
Localization from Visual Landmarks on a Free-flying Robot

Brian Coltin1, Jesse Fusco2, Zack Moratto1, Oleg Alexandrov1, and Robert Nakamura2

Abstract— We present the localization approach for Astrobee,
a new free-flying robot designed to navigate autonomously on
the International Space Station (ISS). Astrobee will accommo-
date a variety of payloads and enable guest scientists to run
experiments in zero-g, as well as assist astronauts and ground
controllers. Astrobee will replace the SPHERES robots which
currently operate on the ISS, whose use of fixed ultrasonic
beacons for localization limits them to work in a 2 meter cube.
Astrobee localizes with monocular vision and an IMU, without
any environmental modifications. Visual features detected on a
pre-built map, optical flow information, and IMU readings are
all integrated into an extended Kalman filter (EKF) to estimate
the robot pose. We introduce several modifications to the filter
to make it more robust to noise, and extensively evaluate the
localization algorithm.

I. INTRODUCTION

The free-flying SPHERES robots currently operate on
board the International Space Station (ISS), where they
are used to conduct a wide variety of experiments in mi-
crogravity. The SPHERES are one of the most popular
projects on the ISS. However, the SPHERES have two
major limitations: 1) they operate with gas thrusters and
non-rechargeable batteries, requiring a regular upmass of
consumable batteries and CO2 canisters [1]; and 2) the robots
localize by triangulating their positions from fixed ultrasonic
beacons, restricting their operating range to a 2m cube [2]
(although SPHERES payloads have enabled them to localize
with stereo vision [3] and Google’s Project Tango).

The Astrobee robots are being developed to address these
limitations. Astrobee will use electric fans for propulsion,
powered by batteries that recharge through a dock. Second,
rather than localizing with ultrasonic beacons, or any form
of fixed infrastructure, Astrobee will localize with visual fea-
tures. The current Astrobee prototype is shown in Figure 1.
See [4] for details about Astrobee’s hardware, including
computing capabilities.

We present Astrobee’s complete localization approach.
Beforehand, a map of the space station is built from vi-
sual features. As Astrobee moves, it detects a variety of
observations to help localize: visual features from the map,
AR tags, handrail measurements from a depth sensor, and
optical flow features. It integrates all these measurements
with the IMU into an augmented state Extended Kalman
Filter (EKF) that estimates the robot’s pose. We extensively
evaluate Astrobee’s localization approach, both in a 2D
testing environment and in 3D through a building.

1The authors are with SGT, Inc.1 and NASA2, NASA Ames Research
Center, Moffett Field, CA, 94035, USA {brian.j.coltin,
jesse.c.fusco, zachary.m.moratto,
oleg.alexandrov, robert.h.nakamura}@nasa.gov

Fig. 1. Left: The Astrobee prototype, gliding on a smooth granite table
using pressurized gas (a reverse air hockey table). Right: Artist’s conception
of Astrobee flying through the ISS, monitored by ground controllers.

While the fundamental algorithms behind our localization
approach are well known, Astrobee presents special chal-
lenges as it will be operated in space by people other than
its creators. When operating on the ISS for hours at a time,
errors such as losing the position fix or colliding with a wall
may require assistance from astronauts. Since astronaut time
is an extremely valuable and scarce resource, Astrobee must
function reliably, or it will simply not be used. Hence, we
have tested Astrobee in increasingly extreme conditions—
moving and rotating many times faster than its maximum
speed, with changing lighting conditions, with numerous
occlusions, in environments that differ highly from its map,
etc. In this process, we have learned many lessons and made
a number of modifications to the localization algorithm to
increase robustness and reliability of localization.

II. BACKGROUND AND RELATED WORK

Our localization approach is based on an augmented state
EKF initially developed for spacecraft descent and landing
[5]. Astrobee matches monocular visual features to a pre-
built map, and fuses these observations with optical flow,
accelerometer readings, and gyrometer readings. The visual
features are replaced with AR tags as Astrobee approaches its
dock, and handrail measurements from a depth sensor when
Astrobee perches on handrails. Astrobee is equipped with
other sensing modalities that have been used for localization,
namely WiFi [6] and 3D depth sensors [7]; however, WiFi
with our COTS radio and the existing ISS access point
geometry does not provide sufficient position accuracy [6].
We chose to use visual features rather than 3D depth data
(except for handrails) because visual features can provide
a global pose estimate from a single camera frame, which
makes recovery from position tracker failures simple.

