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Introduction Results and Discussion
Precipitation scavenging Is the dominant loss process for a whole suite of Experiments
aerosols but model parameterizations of this process are highly uncertain, Table 1. Settings of experiments & features of simulated 21°Phb
SUb_Sta:ntla”y (?ontrlbutlng to Iarge uncertainties in th_e 3|rr_1ulated Io_admgs ana Experiment Details Trop “ Pb |Annual zonal mean (Fig. 3) Comparlson with Preiss [Comparison with “ Pb profiles
radiative forcing of aerosols. Lead-210 (%1°Pb, radioactive half-life of 22.3 lifetime surface *°Pb and (Fig. 5)
: : : TIP. 999 (days) RANDAB (Fig. 4)
years) IS produce_d by radl_oactlve decay of SOI! emltt?d gaseous ] Rn It Standard CWC = 1.0 cm® water 8.32 Highest conc near the middle Overestimate at surface |Compared well with TRACE-P.
attaches to ambient submicron aerosols and Is subject to precipitation mars latitudinal surface; low concinthe  |compared with Preiss  [Moderate overestimate for PEM-
] . - - - ti =1.0-0.5-1. ' ici : ' ' '
scavenging processes. Liu et al. [2001] estimated the global mean lifetime of O etatiorm L 100,010 oo ding. e to etieient ote, dnderestimate in | HestAn ¥ and above PBL for
tropospheric 210pp aerosols to be ~9 days using the GEOS-Chem model. More CWC15 Same as Std, but CWC = [9.49 Significant increase throughout the  |Mostly overestimate Overestimate in most levels in the
detailed treatments of precipitation scavenging processes (e.g., scavenging in LS S roposphere at mid/high latitucles. roposphere:
- - - cvrain000510 |[Same as Std, but a 8.36 Barely noticeable increase across the |Barely noticeable Barely noticeable changes.
iIce and mixed-phase clouds) have recently been developed and_ ap_plle_d to the (Convective) = 0.0-0.5-1.0 tropical tropopause. changes.
model [Wang et aI., 2011, 2014], and may alter the 219Pb distribution and Israin000010 |Same as Std, but a 9.37 Large increase across the tropical Best agreement with Too much “"Pb in UT.
lifetime. In addition, NASA aircraft campaigns over the past two decades have _ (Stratiform) = 0.0-0.0-1.0 tropopause . UTILSobs. _ _
i ] 210 ] ] Israin100510 |Same as Std, but a 7.41 Remarkable reduction in the Best agreement with Similarly decent performance with
provided substantial records of °Pb profiles around the world. In this study, (stratiform) = 1.0-0.5-1.0 middle/upper troposphere (MT/UT)  |surface meridional some extent of underestimate.
we use these datasets to constrain aerosol scavenging parameterization in distribution.

