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As spaceflight durations have increased over the last four decades, the effects of 

weightlessness on the human body are far better understood, as are the countermeasures. A 

combination of aerobic and resistive exercise devices contribute to countering the losses in 

muscle strength, aerobic fitness, and bone strength of today’s astronauts and cosmonauts  

that occur during their missions on the International Space Station. Creation of these 

systems has been a dynamically educational experience for designers and engineers. The 

ropes and cables in particular have experienced a wide range of challenges, providing a full 

set of lessons learned that have already enabled improvements in on-orbit reliability by 

initiating system design improvements. This paper examines the on-orbit experience of ropes 

and cables in several exercise devices and discusses the lessons learned from these hardware 

items, with the goal of informing future system design.  

 

I.  Introduction 

The human body experiences several changes after a short period of time in a microgravity environment. For 

example, the body experiences much lighter loads, resulting in a loss of bone and muscle mass.  For crewmembers 

that remain on-orbit for an extended period of time, the losses of bone and muscle accumulate and crewmembers can 

begin to experience serious effects. [1] 

The National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International 

Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the 

human body.  Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and 

wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, 

including challenges in simulating microgravity environments for testing and limits on time available for life cycle 

testing, this equipment has experienced a number of on-orbit operational cable failures.  As a result, continued 

ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and 

lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. 

This paper presents a review of the development and failure history of textile and wire ropes for four exercise 

countermeasure systems—the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer 

with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the 

Advanced Resistive Exercise Device (ARED)—to identify lessons learned in order to improve future systems. These 

lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time 
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and up-mass for future space missions.  (Note – The Second Generation ISS Treadmill (also called “T2”) is not 

discussed as it does not utilize ropes as significantly as these devices, and the ropes that are used do not have any 

failure history.)  

II. System Descriptions 

The following sections provide a description for each system so as to enable a better understanding of the 

context of the rope failures and the lessons learned.  

A. TVIS   

The TVIS system was first deployed in 2000 and provided aerobic conditioning by simulating Earth’s 

gravitational force (1-g) running or walking on a treadmill in the microgravity environment of the ISS. With 

appropriate loading, treadmill exercise also provided impact forces and maintained neuromuscular and postural 

mechanisms.   

The Vibration Isolation and Stabilization (VIS) System minimized the transfer of dynamic forces caused by 

treadmill exercise to the structure of the Russian Service Module (SM) and other parts of the ISS, while at the same 

time maintaining a stable running/walking surface. The VIS components were software controlled and worked in 

unison to counteract the pitch and roll forces imparted and to provide a flexible mechanical connection to the ISS by 

stabilizing TVIS against excessive motion caused by exercise. The active components of the VIS System were the 

gyroscope, four linear slide-mass stabilizers, four motor controllers and a VIS controller. The running surface of the 

treadmill was used in much the same way as any conventional terrestrial treadmill, except the user was held to its 

surface by the Series Bungee System (SBS) and/or the Subject Load Device (SLD), which each attached to the 

Treadmill Harness to counter the microgravity environment. TVIS served on ISS until 2013, at which time it was 

replaced with the Russian BD-2 treadmill [2].  Figure 1 shows a schematic of the TVIS, while Figure 2 shows the 

TVIS in use on ISS, including the SBS.  

 

 

Figure 1. TVIS System. 
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Figure 2. TVIS in use on ISS. 

B. CEVIS   

While the TVIS provides the ability to run or walk in microgravity, the CEVIS system provides cycling aerobic 

exercise, in either a recumbent or upright posture.  CEVIS is also used for pre-breathe operations prior to an 

Extravehicular Activity (EVA), periodic fitness evaluations, and pre-landing fitness evaluations. The CEVIS 

Ergometer can be controlled electronically via protocols in a control panel, or it can be manually controlled by the 

subject.  The Control Panel displays real-time subject data, including heart rate, speed, and workload.  Two Inertial 

Vibration Isolation and Stabilization Boxes are attached at either end of the Ergometer and provide passive 

mechanical counter-inertia to the forces imparted by the riding subject. These minimize forces imparted into the 

CEVIS frame and hence into the ISS structure via wire rope isolators located in each of the four corners. CEVIS was 

deployed on ISS in March 2001 and continues to be in service.   Figures 3 and 4 shows the CEVIS schematic and 

the CEVIS in use in an upright posture, respectively [3].   

 

 

Figure 3. CEVIS System. 
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Figure 4. CEVIS in use on ISS. 

C. IRED   

Aerobic exercise is one powerful countermeasure to microgravity effects, but additionally, resistive exercises are 

needed to prevent both muscle and skeletal atrophy.  To provide ISS astronauts an interim resistive exercise 

capability, the IRED was developed and was in service from May 2000 until ARED was installed in January 2009. It 

had a capability of 320 pounds of resistive load using two canisters. The canisters contained rubber spring flexpacks, 

which when rotated about a center shaft, provided resistive load to the user via a rope and pulley system. The load 

adjustment was created by turning a hand crank and preloading the flexpack stack to the desired load. IRED did not 

contain vibration isolation features or a capability to record data to verify device performance. Figure 5 shows the 

elements in the canister used to provide resistance as well as the IRED in use [4].    