The localization system consists of three components:
1) Map Building. Visual features (i.e., SURF [8], BRISK

[9]) are detected and matched across a collection of



images, then their 3D positions are jointly optimized
using structure from motion. This approach was most
famously applied in [10], but many variants of this
fundamental approach exist such as the open source
Theia [11] and openMVG [12] libraries.

2) Visual Observations. To localize, the robot detects
features on an image, matches them to the pre-built
map, then filters the matches with a geometric consis-
tency check (such as RANSAC [13]). Much work has
gone into faster and better features, such as BRISK [9]
and ORB [14]. There has also been work on quickly
matching features to images in a map by searching for
similar images [10], [15]. Optical flow is also used
for velocity estimation; features are tracked locally
between frames to provide a velocity estimate [16].

3) Position Tracking. All visual observations are inte-
grated with the linear acceleration and angular velocity
from the IMU. A Kalman filter is often used for this
purpose, of which there are numerous variants, such
as adaptive EKFs [17] and unscented Kalman filters
[18]. Astrobee uses an augmented state indirect EKF
initially designed for spacecraft descent and landing
[5]. This filter uses augmented states to keep track
of the state when an image was taken to account for
the lengthy delay in processing the image. The most
popular alternative to an EKF for localization is the
particle filter [19], which could be applied to Astrobee
localization in combination with sensor resetting for
global localization [20]. However, particle filters would
scale poorly in computation for Astrobee since more
particles would be required to track its six degree of
freedom pose compared to the three for ground robots.

We intentionally separate mapping from localization.
While approaches for simultaneous localization and mapping
(SLAM) such as LSD-SLAM [21] are increasingly capable,
they are not as reliable as techniques which rely on a fixed,
pre-computed map. Astrobee is confined to a fixed area so
the flexibility that SLAM provides is unnecessary.

III. LOCALIZATION FOR ASTROBEE

We discuss the entire localization system on Astrobee in
detail. We particularly emphasize our own novel contribu-
tions that enable reliable localization with limited computa-
tion and minimal human intervention.

A. Mapping

Astrobee localizes based on a sparse map of visual features
constructed offline. A sparse map M = (F, P ) consists of a
list of visual feature descriptors Fi with associated 3D posi-
tions Pi. Ultimately, the robot localizes by detecting visual
features, matching them to features in F , and triangulating
its own position based on the associated feature positions in
P . Astrobee’s sparse map building process is as follows:

1) Collect Images. We begin with a sequence of images
I that are processed offline, on the ground. Initially
these images will be collected by an astronaut, but
once an initial map is built, the robot can collect

Fig. 2. A closed sparse map built from moving Astrobee in a loop through
the hallways of a building. Shown are the 3D coordinates of the BRISK
features that compose the final map (right).

new images autonomously. The map will need to be
updated occasionally as supplies and equipment are
moved frequently on the ISS. The pattern of motion is
critical for map-building— views from different parts
and angles of the ISS are essential to localize from
anywhere. We have found that rotating in all directions
while moving slowly down a corridor is most effective.

2) SURF Feature Detection: Given the images Ii, we
detect a list of SURF feature [8] descriptors Fi,j at
pixel coordinates Li,j . We use SURF features because
they are high quality and although they are moderately
expensive to compute, map building is offline so com-
putational cost is less important.

3) Feature Matching: For every pair of images Ii and
Ij , we match the feature descriptors in Fi to those in
Fj using an approximate nearest neighbors algorithm
[22] to generate a partial matching between feature
descriptors in the two images. From this matching
we estimate the essential matrix Ei,j transforming
from matched coordinates in Li to Lj that minimizes
the epipolar distance error using AC-RANSAC [23],
discarding outlier matches.

4) Track Building: We fuse the pairwise matches into
multiview correspondences, or tracks [24], resulting
in a set T of tracks, where a track is a set of
matching feature images and image coordinates which
are believed to refer to the same physical landmark.

