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Abstract

We have generated accurate global potential energy surfaces for CO+Ar
and CO+O that correlate with atom-diatom pairs in their ground elec-
tronic states based on extensive ab initio electronic structure calculations
and used these potentials in quasi-classical trajectory nuclear dynamics
calculations to predict the thermal dissociation rate coe�cients over 5000-
35000 K. Our results are not consistent with the interpretation of the 20-45
year old experimental results. For CO + Ar we obtain fairly good agree-
ment with the experimental rate coe�cients of Appleton et al. (1970)
and Mick and Roth (1993), but our computed rate coe�cients exhibit a
stronger temperature dependence. For CO + O our dissociation rate coef-
ficient is in close agreement with the value from the Park model, which is
an empirical adjustment of older experimental results. However, we find
the rate coe�cient for CO + O is only 1.5 to 3.3 times larger than CO
+ Ar over the temperature range of the shock tube experiments (8000-
15,000 K). The previously accepted value for this rate coe�cient ratio is
15, independent of temperature. We also computed the rate coe�cient
for the CO + O exchange reaction which forms C + O2. We find this
reaction is much faster than previously believed and is the dominant pro-
cess in the removal of CO at temperatures up to 16,000 K. As a result,
the dissociation of CO is accomplished in two steps (react to form C+O2

and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead
of one step that requires 11.2 eV to break the CO bond.

Our recommended dissociation rate coe�cients in units of cm3 molecule�1 s�1

over the temperature range 7500 � 20, 000K are: CO + Ar ! C + O +
Ar k

diss

= 2.781 ⇥ 10�5T�0.85 exp(�128741/T ) CO + O ! C + O + O

⇤
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k
diss

= 1.733⇥ 10�1T�1.71 exp(�128741/T ) , and our recommended rate
coe�cient for the exchange reaction over the temperature range 5000-
20,000 K is: CO + O ! C + O2 k

exch

= 5⇥ 10�10 exp(�77600/T ).

1 Introduction

Spacecraft entering the atmosphere of a planet at hypersonic speeds experience
extreme heating due to thermal and chemical non-equilibrium e↵ects in the bow
shock layer, which forms ahead of the vehicle. Mars has an atmosphere that is
96% CO2 with 1.9% N2 and 1.9% Ar by volume and other minor constituents,
[1] but the pressure at the surface is only 0.008 bar[2]. For typical Mars entries
with 1-3 m diameter objects, the spacecraft velocity is 5-8 km/s and the tem-
perature in the shock layer can reach 10,000 K. Under these conditions, CO2

rapidly dissociates and the dominant species in the shock layer are CO and O.
Behind the shock, the gas is no longer in thermal equilibrium and the transla-
tional energy mode is highly excited compared to internal energy modes. This
results in a radiative heat flux from the bow shock layer that forms circa 20 cm
in front of the spacecraft. Computational models have been developed to pre-
dict the magnitude of non-equilibrium heating for the Mars entry vehicles. The
model widely used for engineering studies of spacecraft entering the Martian
atmosphere was developed by Park more than 20 years ago[3], based on a series
of papers published in the late 1980’s[4],[5],[6],[7]. That model uses two temper-
atures - translational (T ) and vibrational (Tv) - to describe the non-equilibrium
condition. The Landau-Teller[8][9] expression is used to compute Tv and the
rotational mode is assumed to be in equilibrium with translation at temper-
ature T . The extent of electronic excitation is governed by Tv. In addition,
dissociation rate coe�cients are expressed in terms of an average temperature
Tav =

p
TTv.

For these Mars entry conditions, most of the radiative heat flux is due to
emission from the CO 4th positive system.[10] Thus, an important reaction rate
for modeling the heating of a spacecraft entering the atmosphere of Mars is
the dissociation of ground state CO due to heavy particle impact. The pri-
mary collision partners involved in the dissociation of CO are CO and O, but
the best experimental CO dissociation rate coe�cient data at the time that
Park developed his model was for CO+Ar collisions. Rate coe�cients for other
collision partners were expressed relative to the CO+Ar values by a constant
multiplicative scaling factor. For example, the e�ciency of O, N and C atoms in
promoting dissociation was considered to be 15 times the argon rate coe�cient
and for CO+CO the factor was taken to be 10[3].