 

 

 
 

IRED Canister Exploded View      IRED in use on ISS  

Figure 5.  IRED Figures 
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D. ARED  

IRED provided an interim capability until the ARED was ready for use.   Today, the ARED is the primary 

resistive exercise device on ISS, utilizing two vacuum cylinders to provide workload. The ARED system 

incorporated multiple improvements to the IRED hardware, including increased load to 600 pounds, a more 

desirable load characterization, vibration isolation, lower maintenance requirements, and greater ease of use and 

reliability. It provides bar and cable (rope) exercises, much like ground gym equipment, and it contains an inertial 

flywheel system to simulate the feel of 1-g free-weights. ARED was deployed in January 2009 and continues in 

service.   Figure 6 shows the ARED as it is used on ISS [5].  

 

 

Figure 6. ARED in use on ISS. 

 

III. Failure History and Lessons Learned 

Ropes and cables are used for three purposes on ISS exercise systems:  to provide the primary tensile resistance 

load path, to provide isolation between the exercise system and the ISS structure in a flexion/bending application, 

and as tethers.  This section discusses the failure history and corrective actions for each functional area. 

A. Primary Tensile Resistance Load Path 

1. IRED 

The design for IRED included a spiral outlet pulley to counter the spring constant and provide uniform load, 

which required a strong, durable, and lightweight cable. Several materials were considered, but the need to have a 

low-stretch cord focused the search to a few polymer rope options. With Johnson Space Center (JSC) located close 

to Galveston Bay and the Gulf of Mexico, the sail rigging shops in close proximity became an advantage to the 

IRED team, as the mechanics of the canister and cord were similar to the rigging of a sailboat. The technicians in the 

sailing shops were not only familiar with the material properties of certain cords, but they also knew which ones 

were more durable and best fit the application of the IRED. They shared their knowledge on rope splices and 

eyelets, proper needle selection for stitching, and whipping techniques to make the cords streamlined and durable. 

After consulting with the sailing riggers, two candidate cord materials were recommended for evaluation. The first, 

made of 1/8 inch AracomT®, was tested in the IRED cord life-cycle test rig. This rig consisted of two spiral pulleys, 

wound with cords attached to bags of lead shot weighing 150 pounds each. This allowed two cords to be tested at a 

time. The IRED pulleys were coated with Poly-Lube® to prevent corrosion and provide a slick surface, preventing 

wear and binding on the ropes. The AracomT cord broke at only 6,930 cycles, which was less than a week of cycles 

for three ISS crewmembers, well below the acceptable threshold of service life. The next cord tested was made of 

1/8 inch Edelrid Dyneema®, and it broke at 214,060 cycles, which using a scatter factor of 4, allowed it to be 

certified to 53,515 cycles with 2-week inspections for damage. (Note:  the structural analysis community typically 

recommends a scatter factor of 4 for structure/safety-critical applications, and a factor of 2 for non-structure/non-

safety critical applications).  This would allow each cord to be used for approximately 3 months on orbit before 

replacement would be required, dependent upon the number of crewmembers and their daily usage rate. This was 
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acceptable to the ISS Program, and this cord was selected for the IRED flight design.  Figure 7 shows a diagram of 

the IRED Spiral Cord Pulley along with the cord life cycle test equipment.  [6,7]. 

 

                  

  

 

Figure 7.  IRED Spiral Pulley with Cord and Life Cycle Testing Support Equipment 

Failures of the IRED canister cords led to slight evolutions in the design and insight into how to conduct 

verifications. A Dyneema cord broke early in the IRED life-cycle testing, raising doubt about the robustness of the 

design. Confidence was restored when a burr was discovered on a spiral pulley that had been installed into the test 

rig, which resulted in accelerated erosion to the cord sheath over a short time. Had this pulley been properly 

inspected, the cord would have reached its expected life. Another failure mode involved premature breaking during 

proof load testing for a certain batch of canister cords. An investigation uncovered that the number of stitches 

inserted into splice at the terminal end of the cords was out of specification and that too many splice stitches 

weakened the cords. The drawing and fabrication procedures were updated to tighten the tolerance on the number of 

splice stitches, and subsequent batches of cords never experienced this failure again [8,9,10]. 

2. ARED 

ARED has rope failures in two areas:  workload ropes, and the upper stop cable.  The next sections will address 

each area, in turn.   
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a. Workload Ropes 

The ARED uses two different types of ropes to achieve workload for the user during cable exercises, the cable 

arm ropes and the exercise rope. The load on the cable arm ropes is provided by the resistance of the vacuum 

cylinders through the cable arm and is transmitted to the exercise rope through a series of pulleys and belts. The 

cable exercise system was designed so that the two cable arm ropes experience a higher load than the exercise rope. 