5) Initial Map Guess: From each Ei,i+1, we estimate
a rotation Ri,i+1 and translation Ti,i+1 between the
two subsequent cameras [25]. Given these rotations and
translations, we estimate global camera poses Ci for
each image. Then, using multi-view triangulation, we
estimate a global position Pj for each track Tj ∈ T .

6) Incremental Bundle Adjustment: We refine the Ci

and Pj using incremental bundle adjustment to min-
imize the reprojection error of all the points. Bun-
dle adjustment is performed first on non-overlapping
groups of four images, then repeating in powers of
two up to 128 images at a time. This step requires that
the images are processed sequentially according to the



robot’s motion. Incremental bundle adjustment ensures
that the maps are locally consistent.

7) Global Bundle Adjustment: The same process is
repeated with every image, starting with the Ci and
Pj from incremental bundle adjustment. Any loops in
which the position drifts will be closed in this step.

8) Rebuilding with BRISK Features: The current sparse
map uses SURF features. We aim to use BRISK
features [9], which are less accurate and robust than
SURF (which is critical for map building) but also
much faster (which is critical for localization). As such,
we rebuild the map using BRISK features. We repeat
the detection, matching, track building and global
bundle adjustment steps with BRISK features, except
we use the camera transforms Ci previously computed
from the SURF features. This allows us to combine
the accuracy and robustness of a SURF-based map-
buildling process with the speed of BRISK feature
localization. We also reuse the previous information
about which pairs of images will contain matches,
eliminating the need for an exhaustive search. The
final BRISK map has the same highly accurate camera
poses as the initial SURF map, but with faster BRISK
features instead of SURF features. To our knowledge
this rebuilding step is unique to our approach.

9) Registration: A consistent map has been created, but
it is in an arbitrary coordinate frame. We take a
number of known points on the ISS and find the affine
transform which brings these points into the desired
ISS coordinate frame. Then we perform global bundle
adjustment again with the registration points fixed.

10) Bag of Words Database: It is possible to localize
by comparing features to every other image in the
map, but this is very slow. Instead, we construct a
hierarchical database of bag of words features for
images [15]. This allows us to quickly look up the
most similar images to a given image, so that we can
only match features against the most similar images.

The final BRISK map and database allow Astrobee to
localize quickly. See Figure 2 for an example map.

B. Visual Observations

Next, we discuss how visual features are observed and
filtered before being sent to the EKF for integration into
the position estimate. We use four types of visual features:
sparse map features, AR tags, handrail features, and optical
flow features. See Table I for an overview of all the inputs
to the localization process. Optical flow is always used, but
only one of the other visual feature types is used at a time.

1) Sparse Map Features: BRISK features are detected in
the image. The bag of words database is queried to find the
most similar images in the sparse map. Then we match the
BRISK descriptors in the query image to the similar map
images. A list of potential matches from image coordinates
to global ISS coordinates is generated from the sparse map.

Next, RANSAC is applied to remove outliers. A random
subset of 4 landmarks is selected, and is used to generate a

Name Rate (Hz) Value

Sparse Map — BRISK descriptors and positions
AR Tag Map — AR tag IDs and corner positions

IMU Acceleration 62.5 Linear acceleration aimu

IMU Angular Vel. 62.5 Angular velocity ωimu

Sparse Map Features ≈ 2 Coordinates in image and map
AR Tag Features ≈ 5 Coordinates in image and map
Handrail Features ≈ 5 Depth image and global positions

Optical Flow ≈ 5 Multiple image coordinates

TABLE I
INPUTS TO ASTROBEE LOCALIZATION.

hypothesis camera pose with P3P [26]. We check the con-
sistency of the matched features with the hypothesis camera
pose. This process is repeated multiple times with different
random landmark selections, and the camera pose with the
highest number of inlier features is selected. The inlier
observations— both 2D camera coordinates and matching
3D landmark positions— are sent as inputs to the EKF.

2) AR Tags: For even higher accuracy and reliability,
Astrobee can localize based on AR tags. Astrobee switches
to use AR tags when docking as the dock is tagged. The
detected corners of the AR tag are sent to the EKF in the
same manner as sparse map landmarks. We use the ALVAR
library [27].