The proposed rate coe�cients for collisional dissociation of CO by collision
with argon and oxygen atoms are generally in fair agreement with the published
shock tube experiments, all of which date to before 1993. However, these mea-
surements yielded results in a fairly narrow temperature range, so how extrap-
olation is done is a significant concern. The experiments using CO/Ar mixtures
were carried out by Davies[11], Appleton et al.[12](who also used CO+O2+Ar)
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and Mick et al.[13] Determinations for pure CO were carried out by Presley et
al.,[14] Chackarian[15] and Hanson.[16] All the data up to 1974 are tabulated
and compared in the compendium by Baulch et al.[17] who included their rec-
ommended Arrhenius rate coe�cient expression, which is mostly based on the
work of Davies and Appleton et al. That compendium also tabulated relative
dissociation e�ciencies for di↵erent CO collision partners relative to CO + Ar,
e.g., rate coe�cient ratios kCO+CO

diss /kCO+Ar
diss = 1� 2 and kCO+O

diss /kCO+Ar
diss = 15.

Note the Baulch compendium and the Park model give values for the e�ciency
of CO that di↵er by an order of magnitude.

Unfortunately, the measurements do not cover a very wide temperature
and also do not cover the temperatures of interest for the higher entry speeds
(>12000K). Thus extrapolation to the desired temperature range is strongly de-
pendent on the functional form used to interpolate the measurements. Another
problem is the dispersion of the experimental results using di↵erent techniques
at di↵erent laboratories. In addition, more recent measurements of the radiative
flux produced by high-speed flows of CO2 + N2 mixtures has demonstrated that
the original Park model over predicts the amount of CO 4th positive radiation
present in the shock layer[18]. In that work, Johnston and Brandis found that
increasing the CO dissociation rate coe�cient by a factor of 5 led to better
agreement between model calculations and experiment.

Thus, we have studied the title reactions using first principles. Our goal
is two fold: to accurately assess the temperature dependence of these reac-
tions, bridging the temperature range of the experimental measurements to
that required for the entry simulations, and secondly, to try and assess which
experiment gives rise to the most reliable results.

Our strategy[19] is as follows: for each reaction we first carry out extensive ab
initio electronic structure calculations of the potential energy surface (PES) on
a grid of geometries and then form an analytic representation of the computed
data that can be used to interpolate and extrapolate to all geometries, then
we use the quasi-classical trajectory method (with these PESs) to compute the
thermal equilibrium dissociation rates for the temperature range of interest.

2 ab initio Calculations for CO+Ar

Our initial strategy was the same as we have used before for the N2+N2 system,[20][19]
namely to carry out a large number of calculations using the coupled cluster sin-
gles and doubles (CCSD) method with perturbative triples, denoted CCSD(T),
with the CO bond length restricted to values where the CCSD(T) method gives
good results, and then augment these results with the more expensive ACPF
calculations for longer CO bond lengths up to 10 ao, where one ao is the Bohr
radius. These calculations were carried out using the MOLPRO program.[21]
Because we want to obtain accurate energies all the way out to dissociation,
we need a one-particle basis set that has su�cient di↵use functions. We chose
to use the aug-cc-pVQZ basis[22] on all atoms. All calculations were carried
out using Cs symmetry, with the orbitals transforming as A0 or A00. Since the
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ground electronic state of CO transforms as 1⌃+ and the ground electronic state
of Ar transforms as 1S, the electronic state of interest for CO+Ar has symmetry
1A0.

The CCSD(T) calculations progressed without incident, but the ACPF cal-
culations were problematic. The issues became readily apparent when we tried
to simultaneously fit the CCSD(T) and ACPF data: decent fits for the CCSD(T)
data were obtained, but the ACPF data appeared to be very noisy. We tried
numerous techniques to filter out erroneous data, such as looking at the weight
of the reference function in the ACPF results, but nothing worked satisfactorily.