The cable arm rope pulleys have a conical profile that the rope winds around. This design mitigates the effective 

change in length of the cable arm moment arm as it moves through its stroke, which, in turn, maintains a constant 

load on the exercise rope. The pulleys in the ARED are coated with TUFRAM® to prevent corrosion and provide a 

slick surface, preventing wear and binding on the ropes. The ropes utilize splicing where the fibers are woven into 

themselves, creating a friction retention that tightens as forces are applied.   Figure 8 shows the ARED rope and 

pulley system.   

 

 

 
Figure 8. ARED Rope and Pulley System 

 

The initial design phase specified a rope material that exhibited the least amount of stretch possible. After 

consulting with a local sail rigging shop, the initial rope materials chosen for evaluation were Dyneema and 
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Vectran®. Dyneema was selected based on the vendor’s recommendation and prior experience on IRED. When 

tested under identical loading conditions, identical lengths of the Dyneema rope stretched 6 inches, whereas the 

Vectran rope stretched only 2 inches. Even though both materials were found to have similar strength and abrasion 

resistance, Vectran was chosen for life cycle testing due to the difference in elongation. 

The life-cycle testing was conducted on 3/8 inch diameter cable arm ropes and yielded a failure of 138,612 

cycles. The 80-inch ropes had breakage about 24 inches from the end near the cam pulley. A broken Vectran rope 

was submitted to JSC Materials and Process Branch for failure analysis, and the analysis concluded that the failure 

was caused by flex fatigue and abrasion from the pulleys during the life-cycle testing. Based on the test results and 

lower stretch characteristics, the Vectran cable arm ropes were certified using a scatter factor of 2 for 69,306 cycles, 

which was initially projected to last greater than 6 months for 3 crewmembers. Subsuquently, the actual 

consumption rate was higher, so they currently last approximately 3-4 months for 6 crewmembers.  Figure 9 

provides a photograph of a failed Vectran ARED Cable Arm Rope after initial life cycle testing. 

 

 

Figure 9. Failed ARED Cable Arm Rope  

Due to the success in testing of the Vectran Cable Arm Rope, Vectran was also selected for the initial Exercise 

Rope life cycle test.  The 1/4 inch diameter Vectran exercise ropes yielded a failure at 63,002 cycles. The rope broke 

about 60 inches from the exit pulley end, the point that travels through the platform pulleys. Based on test results 

and using a scatter factor of 2, the rope was certified for 31,501 cycles, which would initially last approximately 4 

months for 3 crewmembers. Subsuquently, the actual consumption rate was higher, so they lasted approximately 

2 months for 6 crewmembers. 

After several years of use and significant accumulated maintenance time to change out the exercise ropes 

approximately every 6 weeks, the ISS Program requested that the team investigate another rope design that would 

provide longer life between change-outs. Due to the flex fatigue failures seen during tests of Vectran ropes, local 

sailing rigging shops recommended evaluating a polyester rope for the ARED application. Although polyester 

stretches more than Dyneema or Vectran, a rope with a polyester core and polyester sheath was believed to be more 

resistant to flex fatigue than Vectran. A life-cycle test using the 1/4 inch diameter polyester core and polyester 

sheath rope was conducted, and the new design survived 485,434 cycles without a failure. The design was certified 

using a scatter factor of 2 to 242,717 cycles, which is equivalent to approximately one year of service life in the 

ARED. The rope stretched only 2 inches during the initial test phase.  The rope was certified, flown, and installed on 

orbit in July 2011. [11]. 

Failures of the ARED workload rope led to two improvements in the design. The first failure occurred in the 

Vectran exercise rope design on ISS. As the rope was cycled over time through the outlet pulleys, the splice grew in 

diameter due to end (tail) of the rope working its way back through the braid.  This caused the splice to wedge in the 

pulleys and added tension to the system, which caused the cable arms to pop out of the detents during bar exercise. 

This was corrected by loosening the tension on the cable arm ropes and allowing the exercise rope splice to no 

longer retract into the pulleys. This issue, along with the short life of the Vectran exercise rope, helped justify the 

new polyester exercise rope redesign. The second failure of an exercise rope occurred on ISS with the polyester 
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rope. In January 2012 the crew was exercising and noticed that the splice had come apart, rendering the rope 

unusable. This condition was never observed on the ground during testing, but the possibility of manual 

manipulation during zero-load conditions of the splice could have caused the splice to come apart, as without load 

on the rope, the fibers tend to loosen slightly. Based on this failure, the ISS Program and the CMS team decided to 

stand down on use of the polyester rope on orbit and install the Vectran rope as an interim workaround. After a 

redesign effort, including consulting with the rope supplier, the team decided to add a lock stitch to the rope splice in 

order to prevent the splice from coming apart during zero-load conditions. After the design was fabricated, the life 

cycle test was reinitiated with the new rope design and certified to the same cycle count as the previous polyester 

rope design (242,717 cycles).  The updated polyester rope design was installed on orbit in September 2014 and 

continues in use currently.  The life cycle test continues currently, and as of August 2015, the rope was certified for 