3) Handrail Measurements: The Astrobee has an arm
that can grip handrails scattered throughout the ISS to
perch and observe station activities. The locations of the
handrails change frequently and are not known beforehand.
A ground operator will direct the Astrobee to a location
where a handrail is visible, and then Astrobee will dock
autonomously. A time of flight sensor detects the handrail by
fitting the plane of the wall with RANSAC and then fitting
points to the cylinder of the handrail in front of that plane. A
selection of points on the handrail and wall, as well as their
associated global positions (relative to the initial EKF pose
when the handrail was first detected) are sent to the EKF.

4) Optical Flow: A list of 50 optical flow features is
maintained at all times. These features are generated using
Good Features to Track [28], which is speedy and effective
for optical flow. For each frame, starting with the previous
feature coordinates, the features are tracked with pyramidal
Lucas Kanade [29]. One trick to remove outliers is to
apply the tracking backwards from the new estimated feature
coordinates— if the backwards tracked position does not
match the original, the feature is removed. We also delete
features that are close to the border of the image, as this
results in many features which leave the image being incor-
rectly tracked at the border. We record feature coordinates
over multiple frames. Once a feature has been tracked across
four frames, all four coordinates are sent to the EKF.

C. Extended Kalman Filter

Astrobee integrates its visual observations and IMU read-
ings into an Extended Kalman Filter (EKF). Our EKF is
largely based on the approach in [5], but with key extensions



that make it more robust to errors in map building and camera
image acquisition timing, and incorporate additional inputs.

1) Overview: The state vector estimated by the EKF is

x =
[
B
Gq bg

GvB ba
GpB (C1

G q GpC1) . . . (Cn

G q GpCn)
]

where B
Gq is the quaternion representing the robot body in

the global frame, bg is the gyrometer bias, GvB is the robot
body’s velocity in the global frame, ba is the accelerometer
bias, and GpB is the robot body’s position in the global
frame. The Ci

G q are the rotation quaternions and the GpCi
are

the positions of the camera forming the augmented states.
The filter stores these augmented states when an image is
taken and uses them once the image is processed to account
for the lengthy processing time. We store five augmented
states, one for mapped landmarks / AR tags / handrails, and
four for optical flow. The EKF also maintains a covariance
P of the error state.

We briefly outline the EKF (see [5] for full details).
1) Predict Step: The state estimate x and covariance P

are propagated forward in time based on the measured
IMU acceleration aimu and angular velocity ωimu. The
predict step runs at the same rate as the IMU.

2) State Augmentation: When a new camera image is
taken for processing, the appropriate augmented state
is updated. The first augmented state is for sparse
map landmarks, AR tags, and handrails (only one can
be used at a time, which reduces the state size and
required computation), and four states are maintained
for optical flow. When a new augmented state is added,
the appropriate entries in P are also updated.

3) Update Step: The visual measurements are applied
to update the state and covariance. Let z be all the
measurements (in pixel coordinates) and ẑ be the
expected measurements, given the estimated state x.
Then we linearize the residual r in terms of the error
state x̃ and a Jacobian H

r = z− ẑ ≈ Hx̃ + n

where n is a noise vector with covariance R. See [5]
for full details of how r and H are computed for both
sparse map landmarks and optical flow landmarks. In
the original formulation of the filter, it is assumed
that every element in the residual is independent and
identically distributed, and hence that n has a constant
diagonal covariance R = diag

(
σ2
)
.

2) Extensions and Discussion: Next, we detail key
changes we made to the EKF for Astrobee, and discuss
insights on making the most effective and robust filter.

Registration Timing Errors: In the update step, R mod-
els the expected observation error. However, in [5], R only
considers a constant error in pixels for all observations.
In particular, the original approach assumes the registration
pulse is received exactly when the image is taken. Without
dedicated hardware, this is impractical— image acquisition
itself is not instantaneous, and there is a lengthy pipeline
from the camera hardware to the camera driver to the user

application. For Astrobee, the pipeline is even longer as the
EKF runs on a separate processor from the image processing
code, connected over Ethernet. Hence, we modify R based on
the robot’s current estimate of its linear and angular velocity,
as the timing errors have larger impacts at higher velocities.