In these ACPF calculations, we determined the orbitals by multi-configuration
Hartree-Fock (MCHF) calculations for the lowest A0 state, doubly occupying the
six a0 and single a00 orbitals corresponding to the C and O 1s like orbitals and
Ar 1s, 2s, 2p like orbitals, and in our active space we included nine a0 and three
a00 orbitals, corresponding to the C and O 2s, 2p and Ar 3p like orbitals. Upon
analyzing the ACPF results it became apparent that there were two problems.
The first problem was evident from ACPF calculations on just the CO molecule.
These calculations are carried out using C2v symmetry. At large bond lengths,
the first excited 1⌃+ state comes down in energy and becomes degenerate with
the ground state. However the ACPF method is only valid when the state of
interest is non-degenerate. We found that in the asymptotic region, the ACPF
calculation, and perhaps also the MCHF calculation, would converge on the
first excited 1⌃+ state rather than the desired state. This incorrect conver-
gence caused random discontinuous jumps in the computed energies. When Ar
is added and the symmetry is lowered to Cs, the situation becomes even worse:
then in the asymptotic region, the lowest 1A0 state becomes five-fold degenerate.

The second problem concerns the O 2s like orbital and the Ar valence or-
bitals. As CO dissociates, the optimum solution for 3P O has the 2s orbital
doubly occupied, and when Ar is not strongly interacting with CO, the opti-
mum solution for the Ar orbitals is also doubly occupied orbitals. When the
optimum solution for an orbital in the active space leads to an occupation num-
ber su�ciently close to 2, the MCHF energy is invariant to rotations between
that orbital and the orbitals that were restricted to be doubly occupied. Since
in these ACPF calculations, we only correlate the active orbitals, slight amounts
of doubly occupied orbitals that mix with a0 orbitals in the active space leads to
random unphysical additional correlation energy. When these orbitals are the
Ar 1s like orbital, a very small amount of mixing gives significant additional
energy because the correlation energy of the Ar 1s orbital is so very large.

Thus we carried out multi-reference configuration interaction (MRCI) cal-
culations using di↵erent molecular orbitals. The MRCI method works well even
when there are degenerate electronic states, but is not quite as accurate as the
ACPF method, for only the latter includes corrections for quadruple excita-
tions. In the new MCHF calculations, we doubly occupied ten a0 and two a00

orbitals: the extra four a0 orbitals and extra a00 orbital correspond to the O 2s
like orbital and the Ar 3s and 3p like orbitals. Then there are five a0 and two
a00 orbitals in the active space corresponding to the C 2s and 2p and O 2p like
orbitals. In these calculations, we minimized energy of the lowest 5 1A0 states,
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with the weight factors computed with the dynamic weights of Deskevich et
al.[23] with energy parameter 2 eV�1. We then determined energies using the
MRCI method keeping the lowest six a0 and lowest a00 orbitals doubly occupied
in all configurations and the next four a0 and next a00 orbitals doubly occupied
in all reference configurations. We computed five roots using the projected state
method,[21] but ended up only using the first root (which was su�ciently sep-
arated from the higher roots) and using the MRCI+Q energy, where the +Q
denotes the addition of the Davison quadrupoles correction. Using the +Q gave
better consistency with the CCSD(T) energies than the MRCI energy.

We computed 827 MRCI+Q energies and 2243 CCSD(T) energies. The ge-
ometries were chosen using approximate Jacobi coordinates for Ar+CO: rvib
is the CO bond length, Rc is the distance from Ar to the CO bond mid-
point, and ✓c is the Ar-CO bond midpont-C angle.The MRCI+Q calculations
were for rvib=2.2-10 ao, ✓c=0,22,45,90,135,157,180�, and Rc=2.0-20 ao, while
the CCSD(T) energies were for rvib=1.6-3.0 ao, ✓c=0-180 in steps of 15�, and
Rc=3.5-20 ao.

