Performance of the Dot Product

Function i1n Radiative Transfer
Code SORD

Sergey Korkin (USRA GESTAR)”

Alexei Lyapustin (NASA GSFC)
Aliaksandr Sinyuk (Sigma Space Corp.)
Brent Holben (NASA GSFC)

*sergey.v.korkin@nasa.gov

Disclaimer

* | am not an IT specialist... My background is electro-optical
systems and atmospheric optics. But currently | am facing a
problem of scientific software performance enhancement.

CAUTION

STUDENT
DRIVER

* So, please feel free to advise better compiler keys, freeware libraries,

tricks, ...

* No OpenMP is considered in this presentation. With parallel computing

one would get similar conclusion, but faster (| think so).

Radiative Transfer (RT) Code

* Numerically simulates scattering of light in planetary
atmospheres, ocean, etc.

* Used in retrieval algorithms — scientific software that fits
measurements and numerical simulations by adjusting input
for the RT code, and thus retrieves parameters of scattering
media: atmospheric aerosol, clouds, etc.

* Must be efficient: accurate (enough) and fast (invoked
hundreds, thousands, ... times)

RT Code SORD (SPIE,v9853,2016)

* Includes many features of realistic atmosphere:
height profiles, surface reflection, polarization
of light, etc;

e Used by the NASA GSFC AERONET team;
» Tested against 50 published benchmarks using ifort, pgf90, gfortran;

* Publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/
or by email request from sergey.v.korkin@nasa.gov;

e Uses the known method of Sucessive ORDeres of scattering

Successive Orders (SO)

\\@ * Computes next order from the previous one numerically;

1(0,h) = 1,(0,h) + 1(0,h) + 1,(6,h) +...

J,(h) = j p(d,h)1,(6,h,)dé

 Relatively simple for coding;
J,(hs) * Developed and widely used;
J,(h,) * Does not require external libs;

J,(0) * Has clear physical background.

Dot Product in the SO

 Scattering at each level and in each direction — Gauss summation

1

J PCat 1)V () g 3wy, 113)V (1) =P+ 1 = dot_ product(P, 1)

-1
* Estimation of number of the dot product calls:

100 Levels x 50 View directions x 10 Azimuth (Fourier) moments x 10
Scattering orders x 9 elements of the 3-by-3 Mueller matrix
(polarization) = 4.5M calls per wavelength per single run

* Spectral measurements & derivatives — efficient dot product needed

Implementation

* Direct (is it a good idea to allow
compiler to unroll loops ?)

DOT = 0.0
DO IX = 1, N
DOT = S + &
X1 (IX) *X2 (IX)
END DO

* To reduce loop overhead
(change/check index, IX) use >>

e >> Unrolled loops — factor 3

DOT = 0.
M = MOD (
DO IX =

X, 3)
M
X) *

0

N

1,

DOT3 OT3 +

1(I 2 (IX)

END DO

M1 = MX+1

DO IX = M1, NX, 3
DOT3 = DOT3 + &
X1 (IX)*X2 (IX) + &
X1 (IX+1)*X2 (IX+1) + &
X1 (IX+2)*X2 (IX+2)

END DO

Expert Opinion: DOT from BLAS

83
84
85
86
87
88
89
=15
91
92
93
94
95
96
=
98
99

clean-up loop

m = mod(n,5) 1. Is the factor 5 always the best ?
IF (m.NE.@) THEN
00 i = 1,m
dtemp = dtemp + dx(i)*dy(1i)

END DO
IF (n.LT.5) THEN 2, If not, which one is the best ?
ddot=dtemp
RETURN
END IF
END IF ,
mpl = m + 1 3. Why 5 ... ? I don’t know...

DO i = mpl,n,5

dtemp = dtemp + dx(i)*dy(1) + dx(i+1)*dy(i+l) +
dx(i+2)*dy(i+2) + dx(i+3)*dy(i+3) + dx(i+d)*dy(i+4)

EMD DO

Benchmark Scenarios

Light Scattering Particles Number of Optical Layers
Mixture (5) More (4)
Dust (1) «t

2 Layers (4)

Water Cloud (4) Rayleigh (16)

Fine Spheres (9)

Fine Spheroids (9) 1. kayer36)

Surface Reflectance Source of Benchmark Results
Ocean (3) RT codes (5)

- (8‘ .
Black (33)

Published (39)

e Korkin et al.
(2016), SPIE
v.9853, 985305
reports 44
benchmarks;

°* + 6 hew
benchmarks
including realistic
height profiles: see
Korkin et al., This
Conference, Paper
No. 10001-10;

* 50 scenarios total.