Let TC
G be the affine transform from the global coordinate

frame to the camera coordinate frame, A(v, ε) be the affine
transform that rotates by Euler angles ε and translates by v,
∆t be the estimated registration delay in seconds, and vaug

and εaug be the estimated linear and angular velocities when
the augmented state was stored. Let L be the set of global
coordinates of the detected sparse map features. For each
subvector ri = zi − ẑi of r, we have

ẑi =
1

ĉi,3

[
ĉi,1
ĉi,2

]
, ĉi = TC

G

[
Li

1

]
[5].

Then, we compute the expected registration error σreg .

σreg,i = ẑi −
1

ni,3

[
ni,1

ni,2

]
, ni = A(∆tvaug,∆tεaug)ĉi

We combine σreg with the original constant σconst by setting
σ = σreg + σconst. This same addition to the covariance is
also applied to optical flow, except with different camera
matrices and velocities for each augmented state, and using
the estimated 3D points.

Map Building Errors: Another significant source of error
is the map-building process, which in the case of Astrobee
involves centimeter-level errors. If the sparse map feature
positions Pi have errors, the error in camera coordinates
(which r is measured in) increases as the camera moves
closer to the features. We add another term σmap to R
to account for this, where σmap,i = Kmap/ĉi,3. Kmap

is a constant, and the final covariance R = diag(σ2) is
constructed with all three terms, σ = σmap + σreg + σconst.
This source of error is most important when the camera is
very close to the landmarks.

Handrail Localization: We extended the EKF to localize
based on points from a depth sensor. To keep the process as
close as possible to the update from sparse map landmarks,
a collection of depth sensor observations and their expected
global positions are input to the EKF. These points are
located both on the handrail itself and on the wall behind
the handrail. The EKF update step is largely the same as
for sparse map landmarks, except the residual includes three
dimensions rather than two. The main challenge is that as the
robot approaches close to the handrail and the two handrail
bar endpoints leave the depth camera field of view, the
handrail detection algorithm cannot determine the relative
pose of the robot along the axis of the handrail bar. When this
occurs, the global direction of the handrail bar is passed as an
input to the EKF, the residuals are rotated into a coordinate
frame where the z axis is parallel to the handrail bar, and
then the z coordinates are dropped from the residuals.

Outlier Removal: We experimented with further outlier
removal within the EKF, in addition to RANSAC for the
sparse map landmarks and the backwards optical flow check.
Specifically, we checked the Mahalanobis distance of the



feature inputs from the expected distribution represented by
x and P . While this check occasionally removes outliers
successfully, it would also remove correct observations when
the filter had a significant position error, so we removed it.

EKF Initialization: One key advantage of using visual
landmark localization (as opposed to a LIDAR or depth
sensor) is that a 3D pose can be directly computed from the
observed landmarks. We do so using RANSAC, as discussed
previously, and this pose is used to initialize the EKF.

Failure Recovery: The same approach is used to reinitial-
ize the EKF when it inevitably (albeit rarely) fails and the
robot becomes lost. The robot is determined to be lost when
the sum of the covariance diagonal exceeds a threshold value.
An intermediate “Uncertain” state is entered when the filter
does not update successfully with a sparse map landmark
update in a given time.

IMU Bias Initialization: The IMU bias drifts slowly
through a process that can be modeled with a random walk.
While the robot is running, the EKF does a good job at
tracking this bias drift. However, the bias drifts when the
robot is not running, and over weeks or months the drift
is large enough that the EKF has difficulty recovering.
Hence, we institute a bias initialization procedure, where
the robot averages its IMU measurements over five seconds
of remaining stationary in the dock to measure the bias.
This only needs to run occasionally, but greatly aids in EKF
initialization.

Centrifugal and Euler Accelerations: The original EKF
formulation assumes that the IMU is located at the robot’s
center of rotation. However, for Astrobee this is not the case,
and the IMU detects Euler and centrifugal accelerations. The
total estimated linear acceleration â is computed as

â = aimu − ba −
dωimu

dt
× r − ωimu × (ωimu × r)

where ba is the estimated bias, r is the vector from the center
of rotation to the IMU and ωimu is the angular velocity
vector in radians. The Euler acceleration dωimu

dt × r is a
reaction to the angular acceleration of the vehicle, and the
term ω × (ω × r) is the centrifugal force. Due to these
additional forces, properly measuring the vector r is critical.
The robot’s position begins to drift away when rotating if r
is not correct to millimeter precision.