3 ab initio Calculations for CO+O

The three potential energy surfaces of CO+O that correlate to the ground state
of CO, 1⌃+ and the ground state of oxygen atom, 3P , are the lowest 3A0 sur-
face and the lowest two 3A00 surfaces. Thus we need to consider three PESs for
this process. Here we have the great advantage that ab initio data for these
surfaces is already available from Schmidt et al.[24] Those calculations used the
aug-cc-pVQZ basis like we did for CO+Ar, and computed three roots in 3A0

and 3A00 symmetry using the MRCI method. However, since that study was
focused on photodissociation dynamics rather than collision dynamics, Schmidt
et al. did not cover all the geometries that we require for the present work.
Their calculations were carried out on an evenly spaced direct product grid of
the two CO bond lengths and the cosine of the OCO bond angle. Thus we car-
ried out additional calculations using the same strategy as described above: we
carried out MRCI+Q and CCSD(T) calculations using the aug-cc-pVQZ basis
and analogous active space as described above. In the O+C+O limit, there are
27 degenerate triplet states, with 14 transforming as A0 and 13 as A00, and in
our MCHF calculations, we averaged over all 27 states, with dynamic weights
as described above. The aug-cc-pVQZ basis CCSD(T) calculations used RHF
orbitals and the RCCSD(T) method as programed in MOLPRO. Separate cal-
culations were carried out for the lowest 3A0 state and the lowest 3A00 state. We
also carried out some aug-cc-pVTZ CCSD(T) calculations using Gaussian09:[25]
these calculations used UHF orbitals and the UCCSD(T) method and did not
take advantage of symmetry, thus only yielded results for the A0 surface. In our
MRCI+Q and QZ CCSD(T) calculations, we used the second order Douglas-
Kroll-Hess method[26][27] to include scalar relativistic e↵ects. Scalar relativistic
e↵ects were not included in the calculations of Schmidt et al.[24] nor in our TZ
CCSD(T) calculations.
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We also have to be very careful when using the Schmidt data because their
MCHF calculations included the O 2s-like orbitals in the active space and state
averaged only over the lowest three states of 3A0 or 3A00 symmetry with equal
weights. Recall that including the O 2s like orbitals in the active space caused
problems for CO+Ar, and the problem with averaging over three roots with
equal weights is that when the three states are widely separated in energy, the
number of local minima in orbital rotation space increases. There is greater
possibility that one of these is found instead of the global minimum. The use of
dynamic weights[23] largely avoids this di�culty. Furthermore in the Schmidt
et al. MRCI calculations, three roots were computed using the combined con-
tracted N � 2 functions formed from the three lowest roots of the active space.
In our experience, this means that if the highest root changes character at some
geometry, which is not at all unlikely, then using the combined contracted N�2
functions[28] leads to discontinuous jumps in the energies of all roots. In our
calculations, we use the projected state method whereby each root uses the
contracted N � 2 functions appropriate for the zero order description of that
particular root.

For these reasons, our MRCI+Q calculations are more reliable than those
from Schmidt et al., and also much less costly.

4 Analytic Representation of CO+Ar

We separated the electronic energies into two parts: V CO, the diatomic potential
energy, and V int, the rest. For the CCSD(T) and MRCI+Q data, we determined
V CO from CO+Ar calculations with the largest Ar to center of CO distance: this
was typically 20 ao. Then we fit V int assuming that we could mix the CCSD(T)
and MRCI+Q data freely apart from a single multiplicative factor: this factor
was optimized in the fitting process, and the final result was to multiply the
CCSD(T) V int values by 1.022.

The final functional form we used was[29][30]

V int = F (rvib, Rc, ✓c)[V
ArC(RArC) + V ArO(RArO)] + V LR(RArC, RArO), (1)

with rvib the distance between the C and O atoms, Rc the distance from the
Ar atom to the CO bond midpoint, and ✓c the angle between the CO bond and
the vector from the CO bond midpoint to the Ar atom: ✓c = 0 corresponds
to linear ArCO, RArX the distance between the Ar atom and atom X, with X
being C or O, F is a modulating/damping function,

V ArX(R) = 18ZX exp(�↵ArXR)/R, (2)

ZX the atomic number of atom X, and

V LR = �CArC
6 /(R6

ArC + �6)� CArO
6 /(R6

ArO + �6). (3)
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We initially represented F as