Implementations of DDOT

* Direct implementation: A;*B,+A,*B, + ... + A *B,

* Unrolled loops with a factor of 2, 4, 8, 16 (Gauss quadrature)

* Built in Fortran DOT_PRODUCT(A, B) and SUM(A*B)

* BLAS DDOT: unrolling factor 5

* BLAS DDOT for both increments = 1: DDOT(N, DX, INCX, DY, INCY)
See e.q. Severence & Dowd, 1998, Hager & Wellein, 2011 etc.

Hardware & Software

Machine 1 = “ifort”: Intel® i7-2720QM CPU, 2.2GHz, Windows 7 64 bit; Intel Visual
Fortran Compiler 11.0.072 integrated with Microsoft Visual Studio 2008. Configure
Optimization for “Maximize Speed”. The RT code SORD was developed on Machine 1.

Machine 2 = “pgf 90”: Intel® Xeon E7-4890 v2 CPU, 2.8 GHz, Linux
2.6 64 bit; The Portland Group Fortran 90/95 compiler 7.1-4.
Compiler keys: -O3 —Mipa=fast, inline = Msmartalloc.

The NASA GSFC AERONET team uses this machine for data
processing and research.

___r_; [1="

o
(=)
B S

Understanding of Results

Run time ~ few seconds in each test Ti ming:
W17 32 510
m50 48 50 On both machines -
w53 48 50 CPU_TIME from Fortran;

Total time, seconds
o = MW BN =l

On the Linux machine —
time command (close to
the CPU_TIME readings)
©
“y

Understanding of Results

Run time ~ few seconds in each test

7" Run time for m17 32 510
2 6 ,
£° test#53 m50 48 50
2 ° using dot5 I m53_48 50
5% (modified
g3 BLAS do
- 2 Run time for the 3 tests
=1 using sum(A*B)
0
“ 5 b © & A
b':" b{} EF’ " X O b&“’” & \3".“,%
SRS
C}

Understanding of Results

No of Gauss ordinates, time ~ N2

Run time ~ few seconds in each test l
P ; Run time for - 1?_?1_510 No of layers, time ~ L
< test #53 m50_48 50 <
Z > using dot5 { I m53 48 50
% (modified 1 Test number (for reference)
£? BLAS ddo
E Run time for the 3 tests
= 1 i i I I } using sum(A*B)
0
S s b&@ § @\3@
P

ifort: slide 1

Run time < 0.1 seconds in each of 32 tests Run time ~ fraction of a second in each test
1.6 3 m16 24 60
.14 . W36 16 500
< - = 2.5 m35 16 100
g 1.2 § w14 24 100
3 1 S 2 W13 24 100
E 0.8 I I E 1.5
= 0.6 e I l = 4
T04 = B = I =
=02 = ! = ! = = - = = 05 I I I
0 -] - ! - . - | == 0
N Vv | o) S D © O N\ N YV B o)) o) © > N\
ST S T ST T g F
X L

ifort: slide 2

Run time ~ few seconds in each test Run time ~ tens of seconds in each test
v =17 32 510 90 W18 32 510 m25 96 20 m28 128 20
%6 m50 48 50 2 &0
= - = = 70
S 5 W53 48 50 S 60
- = ",
‘4 “ 50
[-F] =F)
£3 £ 40
= S ¥
=1 = 10
0 0
N YV ™ Y 5) © o) ™\ N V ™ “ S @ © & Y
b&‘ b‘:}& 60& 60& \&’b b&' b.o A% &3{5} \?f% b‘D& 60& b@‘ b&' “6\% bﬂk bo‘ﬂ:\y N Sio \g%
O 7 S

ifort: slide 3

Run time ~ hundreds of seconds in each test * On the ifort machine (Int?I
2000 m26 128 250 CPU + Intel Fortran compiler),
m45.128 250 the built-in Fortran dot

s 1500 w4a6_128 252 product function shows the
Z W27 128 250 ,

Z 1000 best performance;

= . * Unrolled loops, dotl, shows
z comparable performance;

RPN S S CR N S The BLAS ddot and dots show
T sS N the worst performance in all
test scenarios.

