Precipitation scavenging is the dominant loss process for a whole suite of aerosols but model parameterizations of this process are highly uncertain, substantially contributing to large uncertainties in the simulated loadings and radiative forcing of aerosols. Lead-210 (²¹⁰Pb, radioactive half-life of 22.3 years) is produced by radioactive decay of soil-emitted gaseous ²²²Rn. It attaches to ambient submicron aerosols and is subject to precipitation scavenging processes. Liu et al. [2001] estimated the global mean lifetime of tropospheric ²¹⁰Pb aerosols to be \sim 9 days using the GEOS-Chem model. More detailed treatments of precipitation scavenging processes (e.g., scavenging in ice and mixed-phase clouds) have recently been developed and applied to the model [Wang et al., 2011, 2014], and may alter the ²¹⁰Pb distribution and lifetime. In addition, NASA aircraft campaigns over the past two decades have provided substantial records of ²¹⁰Pb profiles around the world. In this study, we use these datasets to constrain aerosol scavenging parameterization in GEOS-Chem and to estimate observation-based ²¹⁰Pb aerosol lifetime.

> *Assumed linear removal:* $\Delta{\cal C}_{\bm i}$ $\Delta \boldsymbol{t}$ $= \mathbf{F} \cdot \mathbf{a} \mathbf{k}_i \cdot \mathbf{C}_i$

- C_i is the mixing ratio of tracer *i* (e.g., ²¹⁰Pb);
- F is the areal fraction that actually experiences precipitation;
- k_i is the assembled scavenging coefficient accounting for various scavenging processes. a is a temperature (T) dependent coefficient, given in the form of a 3-element vector representing efficiencies for $T < 237$ K, 237 $K < T < 258 K$, and $T > 258 K$.

- updraft. Ice in-cloud scavenging in stratiform clouds reduces tropospheric ²¹⁰Pb lifetime by ~ 1 day and results in better agreements with observed surface observations and aircraft measured profiles. However, the process results in significant underestimate of ²¹⁰Pb in UT/LS.
- Increase in cloud water content by 50% leads to an increase of $210Pb$ lifetime by ~ 1 day, largely due to the increase in ²¹⁰Pb concentrations at mid/high latitudes.
- Mixed-phase in-cloud scavenging for stratiform clouds has a reducing impact on the ²¹⁰Pb lifetime by ~ 1 day. Results match better with the Preiss surface observations and aircraft profiles. This suggests that such process (i.e., impaction) needs to be incorporated in models.
- Comparisons with NASA aircraft ²¹⁰Pb profiles suggest the estimated tropospheric ²¹⁰Pb lifetime should be close to 7.4-8.3 days. Further analyses against the rest of aircraft campaigns will provide a better constraint on the estimate. **Future work**
- Determine the sensitivity of simulated ²¹⁰Pb in different regions / latitudes to changes in cloud scavenging parameters;
- Adjust parameterizations based on current findings to better match NASA aircraft observations;
- Obtain a global mean ²¹⁰Pb lifetime constrained by all NASA aircraft campaigns.

Parameterizations of precipitation scavenging

Other related parameters:

• Cloud water content (CWC, having unit of $\frac{cm^3}{\sqrt{m_0^3}}$ water \overline{cm}^3 air∙s). It is considered as a constant parameter, which defines water density of cloud. It consists of liquid water content and ice water content, and the allocation is temperature dependent. For a given rate of precipitation formation, increase in CWC reduces the fraction experiencing in-cloud scavenging (i.e., F).

Experiments

Simulated annual zonal mean

Comparison with ²¹⁰Pb obs. @ surface (Preiss et al.) and UT/LS (RANDAB)

Comparison with ²¹⁰Pb profiles

PEM-West A, PEM-West B, TRACE-P, PEM-Tropics A, PEM-Tropics B, SUCCESS SONEX, TOPSE, INTEX-NA, INTEX-B, TC4 FRACE-P DC-8 Flight Tracks (#4-#20), Feb-Apr 2001

Conclusions

• Lead-210 distribution and lifetime in the atmosphere are not sensitive to ice in-cloud scavenging in convective

Introduction

Model and Data

• v11-01 driven by MERRA. MERRA variables involved in cloud scavenging are new

Results and Discussion

GEOS-Chem

precipitation formation, precipitation flux, precipitation evaporation, cloud mass flux, entrainment in convective updraft.