F = 1 + exp
⇥
�d (rvib � rc)

p
⇤
(
exp[�g(Rc �R1)

2]
X

ij

C
(1)
ij rivib cos

j(✓c)

+ exp[�g(Rc �R2)
2]
X

ij

C
(2)
ij rivib cos

j(✓c)

)
(4)

with rc = 2 ao and p = 2, but found that sometimes in the extrapolation region
of no physical interest, i.e. when one of the RArX distances is very small, F
would become negative, and since one of the V ArX would be become extremely
large and positive in this region, spurious holes would occur in V int. These holes
would also render the PES unfit for use in quantum scattering calculations. Thus
we modified this expression so that

F = 1 + FD(F), (5)

with F + 1 given by the right hand side of Eq. 4, and

D(X) = 1/[1 + exp(�vX)]. (6)

The parameter R2 was given by R2 � R1 =
p
(�2Og/g) with � and Og

fixed,[31] while the remaining parameters in Eqs. 3 and 4 were all optimized
by weighted nonlinear least squares. The weights were set to 1/max(V int, ✏),
with V int the data being fitted and ✏=0.01 Eh. The value of Og, the overlap
of the adjacent gaussians, was taken to be 0.95 and � was taken to be 5 ao.
The parameter v in Eq. 6 was crudely optimized by trial and error. Good
initial guesses for the non-linear parameters were obtained by sequentially fitting
data most sensitive to particular parameters, e.g. the long range parameters
CArC

6 and CArO
6 were determined by a linear least squares to V int weighted by

R3
ArCR

3
ArO, then ↵ = ↵ArC = ↵ArO was optimized by fitting to V int, then ↵ArC

and ↵ArO were independently optimized by fitting to V int, and finally initial

guesses for the coe�cients C
(n)
ij were determined by linear least squares with

the rest of the parameters fixed. We then performed a non-linear fit with D
set to unity, and finally we added in the parameter v in D and re-optimized all
parameters. We settled on including all terms in Eq. 4 with 0  i+ j  6.

We iterated the optimization of all the parameters. After each optimization
was complete, we computed the percentiles of the distribution of the weighted
fitting errors. If a point had an error that was more negative than 5 times
the tenth percentile or more positive than 5 times the ninetieth percentile, the
weight for that point was made very small. Once this had been done for all
the points with largest errors, we went back and performed a new fit, and
checked the percentiles again. We repeated this until no additional points were
eliminated. Out of the 3070 total points, 57 were eliminated.

This is an attempt at robust estimation whereby the influence of widely de-
viating points is diminished while maintaining standard non-linear least squares
formulation - see e.g. Press et al.[32].
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Because the points were unequally weighted, it is hard to quantify the fit-
ting error with a single number, but one measure of the fitting error is the
average weighted error, and for this quantity we obtained 0.014. Recall that
the weights are taken to be equal to 1/max(V int, ✏). Thus 0.014 means, for
example, that geometries with energies less than ✏ will have typical errors of
0.014✏=0.00014 Eh=0.088 kcal/mol, while geometries with energies higher will
have percent errors of a hundred times more, i.e. 1.4 percent. Thus this is a
very satisfactory fit.

In Fig. 1, we show a typical cut through V int for fixed Rc and ✓c, and one can
see from this figure that the CCSD(T) and MRCI+Q results are quite consistent
and the fit does a good job of interpolating the ab initio data, especially in the
region near the equilibrium CO bond length of about 2.2 ao. This region is
expected to be crucial in the initial vibrational excitation.

In Figs. 2 to 4 we show contour maps of V int for fixed rvib. We also
show for reference the geometries of the MRCI+Q and CCSD(T) points used to
generate the analytic representation. For bond lengths near the CO equilibrium
geometry, i.e. Fig. 2, the contours are rather featureless, with the expected
weak van der Vaals minimum and repulsive walls. For a given repulsive energy,
the Ar can get closer to the C atom than the O atom. As the C and O atoms
pull apart, we see that, as a result of the electron density pulling away from the
center of the diatomic (i.e. Fig. 3 to 4), the Ar can now approach closer to the
center of the diatomic than to either of the atom.

