
Performance of the Dot Product

Function in Radiative Transfer

Code SORD

Sergey Korkin (USRA GESTAR)*

Alexei Lyapustin (NASA GSFC)

Aliaksandr Sinyuk (Sigma Space Corp.)

Brent Holben (NASA GSFC)

*sergey.v.korkin@nasa.gov

1

N

i i

i

A B


A B

Disclaimer

• So, please feel free to advise better compiler keys, freeware libraries,
tricks, …

• No OpenMP is considered in this presentation. With parallel computing
one would get similar conclusion, but faster (I think so).

• I am not an IT specialist… My background is electro-optical
systems and atmospheric optics. But currently I am facing a
problem of scientific software performance enhancement.

Radiative Transfer (RT) Code

• Numerically simulates scattering of light in planetary
atmospheres, ocean, etc.

• Used in retrieval algorithms – scientific software that fits
measurements and numerical simulations by adjusting input
for the RT code, and thus retrieves parameters of scattering
media: atmospheric aerosol, clouds, etc.

• Must be efficient: accurate (enough) and fast (invoked
hundreds, thousands, … times)

RT Code SORD (SPIE,v9853,2016)

• Used by the NASA GSFC AERONET team;

• Tested against 50 published benchmarks using ifort, pgf90, gfortran;

• Publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/

or by email request from sergey.v.korkin@nasa.gov;

• Uses the known method of Sucessive ORDeres of scattering

• Includes many features of realistic atmosphere:
height profiles, surface reflection, polarization
of light, etc;

Successive Orders (SO)

• Relatively simple for coding;

• Developed and widely used;

• Does not require external libs;

• Has clear physical background.

1 32(,(,) (,), .() ..)I h I hI I hh    

I0

I1
12() ,) (,()i i ih IJ h p dh  

θ

2 2()J h

2 ()J 0

2

2

0

(,)

(,)

H

I h

J h dh





~

• Computes next order from the previous one numerically;

2 3()J h

Dot Product in the SO

• Scattering at each level and in each direction – Gauss summation
1

11

(,) () (,) () _ (,)
N

i j i j j

j

p I d w p I dot product      


    P I P I

• Estimation of number of the dot product calls:

100 Levels x 50 View directions x 10 Azimuth (Fourier) moments x 10
Scattering orders x 9 elements of the 3-by-3 Mueller matrix
(polarization) = 4.5M calls per wavelength per single run

• Spectral measurements & derivatives – efficient dot product needed

Implementation

• Direct (is it a good idea to allow
compiler to unroll loops ?)

DOT = 0.0

DO IX = 1, N

DOT = S + &

X1(IX)*X2(IX)

END DO

• To reduce loop overhead
(change/check index, IX) use >>

• >> Unrolled loops – factor 3

DOT = 0.0

M = MOD(NX, 3)

DO IX = 1, M

DOT3 = DOT3 +

X1(IX)*X2(IX)

END DO

M1 = MX+1

DO IX = M1, NX, 3

DOT3 = DOT3 + &

X1(IX)*X2(IX) + &

X1(IX+1)*X2(IX+1) + &

X1(IX+2)*X2(IX+2)

END DO

Expert Opinion: _DOT from BLAS

1. Is the factor 5 always the best ?

2. If not, which one is the best ?

3. Why 5 … ? I don’t know…

Benchmark Scenarios

• Korkin et al.
(2016), SPIE
v.9853, 985305
reports 44
benchmarks;

• + 6 new
benchmarks
including realistic
height profiles: see
Korkin et al., This
Conference, Paper
No. 10001-10;

• 50 scenarios total.

Implementations of DDOT

• Direct implementation: A1*B1+A2*B2 + … + AN*BN

• Unrolled loops with a factor of 2, 4, 8, 16 (Gauss quadrature)

• Built in Fortran DOT_PRODUCT(A, B) and SUM(A*B)

• BLAS DDOT: unrolling factor 5

• BLAS DDOT for both increments = 1: DDOT(N, DX, INCX, DY, INCY)

See e.g. Severence & Dowd, 1998; Hager & Wellein, 2011 etc.