- 2°× 2.5° horizontal resolution and 47 vertical levels.
- Rn-Pb-Be simulation option with Radon emission defined by Jacob et al. [1990]. **²¹⁰Pb Observations**
- Latitudinal surface ²¹⁰Pb distribution compiled by Preiss et al. [1996]
- **RANDAB** is ^a radionuclide database compiled from high-altitude aircraft and bolloon measurements conducted during 1950s-1980s. It has specifically been used to evaluate simulated ²¹⁰Pb in the upper troposphere and lower stratosphere (UT/LS).

• NASA aircraft campaigns:

References:

Figure 4. Comparisons of observed and simulated latitudinal distributions of annually averaged ²¹⁰Pb concentrations at surface (a) and UT/LS ((b) for 12-16 km level and (c) for 16-20 km level). The observed distribution is calculated by *averaging observations from the Preiss et al. (1996) database and the US Environmental Measurement Laboratory* RANDAB database into 10° latitude bins. Error bars represent ±2 times the standard error of the averages. Simulated distributions were obtained by sampling model output at observation locations and then treating model output in the same *manner as the observations.*

- Jacob, D. J., & Prather, M. J. (1990). Radon‐222 as a test of convective transport in a general circulation model. *Tellus B*, *42*(1), 118-134.
- Preiss, N., Mélières, M. A., & Pourchet, M. (1996). A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. Journal of Geophysical Research: Atmospheres, Liu, H., Jacob, D. J., Bey, I., & Yantosca, R. M. (2001). Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. Jour
- *Atmospheres*, *106*(D11), 12109-12128. Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., ... & Doherty, S. J. (2011). Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications fo *Physics*,*11*(23), 12453-12473.
- Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., ... & Barrett, S. R. (2014). Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observati *Research: Atmospheres*, *119*(1), 195-206.
- **Acknowledgement:** This study is funded by NASA ACCDAM program (NNH13ZDA001N-ACCDAM).

Constraints From Airborne ²¹⁰Pb Observations on Aerosol Scavenging and Lifetime in a Global Chemical Transport Model *Bo ZHANG¹ (bo.zhang@nianet.org), Hongyu LIU¹ (hongyu.liu-1@nasa.gov), James H. CRAWFORD² , Duncan T. FAIRLIE² , Gao CHEN² , Jack E. Dibb³ , Viral SHAH*⁴ , *Melissa P. SULPRIZIO⁵ , and Robert M. YANTOSCA⁵* [1] National Institute of Aerospace, Hampton, VA, USA, [2] NASA Langley Research Center, Hampton, VA, USA [3] University of New Hampshire, Durham, NH, USA, [4] University of Washington, Seattle, WA, USA [5] Harvard University, Cambridge, MA, USA

Table 1. Settings of experiments & features of simulated ²¹⁰Pb

Table 1. Parameterizations of the scavenging coefficient

Figure 3. Simulated annual zonal mean ²¹⁰Pb in the standard setting of GEOS-Chem (a) and the percentile differences (− **Std** *as a result of changes in scavenging parameterizations: CWC15 (b), cvrain000510 (c), lsrain000010 (d), and lsrain100510 (e).*

)

National

AEROSPACE

PEM-West A, and (c) PEM-West B. P values indicate the overall percentile differences between simulated results and observations.

Figure 1. Life cycle of ²¹⁰Pb in the troposphere.

Figure 2. Flight tracks for three NASA aircraft campaigns investigated in this study. Black rectangles indicate groups of data for examining regional characteristics of precipitation scavenging of aerosols.

WPLL-NA