In e.g. Fig. 3, we see some rather odd looking high energy contours, but
these occur at su�ciently high energy to not be a concern: the highest energy
contour is at 1 Eh.

5 Analytic Representation of CO+O

The potential surfaces of CO+O are much more complicated than that of
CO+Ar. Compared to Ar, which has symmetry 1S, the ground state of O
has symmetry 3P . In Cs symmetry, this means we have to consider electronic
states of 3A0 and 3A00 symmetry. Furthermore, O can react with CO and the
oxygen atoms can be exchanged (homogeneous exchange), and O can react with
CO to form O2+C. Also, there is an energy minimum on each PES correspond-
ing to non-linear triplet states of CO2. The functional form used for the CO+Ar
PES is not suited to describe this situation. However we would still like to use
some ideas that were valuable for CO+Ar. Thus we start by representing the
potentials as the lowest eigenvalue of a matrix, with the diagonal elements a
function like the one used for the CO+Ar PES. Initially we started with a two
by two matrix corresponding to the CO+O0 and CO0+O channels, but found
there was an important deficiency in the vicinity of the global minimum of the
ground state potentials. Thus we added a third diabatic state to describe that
region, which improved things greatly, but the resulting analytic representation
was still not su�ciently accurate. After inspecting numerous contour plots, we
deduced that the global minimum diabat was also being forced to represent the
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O2+C channel, even though the number of ab initio data points in this region
was rather small. Thus we added a fourth diabat to describe that channel, and
then we obtained satisfactory analytic representations.

Now we performed a separate fit for the two 3A00 surfaces. In principle if our
fitting model was reliable, then the two 3A00 surfaces would come out as eigen-
values of the same matrix. But at minimum, in order to represent the CO+O
and O2+C asymptotic degeneracies, the matrix would need to be at least 7⇥7.
Furthermore, in some strongly interacting regions, there are avoided crossings
with multiple other roots, and describing this accurately would required even
more diabatic states. For these reasons and the fact that we do not see strong
interaction between the lowest two 3A00 surfaces, we fit the surfaces separately.

There are three other consequences of representing the data in terms of the
eigenvalues of a matrix. The first two result from not being able to subtract
o↵ the diatomic potential. First we cannot simply scale the CCSD(T) interac-
tion energies to match the MRCI+Q energies. However as the optimized scale
parameter was 1.022, very close to unity, for CO+Ar, we will assume that no
scaling is required, just a constant shift in energy. The shift between our cal-
culated MRCI+Q energies and QZ CCSD(T) energies was determined from the
CO potential curve, with O 20 ao from the CO bond mid-point. We performed
a leasts squared fit for the diatomic potential as described in the next section,
except we included both the QZ CCSD(T) and MRCI+Q data and an addi-
tional parameter, a constant shift of the MRCI+Q data. The shift between
the QZ CCSD(T) energies and the Schmidt et al.[24] MRCI+Q energies was
initially estimated from calculations at four identical geometries in the vicinity
of the global minimum of the lowest 3A0 or 3A00 state, but in the end the shift
was optimized in the final fit. The shift between the TZ CCSD(T) energies and
the Schmidt et al. energies was originally determined from averaging over a
large number of geometries that the two sets of data had in common, but in the
end the shift was also optimized in the final fit. From these comparisons, we
estimate that this mixing of the data gives rise to noise at circa 0.1 mEh, thus
it is pointless to try to fit the data better than this.

The second consequence is that it would seem that we cannot base our
energy weights on the interaction energy as was done for CO+Ar. Thus we
experimented with several other options for getting the weights, and found that
the most desirable fits were obtained by basing the weights on the di↵erence
between the ab initio data and the asymptotic diatomic potential computed us-
ing the shortest CO distance, �V . In particular we started with 1/min(✏,�V ),
with ✏= 0.01 Eh, just as we had done for CO+Ar. Then the weights for energies
between 1 and 5 Eh higher than the global minimum were multiplied by 0.1, the
weights for energies between 5 and 10 Eh higher than the global minimum were
multiplied by 0.01, and the weights for energies above 10 Eh higher than the
global minimum were multiplied by 0.001. Finally we divided the weights for
the Schmidt et al.[24] and TZ CCSD(T) energies by 4 to account for the larger
number of data points for those two data sets. We will call these the canonical
dataset weights.