481,958 cycles, which equates to approximately 2 years of operational life.   Figure 10 provides several images of 

ARED exercise rope designs and related failures.  [12,13] 

 

   
               Vectran Rope Wedged in Pulley                                              Polyester Rope Installed 

 

    
           Polyester Rope Splice Pull-Out                                  Polyester Rope With Lock Stitch 

Figure 10. ARED Exercise Rope Designs and Related Failures  

b. Upper Stop Cable  

The second type of ARED rope failure was in the Upper Stop Cable.  The ARED bar contains a mechanism that 

allows it to latch into an upper position in order to perform exercises that begin in a standing position, such as squats 

and heel raises. A spring actuated pawl swings and latches against a plate fastened to the ARED frame. The 

crewmember actuates the upper stop mechanism by lifting the bar and changing the angle between the main arm 

section and the vertical adjustable lift bar slides. The sliding linkage, including the upper stop cable made of 

Teflon®-coated 1/8 inch wire rope, provides the means for the crewmember to release pawl by changing the angle 

of the lift bar and the main arm.  Figure 11 shows the ARED Upper Stop Actuator Cable Mechanism [5]. 
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Figure 11.   ARED Upper Stop Actuator Cable Mechanism 

 

The upper stop cable has been an area of multiple failures since ARED was put into service in 2009. The failure 

typically begins as a bent or kinked cable and progresses to a broken or frayed cable, halting all exercises performed 

from the upper stops. This problem had a history of occurring approximately every 2 years, requiring the cables be 

replaced with new units, but in late 2014 into early 2015, a series of rapid-succession failures occurred on the upper 

stop cables on both the left and right sides. This initiated a root-cause investigation, and it was concluded that the 

mechanics of the mechanism applies a push force on every repetition of bar exercise as the pawl follows the bottom 

edge of the upper stop plate. However, the forces applied to the upper stop cables were never intended to be push 

forces. They were only intended to operate in tension. The fatigue resulting from the cycling of this push force 

eventually causes a kink in the cable, which erodes the Teflon sheath on the cable housing, and eventually causes it 

to fray or break, halting upper stop exercises until it can be replaced. As a result of the findings, the crew was 

requested to increase their frequency of inspections, and the engineering team launched additional spares to ISS.  A 

redesign of the upper stop mechanism to eliminate the push forces is currently in work, and life-cycle testing will be 

used to compare the life of the old and new designs. (Note:  There was no life cycle testing performed on the upper 

stop hardware) ARED Upper Stop Cable Failures on ISS are depicted in Figure 12 [14,15]. 

.  

               

Figure 12.  ISS ARED Upper Stop Cable Failures  

3. TVIS SLDs 

The TVIS SLDs were the primary subject restraint system hardware and were attached to the sides of the 

treadmill chassis. Prior to exercise, the crewmember would don the TVIS harness, clip the harness y-straps or attach 

the SBS to the respective end stops on the SLD’s cables. The SLD pair provided loading from 40 to 220 pounds, 

adjustable via control panel entry or protocol. Each SLD was instrumented with a load cell, which measured tension 

in the cable attached to the subject. The load variation of the SLD is approximately 6 lb/in. of cable extension. In the 

initial SLD design the cable exited the SLD housing at the top plate from a non-fleeting, fixed position exit pulley. 

Due to failures discussed in the subsequent section, the pulley was upgraded to fleeting pulley in 2005 due to 

varying cable angles produced by crewmembers not using the TVIS Subject Positioning Devices (SPDs).  The 
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cables on the SLDs were 1/8 inch galvanized steel cable with a nylon sheath   Figure 13 shows an exploded view off 

the TVIS SLD [2]. 

 

Figure 13. TVIS SLD – Exploded View 

The first set of SLDs went into service with the rest of the system in November 2000. On July 30, 2001, the crew 

reported that the SLD cable nylon sheath had worn away from the wire rope portion of the cable, causing the cable 

to jam. The root cause was determined to be off-axis cable loading and cable sheath abrasion due to TVIS exercise 

without the crew using SPDs. Passive exercise caused the subject to lean forward to manually drive the treadmill 

belt.  As an interim workaround, the crew installed the SLD eyebolts and used SBSs for loading as a contingency. 