Constant Selection: The filter is highly dependent on
the choice of numerous constants, particularly the σ noise
values and the noise matrix QIMU from the predict step.
Unfortunately we have no better way of tuning these values
than trial and error.

IV. EXPERIMENTAL RESULTS

We present a number of experiments showcasing the
effectiveness of our localization approach.

First, we conducted studies on the 2D granite table in our
lab (see Figure 1). While the robot is physically constrained
to three degrees of freedom, we run the full six degree of
freedom EKF. We recorded test runs from manually pushing
the robot around, recording specific movements: forward and

-5 0 5 10 15 20
-5

0

5

10

15

20

25

30

35

Fig. 3. The estimated path output by the EKF from Astrobee moving in a
rectangle around the hallways of a building (units are in meters). The map
Astrobee localized on is shown in Figure 2.

backwards translations, sideways translations, spinning in
place in both directions, and moving in a circle around the
table facing outwards in both directions. For all these basic
tests, we first moved the robot at a normal operating speed,
and then moved it at a much higher speed, the maximum
speed at which the robot could be safely controlled. Finally,
we did two tests combining all the primitive motions, one at
the slow speed and one at the fast speed.

For all the tests, we recorded the ground truth position and
orientation with an overhead camera and an AR tag on the
robot. We ran the EKF and computed the root mean squared
error of position and orientation. We tested with and without
our modifications to the R matrix, for both σreg and σmap,
on the same logged data. The results are shown in Table II.

The changes show a modest improvement in positional
accuracy for most of the test cases. For the spin in place
test, there is a large improvement of 4 cm. This is due to
σreg, which is critical when performing high speed rotations.
The angular errors for both approaches are similar.

To test our system over longer distances, we also built a
map of the hallways of our entire building (see Figure 2),
then carried Astrobee through. The trace of its path as
estimated by the EKF is shown in Figure 3. It was able to
maintain its position and knew it had returned to its starting
position. This test was particularly challenging due to the
variations in lighting throughout the building— some areas
are quite dark, while others have bright, direct natural light.

We have also built confidence through months of testing
in our ability to handle unexpected landmarks or landmarks
that have moved. We have tested both map building and
localization successfully with humans in the field of view.
Furthermore, while testing in a bustling, busy lab, with
objects constantly moving, we were able to localize success-
fully using the exact same map for three months without
issue. This speaks well to Astrobee’s ability to handle the
busy, constantly changing environment of the ISS.



Algorithm Measurement Forward Sideways Spin Circle All Slow All Fast

σ = σconst
Position RMSE (cm) 7.87 11.99 11.42 6.46 7.18 18.04
Angular RMSE (◦) 2.76 1.55 4.82 3.79 5.66 14.10

σ = σconst + σmap + σreg
Position RMSE (cm) 7.93 11.15 7.33 4.94 6.02 16.53
Angular RMSE (◦) 1.33 1.56 4.83 3.81 5.90 14.07

TABLE II
EXPERIMENTAL RESULTS COMPARING R MODIFIED TO INCLUDE MAP AND REGISTRATION TIMING ERRORS.

The video submission associated with this paper shows a
variety of other testing conditions, including localization and
docking while the robot is self-propelled.1

V. CONCLUSIONS AND FUTURE WORK

We have presented a complete localization system for
Astrobee, including mapping, feature detection, and position
tracking, and demonstrated its initial success in the lab
and a larger environment the size of a building. Astrobee’s
localization system features a number of novel features, such
as improved error modeling and a map rebuilding process
that changes feature descriptors. However, a great deal more
work needs to be done before Astrobee is ready to serve
on the ISS. In particular, we need to test mapping and
localization when moving freely in three dimensions. A
gantry system is currently being constructed which will allow
Astrobee to move with six degrees of freedom on Earth. We
plan to incorporate further sensors, such as a 3D depth sensor
and specialized optical flow camera, that will further improve
Astrobee’s localization and allow Astrobee to operate, or
at least maintain its position, even when landmark-based
localization temporarily fails.

ACKNOWLEDGEMENTS

We would like to thank the Astrobee engineering team
and the NASA Human Exploration Telerobotics 2 project for
supporting this work. The NASA Game Changing Develop-
ment Program (Space Technology Mission Directorate) and
ISS SPHERES Facility (Human Exploration and Operations
Mission Directorate) provided funding for this work.