GEOS-Chem and to estimate observation-based 2°Pb aerosol lifetime. _
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Fiqure 1. Life cvele of 210Pb in the troposphere Figure 3. Simulated annual zonal mean 21°Pb in the standard setting of GEOS-Chem (a) and the percentile differences (Ex';;ftd)
] -g | Y o ] POSP o as a result of changes in scavenging parameterizations: CWC15 (b), cvrain000510 (c), Israin000010 (d), and Israin100510 (e).
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Table 1. Parameterizations of_the scav_erygln_g coefﬂuent_ki S ool ’T‘TJE}LT\J("/ 0ol 0ol
Convective Precipitation  |Stratiform Precipitation _ _‘_if _
In-cloud k; is determined by updraft__ |k; accounts for conversion from cloud 0'?9;"%-#5; 0 3 e a0 e wm R TI TR R Tw w e wm e e e w
scavenging (ICS) |velocity and a fixed econdensate to precipitation and cloud | ~ Latitude | o e etude |
' conversion rate from cloud  |drop accretion process Figure 4. Comparisons of observed and simulated latitudinal distributions of annually averaged 2!°Pb concentrations at
condensate to precinitation ' O surface (a) and UT/LS ((b) for 12-16 km level and (c) for 16-20 km level). The observed distribution is calculated by
_p P ' _ : averaging observations from the Preiss et al. (1996) database and the US Environmental Measurement Laboratory
Below-cloud ki = ¢4 x(%)cz IS the overall BCS coefficient determined for an assumed RANDAB database into 10° latitude bins. Error bars represent 2 times the standard error of the averages. Simulated
Scavenging (BCS) |typical raindrop and aerosol sizes for impaction, interception and distributions were obtained by sampling model output at observation locations and then treating model output in the same
diffusion processes. P = precipitation, ¢1 and ¢2 vary for aerosol manner as the observations.
size and temperature [Wang et al., 2011]. 9 Comparison with 210pp profiles
Re-evaporation 50% of aerosol Is released back to ambient air for the amount of .
precipitation evaporated. L I R - e —— 1 e O
Other related parameters: E [ :
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cm Water i i T <L v GC ovrain000510 P: 1.71 ] % ol v cvrai 1000510 P- 8751 b E 6 ¥ cvrain 000510 P: 11.80 ]
* Cloud water content (CWC, having unit of 3 S). It IS considered as a i 0 I ;
constant parameter, which defines water density of cloud. It consists of N et 1 4 N E S -
liquid water content and ice water content, and the allocation Is temperature D S b S D™ B 0 S Y. o N S S ——
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dependent. For a_glven rat_e of_prec_:lpltatlon formatl_on, '_ncrease In CWC Figure 5. Comparisons of observed and simulated 41°Pb profllés dl)mng three NASA aircraft campaigns: (a) TRACE-P, (b)
reduces the fraction experiencing In-cloud SCavenging (|.e., F). PEM-West A, and (c) PEM-West B. P values indicate the overall percentile differences between simulated results and
g Y observations.
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CEOS-Cher Model and Data 4 Conclusions

® v11-01 driven by MERRA. MERRA variables involved in cloud scavenging are new ||* Lead-210 di_stribution and Iife_tim_e I thg atmosphere are not sensitive to_ice in-cl_ouc_l scavenging In convective_
precipitation formation, precipitation flux, precipitation evaporation, cloud mass flux, updraft. Ice in-cloud scavenging in stratiform clouds reduces tropospheric %1°Pb lifetime by ~ 1 day and results Iin
entrainment in convective updraft. better agreements with observed surface observations and aircraft measured profiles. However, the process results in

® 2°x 2.5° horizontal resolution and 47 vertical levels. significant underestimate of 21°Pb in UT/LS.

® Rn-Pb-Be simulation option with Radon emission defined by Jacob et al. [1990]. * Increase in cloud water content by 50% leads to an increase of 21°Pb lifetime by ~ 1 day, largely due to the increase In

210Pph Observations 210Ph concentrations at mid/high latitudes.

® Latitudinal surface 2°Pb distribution compiled by Preiss et al. [1996] » Mixed-phase in-cloud scavenging for stratiform clouds has a reducing impact on the 2°Pb lifetime by ~ 1 day. Results

® RANDAB is a radionuclide database compiled from high-altitude aircraft and bolloon match better with the Preiss surface observations and aircraft profiles. This suggests that such process (i.e., Impaction)
measurements conducted during 1950s-1980s. It has specifically been used to evaluate needs to be incorporated in models.

I 210 I . . _ _ _ _ _ _

. simulated “Pb in the upper troposphere and lower stratosphere (UT/LS). »  Comparisons with NASA aircraft 219Pb profiles suggest the estimated tropospheric 219Pb lifetime should be close to
NASA aircraft campaigns: | | 7.4-8.3 days. Further analyses against the rest of aircraft campaigns will provide a better constraint on the estimate.
PEM-West A, PEM-West B, TRACE-P, PEM-Tropics A, PEM-Tropics B, SUCCESS Future work

PEM-T%SDIE@ lﬁiiﬁﬁ; I,.'}l.IE,ZEQNAp‘E’MITIr\oIlsEBé'aBF’nglgis, derehnoni 1995 TRAGE.P DG.8 it Tracke (#a.420), Fesaor 2001 | | © DETErMINE the sensitivity of simulated 21°Pb in different regions / latitudes to changes in cloud scavenging parameters;

e " SEpe—— Ve A7 e » Adjust parameterizations based on current findings to better match NASA aircraft observations;

i S R s e e f  Obtain a global mean 2°Pp lifetime constrained by all NASA aircraft campaigns.
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