New SLDs were flown and installed in December 2001. In March 2002 the crew reported scraping noises coming 

from the second set of SLDs and noted asymmetric loading between the SLDs. These were removed from service, 

and again, the SBSs became the backup loading mechanism. A post-flight inspection revealed that exit pulley 

bearings and load cell pulley bearings had failed. This damage was caused when the SLD cable jumped off of the 

exit pulley during passive exercise on the TVIS System, again without the crew using SPDs. The bearings were not 

able to handle the off-axis loads and failed prematurely. In September 2006 the left SLD of the third set of SLDs 

installed on ISS experienced a failure where the cable end stop detached from the SLD cable during exercise.  The 

cable end stop remained attached to the crewmember’s harness, and the free end of the cable retracted into the SLD 

housing.  Visual inspection determined that the wire rope had separated from the ball shank termination that was 

swaged to it.  Suspected causes were failure due to an improper crimp or a material defect, but the failed 

components were lost in transit from ISS to JSC, so no ground analysis was performed.  Additionally, the post-

fabrication verification pull test records could not be found by the external vendor.  As a result the SLD drawing was 

updated to include a mandatory inspection point for the post-swage pull test, and all subsequent SLD cable swages 

were inspected using X-rays to verify proper crimping.  A series of redesign efforts and life cycles tests were 

performed between 2003 and 2009, and changes were made to the SLD design to increase the pulley size, update the 

bearings, and add a rotating and fleeting exit pulley to prevent off-axis loading of the bearings. A final redesigned 

SLD was installed on orbit April 23, 2009, and the failures did not reoccur.  Figure 14 shows a damaged TVIS SLD 

cable and the new fleeting pulley design [16,17,18].  
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Figure 14. Damaged TVIS SLD Cable and Fleeting Pulley Design  

B. Flexion/Bending Applications 

Exercise systems need to be isolated from the ISS structure to prevent fatigue on vehicle components, and to 

prevent disruption of science experiments.  Wire rope isolators are an effective method of adding isolation to 

components or even whole systems of the exercise equipment with medium to high cadence (greater than 1 Hertz) 

activity and movement. The isolators are lightweight, somewhat durable, and require no power to isolate a system 

during use. The following sections detail the CMS hardware applications utilizing ropes in a flexion or bending 

method and the associated failure modes encountered during the ISS mission. 

 

1. CEVIS Isolators   

The CEVIS isolators are wire rope egg-beater type devices that provide the only structural attachment between 

the CEVIS frame assembly and the ISS US Lab rack using seat track adapters. They contain 12 strands of 1/16 inch 

wire rope without sheathing, and an isolator assembly is attached at each of the four corners of the CEVIS frame to 

minimize the vibrations transmitted from the CEVIS system to the ISS structure during operation. The isolators were 

not initially assigned a limited life, and they are changed out on an as-needed basis when more than 8 out of 12 wire 

ropes are severed in a single isolator. The isolators are inspected every 3 months and have had a service life varying 

from 1 to 3 years.  CEVIS isolators used on ISS are shown in Figure 15 [3].  
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Figure 15. CEVIS Isolators on ISS 

Over the service life of CEVIS, inspections are conducted every 3 months to check the status of the isolators. 

The wire ropes have periodically broken due to fatigue at the clamp point, as a stress concentration exists at that 

point when the wire ropes are flexed, but they can remain in service if eight or less wires are severed. Once the 

eighth wire breaks, the unit is replaced. The crew on Expedition 6 added rolled sock-balls inside the wire cage to 

help reduce movement during the EVA exercise pre-breathe activity, which purges the body of nitrogen before a 

spacewalk is conducted. This requires rigorous pedaling and movement with the arms, which makes the CEVIS 

riding very unstable without the socks. They also act as bump stops and prevent severe bending of the wire ropes.  

The clamp plates of the CEVIS Isolator were redesigned in 2011 to add a chamfer to the edge of the hole where 

the wire rope passes through the plates, thus reducing the stress concentration at that point. This small change has 

increased service life of the isolators substantially, and the true service life is still being evaluated, as only one wire 

has failed on one isolator in almost 4 years of use.  Figure 16 shows the results of a trending spreadsheet tool that 

documents the number of severed wire ropes of a given set of CEVIS Isolators versus time of service.  The graph 

clearly shows that the new design (magenta lines) is a dramatic improvement [19].  Figure 17 shows the before and 

after pictures of the CEVIS Isolator design change. 

 

 

Figure 16. Service life of isolators. 

New design  
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 Old design with no chamfer New design with chamfer 

Figure 17.  Whole edges where wire ropes pass through clamp plates. 

2.  TVIS Gyroscope Wire Rope 

The TVIS Gyroscope Assembly is used to stabilize the TVIS System from excessive roll motion during 

operation and provides current peak smoothing of the TVIS System power sources.  The Gyroscope has a vertical 

spin axis and pivot bearings positioned in the pitch direction to allow for the required precession during operation. 

The TVIS gyroscope incorporated two (one per side) 1/8 inch swaged wire rope assemblies that aided in restoring 

the gyroscope back to its neutral position and prevented excessive movement. The thought was that the wire ropes 

would act as a spring and dampen out extreme motion before the gyroscope pivots hit the hard stops. The gyroscope 

wire rope originally was not assigned a limited life, and no spares were launched, but after failures on orbit, a 

certified operational life of at least 250 hours was derived based on historical data and maintenance inspections. This 

equated to approximately 9 months with three crewmember use. The gyroscope wire ropes could continue in service 

past the 250-hour limit if monthly inspections were performed. The wire ropes were required to be changed out, at a 

minimum, every year. In the event that the gyroscope wire ropes were severed, gyroscope motion increased, 

resulting in contact with the gyroscope blue rubber bumpers, which acted as the secondary damping system. Once 

wire rope damage was identified, both wire ropes were replaced prior to resuming TVIS System operations.  Figure 

18 shows the TVIS gyroscope wire ropes as configured for ISS use [2].  
 