The third consequence is the analytic representation is non-linear in all pa-
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rameters. This makes the fitting process much more di�cult than for CO+Ar.
We found that our nonlinear least squares routine would sometimes take pa-
rameters into non-physical space, e.g. exponential damping parameters would
be taken to very large values. When necessary, we constrained the trouble-
some parameter to fall within a specific range by replacing the parameter p
with p(x) = pavg + p

rng

⇡ tan�1(x) and optimizing x, with pavg = p
l

+p
u

2 and
prng = pu � pl, where pl and pu are the upper and lower constraints on p. Oc-
casionally the optimization would send x essentially to ±1, in which case we
would reset x to zero and re-optimize.

As with the CO+Ar potential, we optimized our parameters by sequence of
fits of ever increasing complexity.

For our zero-order fit, we diagonalized a three-by-three matrix with the first
two diagonals represented by the CO diatomic potential plus the function of
Eq. 1, except that F was taken to be unity, and Ar is replaced with O. The
third diagonal was taken to be the O2 diatomic potential plus the non-bonding
CO potentials used for the first two diagonals. We originally took the o↵-
diagonal couplings to be constants, but as soon as we looked at the fit in the
C+O+O limit, we realized that the o↵ diagonal coupling should go to zero in
the C+O+O limit, so instead we represented them as Cx exp

�
�↵x⇢

�
with Cx

and ↵x parameters and ⇢ the hyperradius of the mass scaled Jacobi coordinates
of the system. As a reminder, this hyperradius is the same whether CO+O0,
CO0+O, or O2+C mass scaled Jacobi coordinates are used to compute it.

For linear geometries, symmetry requires some of these coupling matrix ele-
ments to also be zero to reproduce the conical intersections. However we do not
make this restriction for two reasons. First, having these matrix elements go to
zero would lead to points on the PES with discontinuous derivatives, and that
would cause di�culties with the dynamics calculations. Second, these conical
interactions are not isolated, but rather are due to more than two electronic
states interacting, and this tends to round over the intersections.

As we did for CO+Ar, we first start with the constraint COC
6 = COO

6 , leading
to the optimization of a single parameter, and in this fit we utilized only the
CO+O0 and CO0+O diabats. Our initial guess for this parameter was taken
from our best fit to the diatomic CO potential, see the next section. Before we
performed the fit we eliminated all ab initio data that gave di↵erences between
the data and the fit computed with the initial guess parameter that were less
(more negative) than five times the 10th percentile or were greater than five
times the 90th percentile of the weighted di↵erence between the data and the
fit. This left 7540, 5594, and 6020 data points for the 3A0, 1 3A00 and 2 3A00

surfaces, respectively. We then allowed the two parameters to vary freely, but
found that the resulting fit was quite insensitive to the value of COO

6 , so we
maintained the above constraint until later parts of the optimization. In this
fit, we took the parameter � in Eq. 3 as the value used in the CO+Ar PES.

Next we optimized the parameters ↵OC and ↵OO in Eq. 2. In this opti-
mization, we added the C2+O diabat, and assumed that the values of COO

6 and
↵OO did not depend on the diabat. The O2 potential curve was taken from un-
published MRCI calculations using the d-aug-cc-pVTZ basis, shifted so the zero
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of energy matched the C+O+O asymptotic limit. We started with the canon-
ical dataset weights, except we excluded points from the fit that were near the
global minimum. For the Schmidt et al.[24] data, this was done by scanning in-
ward along the non-bonding CO bond length and not including points past the
first significant local maximum. For the CCSD(T) and MRCI+Q data, points
where the distance between the non-bonding O and CO bond midpoint were
smaller than 5 ao were eliminated. Multiple passes through the fitting process
were then carried out, with energies with weighted fitting errors more negative
than five times the 10th percentile and more positive than four times the 90th

percentile eliminated after each pass. This was continued until no more points
were eliminated. The choice of factors of four vs. five in this culling was made
deliberately to eliminate a single geometry that caused problems.