Hardware & Software

Machine 2 = “pgf 90”: Intel® Xeon E7-4890 v2 CPU, 2.8 GHz, Linux
2.6 64 bit; The Portland Group Fortran 90/95 compiler 7.1-4.
Compiler keys: -O3 –Mipa=fast, inline = Msmartalloc.

The NASA GSFC AERONET team uses this machine for data
processing and research.

Machine 1 = “ifort”: Intel® i7-2720QM CPU, 2.2GHz, Windows 7 64 bit; Intel Visual
Fortran Compiler 11.0.072 integrated with Microsoft Visual Studio 2008. Configure
Optimization for “Maximize Speed”. The RT code SORD was developed on Machine 1.

Understanding of Results

Timing:

On both machines -
CPU_TIME from Fortran;

On the Linux machine –
time command (close to
the CPU_TIME readings)

Understanding of Results

Run time for the 3 tests
using sum(A*B)

Run time for
test #53
using dot5
(modified
BLAS ddot)

Understanding of Results

Run time for the 3 tests
using sum(A*B)

Run time for
test #53
using dot5
(modified
BLAS ddot)

Test number (for reference)

No of Gauss ordinates, time ~ N2

No of layers, time ~ L

ifort: slide 1

ifort: slide 2

ifort: slide 3

• On the ifort machine (Intel
CPU + Intel Fortran compiler),
the built-in Fortran dot
product function shows the
best performance;

• Unrolled loops, dot1, shows
comparable performance;

• The BLAS ddot and dot5 show
the worst performance in all
test scenarios.

Pgf90 – slide 1

Pgf90 – slide 2

Pgf90 – slide 3

• On the pgf90 machine, the
BLAS ddot is the least
efficient;

• The built-in functions are not
efficient either;

• ddot4 shows the best overall
performance; ddot5
(simplified BLAS ddot)
performs similar to ddot4.

“Food” for Thoughts

• DDOT from BLAS seems to be inefficient (created 1978, modified 1993).
What about other subroutines: M*M, 1/M, SVD frequently used in RT
codes?

• Optimization of BLAS/LAPACK is time consuming and soft- & hardware
dependent. Using of commercial Intel MKL, NAG limits the open-source
distribution of RT codes. ATLAS? Any other open-source libraries?

+1 Way for Better Performance

• Parallel computation of the dot product (precondition loop is omitted).
The four SUMs are independent. To be tested with RT code SORD soon…

SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0.0

SUM4 = 0.0

DO IX = 1, NX, 4

SUM1 = SUM1 + X1(I) *X2(I)

SUM2 = SUM2 + X1(I+1)*X2(I+1)

SUM3 = SUM3 + X1(I+2)*X2(I+2)

SUM4 = SUM4 + X1(I+3)*X2(I+3)

END DO

DOT = SUM1 + SUM2 + SUM3 + SUM4

Dowd K., 1993: High Performance Computing, O’Reilly & Assoc. Inc., p.203
Gerber R, et al: 2006: The Software Optimization Cookbook, Intel Press, p.150

Conclusion

• Ifort’s DOT_PRODUCT showed the best performance (not surprising);

• Performances of the BLAS DDOT is disappointing on both machines (what
about the whole BLAS/LAPACK? Any tests published?)

• Dot product with unrolling factor 4, DOT4, seems to be the best for RT
simulations using RT code SORD under Linux+pgf90;

• Optimization must be done in a wide range of scenarios. The new open-
source RT code SORD comes with a package that allows for testing in a
wide range of scenarios: ftp://maiac.gsfc.nasa.gov/pub/skorkin/

Acknowledgements

• This research is supported by the NASA ROSES-14 program “Remote
Sensing Theory for Earth Science” managed by Dr. Lucia Tsaoussi, grant
number NNX15AQ23G.

• Sergey Korkin thanks James Limbacher (SSAI and NASA GSFC, USA) and
Dmitry Efremenko (DLR, Germany) for fruitful discussions on HPC.

Please send your critical feedback to sergey.v.korkin@nasa.gov

Thank you all for attention!