 

Figure 18. TVIS Gyroscope Wire Ropes 
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Unexpected damage to the gyroscope wire ropes was first observed in a TVIS treadmill removal and 

replacement activity in October 2002, about 2 years after TVIS was first operated. Root cause was determined to be 

a combination of incorrect installation of the clamping plate, which pinched the ropes, and cyclic fatigue due to 

stress concentrations at the clamp plate. This established a new requirement for a 1-year limited life on the wire 

ropes.  New wire ropes were launched to ISS to replace the damaged ropes, and they were subsequently replaced 

every year as a maintenance activity.  Figure 19 shows a failure of a TVIS Gyroscope Wire Rope [20].  
 

 

Figure 19. Failed TVIS Gyroscope Wire Rope  

3. TVIS Stabilizer Wire Ropes 

The TVIS Stabilizer wire ropes centered the TVIS System in the SM pit, provided an attachment point to the SM 

structure, and isolated forces from being transmitted to the ISS.  Each corner assembly contained one textile Kevlar® 

(later Vectran) stabilizer protection tether and four 1/16 inch steel wire ropes to limit the travel of the movement 

within the pit. The wire ropes were attached to the TVIS stabilizers via a terminal ball-swage inserted into a slot 

with a fastened cover plate to retain them. They were mounted on the opposite end in a similar fashion to rails that 

mounted to the corners of the SM pit.  Figure 20 provides a photograph of the TVIS Stabilizer Corner Bracket 

Assembly including the Wire Ropes. 
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Figure 20. TVIS Stabilizer Corner Bracket Assembly Including Wire Ropes   

 

The steel wire ropes and Kevlar over-travel protection ropes did not originally have a limited life assigned to 

them and no spares were stored on-orbit. Damage observed by the crew on Expedition 1 in February 2001 due to the 

Kevlar stabilizer protection tether severing highlighted the need for maintenance on the ropes. The protection ropes 

were originally made of Kevlar, but their load rating was below the applied forces on orbit. After a short ground 

evaluation, the Kevlar design was replaced with Vectran, which had five to six times the break strength of the 

Kevlar rope, replacements were launched to ISS, and the failure was never observed again. During the same call-

down as the Kevlar rope severing, the crew reported that multiple stabilizer wire ropes were damaged or severed.  

The subsequent investigation concluded that the failure could be contributed to three causes.  First, the failure of the 

Kevlar over-travel protection rope allowed the wire ropes to become taut and experience the full load of the 

treadmill chassis pulling on them.  Second, it was determined that excessive clamp force between the rope clamp 

assembly and the stabilizer interface deformed the wire rope, causing premature fatigue.  Third, the sharp bend 

radius imposed on the wire rope also caused the failure at the point of greatest cycling fatigue.  As a result, spares 

were launched to ISS, the damaged wires were replaced, and spares were maintained onboard for the duration of the 

remaining TVIS service.  The TVIS Stabilizer Corner Bracket Assemblies were inspected monthly and the wire 

ropes were replaced when at least half were severed.  A redesign was a possibility, but the ISS Program chose to 

resupply the ropes and change them out periodically when damage was observed. After the Vectran over-travel 

protection rope was installed, stabilizer wire ropes typically lasted ~3 years between change-outs.  A failed TVIS 

Stabilizer Corner Wire Rope is shown in Figure 21 [21,22].    
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Figure 21. Failed TVIS Stabilizer Corner Wire Rope 

 

C. Tethers 

Another application of wire ropes on ISS is the use of tethers to retain push-in-place (PIP) pins that are often 

removed from the hardware assemblies. These pins retain parts that need to be moved, adjusted, or folded. These 

tethers are typically made from 1/16 inch stainless steel wire rope material with a Teflon sheath, and they keep the 

pins from floating away in the microgravity environment, as a pin could be lost and the hardware rendered unusable. 

Examples of these PIP pins include the main arm pins that allow the ARED bar to be adjusted up or down to fit 

different heights of crewmembers, the VIS pins that lock the ARED VIS in place while the device is not being used, 

and the ARED hard stop pins that prevent retraction of the upper stop pawls in the deployed position to prevent the 

bar from going below the stops. The upper stop pins are a control for an identified in-flight hazard where the 

crewmember could potentially be injured by the bar during heel raises, which is typically the exercise performed 

under the highest loads [5]. 