Pgf90 - slide 1

Run time < 0.1 seconds in each of 32 tests Run time ~ fraction of a second in each test
1 1.6 |]6_24_60 | 36_16_500
2 214 -:,5 16 100 m14 24 100
50-3 =1 3 24 100
2 0.6 I I I I 2 1
o g 0.8
Z04 — £ o6 I I
z02 o B B B B B B B £94
= E B EE = EEEE < 0.2 I
o . B N & B S E S = 0
S T N NV . S S P U R R R R
LA A S N0 AU & & X N O ¥
¥R F P V¢ W O - R N O N

o
%
A

o

2
2%
%

Ry

Pgf90 - slide 2

Run time ~ few seconds in each test Run time ~ tens of seconds in each test
14 140 W18 32 510 m25 96 20 m28 128 20
Z 12 w17 32 510 = 120
E 10 .50_—18_50 % 100
2 g mS53.4850 % 80
-*] =F]
E 6 E 60
=4 B B B = 40
SN | I - i1l I = 2
0 o A B =
N Vv ™ 4 & o)) & Y N Vv ™ o)) b © O N
SO R R I S ST W
s L & &
¥ P ¥

Pgf90 - slide 3

Run time ~ hundreds of seconds in each test ° On the pgf90 maChme; the
1400 W 26_128_250 m46_128 250 BLAS ddot is the least

1200 W45 128 252 W27 128 250 efficient;
1000

800

600

jgg I e ddot4 shows the best overall

0 performance; ddot5
LI NP (simplified BLAS ddot)
7 performs similar to ddot4.

efficient either;

Total time, seconds

I * The built-in functions are not

“Food” for Thoughts

 DDOT from BLAS seems to be inefficient (created 1978, modified 1993).
What about other subroutines: M*M, 1/M, SVD frequently used in RT
codes?

* Optimization of BLAS/LAPACK is time consuming and soft- & hardware
dependent. Using of commercial Intel MKL, NAG limits the open-source
distribution of RT codes. ATLAS? Any other open-source libraries?

+1 Way for Better Performance

 Parallel computation of the dot product (precondition loop is omitted).
The four SUMs are independent. To be tested with RT code SORD soon...

SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0.0

SUM4 = 0.0

DO IX = 1, NX, 4
SUM1 = SUM1 + X1(I) *X2(I)
SUM2 = SUM2 + X1 (I+1)*X2(I+1)
SUM3 = SUM3 + X1 (I+2)*X2(I+2)
SUM4 = SUM4 + X1 (I+3)*X2 (I+3)

END DO

DOT = SUM1 + SUM2 + SUM3 + SUMA4

Dowd K., 1993: High Performance Computing, O’Reilly & Assoc. Inc., p.203
Gerber R, et al: 2006: The Software Optimization Cookbook, Intel Press, p.150

Conclusion

* Ifort’s DOT_PRODUCT showed the best performance (not surprising);

e Performances of the BLAS DDOT is disappointing on both machines (what
about the whole BLAS/LAPACK? Any tests published?)

* Dot product with unrolling factor 4, DOT4, seems to be the best for RT
simulations using RT code SORD under Linux+pgf90;

* Optimization must be done in a wide range of scenarios. The new open-
source RT code SORD comes with a package that allows for testing in a
wide range of scenarios: ftp://maiac.gsfc.nasa.gov/pub/skorkin/

Acknowledgements

* This research is supported by the NASA ROSES-14 program “Remote
Sensing Theory for Earth Science” managed by Dr. Lucia Tsaoussi, grant
number NNX15AQ23G.

 Sergey Korkin thanks James Limbacher (SSAl and NASA GSFC, USA) and
Dmitry Efremenko (DLR, Germany) for fruitful discussions on HPC.

Please send your critical feedback to sergey.v.korkin@nasa.gov

Thank you all for attention!

