
g3 BLAS do
- 2 Run time for the 3 tests
=1 using sum(A*B)
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Understanding of Results

No of Gauss ordinates, time ~ N2

Run time ~ few seconds in each test l
P ; Run time for - 1?_?1_510 No of layers, time ~ L
<  test #53 m50_48 50 <
Z > using dot5 { I m53 48 50
% (modified 1 Test number (for reference)
£? BLAS ddo
E Run time for the 3 tests
= 1 i i I I } using sum(A*B)
0
S s b&@ § @\3@
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ifort: slide 1

Run time < 0.1 seconds in each of 32 tests Run time ~ fraction of a second in each test
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ifort: slide 2

Run time ~ few seconds in each test Run time ~ tens of seconds in each test
v =17 32 510 90 W18 32 510 m25 96 20 m28 128 20
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ifort: slide 3

Run time ~ hundreds of seconds in each test * On the ifort machine (Int?I
2000 m26 128 250  CPU + Intel Fortran compiler),
m45.128 250  the built-in Fortran dot

s 1500 w4a6_128 252 product function shows the
Z W27 128 250 ,

Z 1000 best performance;

= . * Unrolled loops, dotl, shows
z comparable performance;

RPN S S CR N S The BLAS ddot and dots show
T sS N the worst performance in all
test scenarios.



Pgf90 - slide 1

Run time < 0.1 seconds in each of 32 tests Run time ~ fraction of a second in each test
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Pgf90 - slide 2

Run time ~ few seconds in each test Run time ~ tens of seconds in each test
14 140 W18 32 510 m25 96 20 m28 128 20
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Pgf90 - slide 3

Run time ~ hundreds of seconds in each test ° On the pgf90 maChme; the
1400 W 26_128_250 m46_128 250 BLAS ddot is the least

1200 W45 128 252 W27 128 250 efficient;
1000

800

600

jgg I e ddot4 shows the best overall

0 performance; ddot5
LI NP (simplified BLAS ddot)
7 performs similar to ddot4.

efficient either;

Total time, seconds

I * The built-in functions are not



“Food” for Thoughts

 DDOT from BLAS seems to be inefficient (created 1978, modified 1993).
What about other subroutines: M*M, 1/M, SVD frequently used in RT
codes?

* Optimization of BLAS/LAPACK is time consuming and soft- & hardware
dependent. Using of commercial Intel MKL, NAG limits the open-source
distribution of RT codes. ATLAS? Any other open-source libraries?



+1 Way for Better Performance

 Parallel computation of the dot product (precondition loop is omitted).
The four SUMs are independent. To be tested with RT code SORD soon...

SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0.0

SUM4 = 0.0

DO IX = 1, NX, 4
SUM1 = SUM1 + X1(I) *X2(I)
SUM2 = SUM2 + X1 (I+1)*X2(I+1)
SUM3 = SUM3 + X1 (I+2)*X2(I+2)
SUM4 = SUM4 + X1 (I+3)*X2 (I+3)

END DO

DOT = SUM1 + SUM2 + SUM3 + SUMA4

Dowd K., 1993: High Performance Computing, O’Reilly & Assoc. Inc., p.203
Gerber R, et al: 2006: The Software Optimization Cookbook, Intel Press, p.150



Conclusion

* Ifort’s DOT_PRODUCT showed the best performance (not surprising);

e Performances of the BLAS DDOT is disappointing on both machines (what
about the whole BLAS/LAPACK? Any tests published?)

* Dot product with unrolling factor 4, DOT4, seems to be the best for RT
simulations using RT code SORD under Linux+pgf90;

* Optimization must be done in a wide range of scenarios. The new open-
source RT code SORD comes with a package that allows for testing in a
wide range of scenarios: ftp://maiac.gsfc.nasa.gov/pub/skorkin/
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