REFERENCES

[1] J. Enright, M. Hilstad, A. Saenz-Otero, and D. Miller, “The SPHERES
guest scientist program: Collaborative science on the ISS,” in Proc. of
IEEE Aerospace Conference, 2004.

[2] S. Nolet, “The SPHERES navigation system: from early development
to on-orbit testing,” in Proc. of AIAA Guidance, Navigation and
Control Conference, 2007.

[3] B. E. Tweddle, T. P. Setterfield, A. Saenz-Otero, and D. W. Miller,
“An open research facility for vision-based navigation onboard the
international space station,” Journal of Field Robotics, 2015.

[4] J. Barlow, E. Smith, T. Smith, M. Bualat, T. Fong, C. Provencher, and
H. Sanchez, “Astrobee: A new platform for free-flying robotics on the
international space station,” in Proc. of Int. Symposium on Artificial
Intelligence, Robotics, and Automation in Space (i-SAIRAS), 2016.

[5] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Transactions on Robotics, vol. 25, no. 2,
pp. 264–280, 2009.

[6] J. Yoo, T. Kim, C. Provencher, and T. Fong, “WiFi localization on
the international space station,” in IEEE Symposium on Intelligent
Embedded Systems. IEEE, 2014.

1Video available at https://youtu.be/xakebgUMobo.

[7] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot
localization and navigation,” in Proc. of ICRA. IEEE, 2012.

[8] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[9] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proc. of ICCV. IEEE, 2011.

[10] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M.
Seitz, and R. Szeliski, “Building Rome in a day,” Communications of
the ACM, vol. 54, no. 10, pp. 105–112, 2011.

[11] C. Sweeney, Theia Multiview Geometry Library: Tutorial & Reference,
University of California Santa Barbara.

[12] P. Moulon, P. Monasse, and R. Marlet, “Global fusion of relative
motions for robust, accurate and scalable structure from motion,” in
Proc. of ICCV. IEEE, 2013.

[13] W. Zhang and J. Kosecka, “Image based localization in urban envi-
ronments,” in Int. Symposium on 3D Data Processing, Visualization,
and Transmission, 2006.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient
alternative to SIFT or SURF,” in Proc. of ICCV. IEEE, 2011.

[15] D. Galvez-Lopez and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, October 2012.

[16] B. K. Horn and B. G. Schunck, “Determining optical flow,” in 1981
Technical Symposium East. International Society for Optics and
Photonics, 1981, pp. 319–331.

[17] L. Jetto, S. Longhi, and G. Venturini, “Development and experimental
validation of an adaptive extended Kalman filter for the localization
of mobile robots,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 2, pp. 219–229, 1999.

[18] M. St-Pierre and D. Gingras, “Comparison between the unscented
Kalman filter and the extended Kalman filter for the position esti-
mation module of an integrated navigation information system,” in
Proc. of IEEE Intelligent Vehicles Symposium, 2004.

[19] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localiza-
tion for mobile robots,” in Proc. of ICRA. IEEE, 1999.

[20] B. Coltin and M. Veloso, “Multi-observation sensor resetting local-
ization with ambiguous landmarks,” Autonomous Robots, vol. 35, no.
2-3, pp. 221–237, 2013.

[21] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in Proc. of European Conf. on Computer Vision.
Springer, 2014.

[22] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” in Proc. of VISAPP, 2009.

[23] L. Moisan, P. Moulon, and P. Monasse, “Automatic homographic
registration of a pair of images, with a contrario elimination of
outliers,” Image Processing On Line, vol. 2, pp. 56–73, 2012.

[24] P. Moulon and P. Monasse, “Unordered feature tracking made fast and
easy,” in Proc. of CVMP, 2012.

[25] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge University Press, 2003.

[26] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp.
930–943, 2003.

[27] VTT Technical Research Centre of Finland, “Alvar,” 2016. [Online].
Available: http://virtual.vtt.fi/virtual/proj2/multimedia/alvar/index.html

[28] J. Shi and C. Tomasi, “Good features to track,” in Proc. of CVPR.
IEEE, 1994.

[29] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, vol. 5,
2001.