1. Main Arm PIP Pin 

Crew reports in 2011 indicated that the main arm PIP pin tethers had frayed Teflon sheaths, but the underlying 

stainless steel wire ropes were intact. The crew was instructed to wrap the damaged area with tape to prevent 

potential sharp strands from coming in contact with crewmembers’ hands. The root cause could not be determined, 

but the most likely scenario, which has been observed in crew videos, is damage incurred during rotation of both 

main arms, instead of one at a time. When one arm is flipped, the pin can be observed and moved out of the way of 

being pinched between the main arm and slider track. When both arms are rotated simultaneously, the pins cannot 

both be observed, and pinching can occur, causing damage to the tether. The crew is trained to do single rotations 

and is aware of the damage that can occur. Spare tethers are on board the ISS in case replacement is required [23]. 

2. VIS PIP Pin 

Crew reports in 2012 indicated that the VIS PIP pin tethers had frayed Teflon sheaths, but the crew did not think 

the damage required tape to protect them from sharp frayed wire strands. The root cause could not be determined, 

but the most likely cause was the tethers being pinched between the pin and the VIS outer plate due to the pins not 

being temporarily stowed in the provided stowage slots when not inserted into the VIS. This would allow the pin to 

float and become pinched during ARED exercise. The crew was trained to temporarily stow the pins when not 

inserted, and spare tethers are on-board the ISS in case replacement is required.  Figure 22 shows a damaged ARED 

VIS PIP Pin Tether [24].  
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Figure 22. Damaged ARED VIS PIP Pin Tether 

 

3. ARED Hard Stop Pins (Heel Raise Pins) 

Crew reports in 2013 indicated that the ARED hard stop PIP pin tethers had frayed Teflon sheaths and wire. The 

crew was instructed to wrap the tethers with tape to protect them from contacting sharp, frayed wire strands with 

their hands. The root cause could not be determined, but the most likely cause was the tethers being pinched 

between the hard stop mechanism and upper stop plate.  This can occur when the pins are not temporarily stowed in 

the provided stowage holes when removed from the upper stop mechanism. This allows the pin to float and become 

pinched during ARED exercise. The crew was trained to temporarily stow the pins when not inserted, and spare 

tethers are on board the ISS in case replacement is required [25]. Figure 23 shows a damaged ARED Hard Stop Pin 

Tether. 

 

 

Figure 23. Damaged ARED Hard Stop Pin Tether 

 

IV. Analysis 

Given the critical need for ISS exercise systems to remain functional to protect crew health, on-orbit failures are 

treated with utmost urgency by the CMS project team.  In addition to failure root cause analysis and redesign, 

failures are examined at the aggregate level to identify overall trends.  These trends provide a basis for lessons 

learned, and the application of these lessons learned have resulted in success stories.   
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A. Lessons Learned Summary 

1. Primary Tensile Resistance Load Path 

Studying the failure history of ropes and cables used by CMS hardware identifies correlations in the failure 

modes, and using these lessons helps engineers to design future hardware with more durability and less maintenance 

time. Textile and wire ropes used in tension as load-bearing paths of resistance must have proper stitching and 

splicing at the terminal end to survive the harsh conditions of exercise operations. The cables, ropes, splices, and 

stitching must be tested on the ground using conditions mimicking those on the ISS, including a realistic load profile 

and hardware configuration, to accurately determine the limited life of the design. This prevents any variables from 

skewing results and allows the system to maintain the correct number of spares onboard to minimize down-time. 

Even with the knowledge gained by testing, the failures should be mitigated by pre-positioning spares onboard to 

minimize down-time, designing the hardware to allow on-orbit maintenance and replacement of limited life 

components, and involving experienced operational stakeholders during operational concept development to ensure 

the assumptions and requirements are valid.   It is a safe assumption that the ropes will be used outside of the 

concept of operations envisioned by the designer and stakeholders.  

 Matching material properties to the system application is also imperative to provide a durable design. Industry 

experts with experience in similar applications can provide valuable advice on materials selection, termination 

design, and help in matching pulley selection to the ropes used in the application. Pulley design and workmanship 

quality are crucial to the success of a rope performing to its full potential. Rope life is significantly reduced by rough 

surfaces on a pulley or a pulley that is not matched to the proper bend radius of the rope selected. Again, consulting 

with the vendors and industry experts can help guide the designers to proper application of a design. Also, designing 

adjustability into the pulley system can accommodate variability in rope length and stretching.  Researching and 

consulting with these experts at the beginning of a project can save considerable time and money due to not having 

to perform redesign and retest activities.   

Finally, workmanship testing performed by an external facility should have some oversight in the form of 

mandatory inspection points.  These inspections ensure the test is being conducted properly and that all test 

requirements are being met.  Factoring all of these lessons learned into the engineering process and allowing 

sufficient margins for the hardware and spares kept on orbit will allow the system to remain functional for a greater 

percentage of time. 

2. Flexion/Bending application 

Wire rope failures used in a flexion/bending application in VIS and other applications in the CMS hardware have 

been less predictable than the ropes and cables used in delivery of resistance loads. Cycle counts have been collected 

for resistive loads on systems like IRED and ARED, but vibration isolation systems do not experience predictable 

cycles, as they are highly dependent on the dynamic conditions imparted by the user and the exercise technique.  

The only way to mitigate failures of wire ropes used in these applications is to design the systems for on-orbit 

maintenance and replacement of these limited life components and to provide a conservative quantity of pre-

positioned spares onboard to protect for unexpected failures.   Additionally, understanding the exact forces and bend 

radius during use is imperative to selecting the proper rope for that specific application. For instance, had a push-

pull wire rope been selected for the ARED upper stop cable, the design would most likely be more durable and a 

redesign would not be required. An important correlation can be drawn in the failure modes of the CEVIS isolators, 

TVIS stabilizer wire ropes, and the TVIS gyroscope wire ropes. They all had premature, cyclic fatigue failures at the 

interface where the ropes and the retaining plates connected. Not only were all of these items certified without a 

limited life with no life-cycle testing, but they all had clamping plates with relatively sharp corners at the interface. 

Had these corners had a larger radius with a smoother transition to the bending point and less deformation due to the 

clamping force, they likely would have had a longer service life.  

3. Tethers 

The service life of wire rope tethers cannot be accurately predicted, as the life depends highly on crew usage 

practices.  The failures of the tethers can be mitigated by training the crewmembers to stow the pins properly when 

they are not inserted. Every failure of a PIP pin tether on the CMS hardware since the ISS mission started has been 

due to pinching and crushing of the tether between moving parts on the hardware. Keeping spare tethers on orbit 

ensures that the PIP pins are not lost or misplaced, as the tethers can be replaced when damage is observed and 
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before complete failure occurs.  Designing hardware that has temporary storage locations available when critical 

pins are not inserted will help reduce dependency on tethers and lessen the potential for damage to the tethers. 

B. Success stories 

These failures with their analysis and redesign activities have led to significantly improved performance that can 

be leveraged for future applications. For example, the ARED polyester exercise rope has greatly reduced the amount 

of maintenance required to change out the rope, as it has been in service for over 2 years and still shows no sign of 

wear. The design of this rope will be considered for future long-duration spaceflights if the need for a load-bearing 

rope is required. The ARED cable arm ropes require a more frequent replacement, but their record of successful use 

is flawless. They have never failed while in service, and the failures in the life-cycle test rig on the ground have been 

consistent. The CEVIS isolator design has been reliable and durable after the chamfer was added to the clamp plate 

holes. This reduced the stress concentration on the wire ropes, and they have been in service for almost 4 years with 

only one wire severed on one isolator assembly. Given the trend of the prior design, they should continue to be in 

service for a number of years going forward. These successes would not have been possible without studying 

previous failures and making slight modifications to improve the durability of the systems as a whole. 

V. Conclusion 

As human crews embark on long-duration space missions, CMS equipment will be critical to mission success, 

aiding both crew overall health and their ability to execute specific mission tasks.   Use of both textile and wire 

ropes will certainly find a place in the designs due to their light weight and durability. 

Long-duration space missions beyond Earth orbit present a new challenge to CMS equipment – the inability for 

responsive replacements of failed elements.  Systems designed for these missions must be highly reliable and 

available.  Similarly, large quantities of on-vehicle spares will not be feasible due to mass and volume limitations.   

As a result, designs will need to leverage use of new materials technology and testing to provide predictable failure 

modes of the ropes. Mechanisms that allow adjustability in rope length due to stretching would enable ropes to be 

utilized for longer periods of time, and instrumenting the VIS systems, if required, would allow better predictability 

of failures. Eliminating or avoiding pinch points or possibly designing retractable tethers would reduce wear and 

increase life, and exploring non-metallic solutions for tethers and isolators could provide innovative designs in these 

applications. Finally, the most important lesson learned from the history of the ISS CMS hardware is that testing is 

paramount in predicting failures of ropes or cables. A properly designed test simulates authentic conditions and can 

be repeated to establish trends in performance to allow confidence in the hardware. A universal test rig that could be 

modified or adjusted to accept different ropes, cables, and pulleys would be a great asset to future design evaluations 

for the entire NASA agency. Ropes and cables have been an important part of keeping our ISS crewmembers 

healthy, and using the lessons learned in future designs, the new generation of CMS hardware will be more reliable 

and require less effort to maintain.    
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Acronyms 

ARED  Advanced Resistive Exercise Device 

CEVIS Cycle Ergometer with Vibration Isolation and Stabilization 

CMS Countermeasures System  

EVA Extra-Vehicular Activity 

IRED Interim Resistive Exercise Device 

ISS International Space Station 

JSC Johnson Space Center 

NASA National Aeronautics and Space Administration 

PIP Push-in-Place 

SBS Series Bungee System 

SLD Subject Load Device 

SM Service Module 

SPD  Subject Positioning Device 

TVIS Treadmill with Vibration Isolation and Stabilization 

VIS Vibration Isolation and Stabilization 
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