Once this fit was completed, we lifted the constraint ↵ = ↵OC = ↵OO and
re-optimized the parameters. Then we added the parameter ↵x to the mix and
optimized it as well. After a fit, we would scan for fitted energies falling below
the global minimum of the ab initio data for geometries with zero weights. When
these were encountered, their weights were reset to 0.1, and the fit was redone
until no more such points were found. This is our zero-order fit, and in the final
optimization, 3339, 3438, and 2870 data points were kept for the three surfaces,
respectively.

At this point we added the fourth diabatic state, i.e. the analytic represen-
tation is found by diagonalizing a four-by-four matrix, and reset the weights on
all points to the canonical dataset weights, thus there were a total of 10352,
6378, and 6678 points with significant weight for the three surfaces. Starting
with a simple representation of the new diagonal element, i.e. we represent it
as the a constant plus the sum of three two-body potentials with each two-body
potential consisting of a repulsive Born-Meyer term and an attractive damped
dispersion term like in Eq. 3. We take the o↵ diagonal coupling to the other
diabats to have the same functional form as the coupling between the first two
diabats, albeit ultimately with di↵erent parameters. We take as initial guesses
for the parameters the analogous parameters from the zero-order fit, and we
first optimize the coe�cient Cx in the o↵ diagonal coupling for this new diabat.
Then we simultaneously optimize it and the five parameters representing the
diagonal element of the third diabat. This later optimization was carried out by
multiple passes, with energies with weighted fitting errors more negative than
six times the 10th percentile and more positive than six times the 90th percentile
eliminated after each pass.

We next added a correction of the form

exp

⇢
�ar

h�
RCO �Rm

�2
+
�
RCO0 �Rm

�2i� a✓
�
cos ✓OCO0 � cos ✓m

�2
�

⇥
X

ijk

COCO
ijk

�
RCO �Rm

�i�
RCO0 �Rm

�j�
cos ✓OCO0 � cos ✓m

�k
(7)

to the fourth diabat, where Rm and ✓m are the CO bond length and OCO
angle where the di↵erence between the zero-order fit and ab initio data is most
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negative. We make the restriction that i + j + k  4 for the 3A0 and 1 3A00

surfaces and i+j+k  2 for the 2 3A00 surface. The coe�cients in this expression
were optimized, then the o↵ diagonal coupling parameters to the other diabats
were optimized. As before, we carried out this optimization by multiple passes,
with energies with those weighted fitting errors more negative than six times the
10th percentile and more positive than six times the 90th percentile eliminated
after each pass.

Next we added the parameters C(n)
ij of Eq. 4 to the diagonals of the CO+O’

and CO’+O diabats and optimized them. In this optimization, we made the
restriction i+j  4, 3, and 2 for the three surfaces, used p = 1 in Eq. 4 and used
Eq. 5. Then we optimized the Cn

ij as well as the Gaussian parameters g and
R1. This also was carried out via multiple passes, with energies with weighted
fitting errors more negative than six times the 10th percentile and more positive
than six times the 90th percentile eliminated after each pass. The damping
parameter d was fixed at 0.1.

At this point, we simultaneously optimized all parameters for all diabats as
well as the shifts for the di↵erent types of ab initio energies and removed the
constraints that the parameters for C+O be the same in the C2+O diabat as
the CO+O diabats. Once again we completed multiple passes, with energies
with weighted fitting errors more negative than six times the 10th percentile
and more positive than six times the 90th percentile eliminated after each pass.
This was continued until no more points were eliminated.

Finally we reset all the weights to the canonical dataset weights and re-did
the final optimization passes with energies with weighted fitting errors more
negative than six times the 10th percentile and more positive than six times
the 90th percentile eliminated after each pass. This was continued until no
more points were eliminated. Finally there were 10161, 7667, 6809 points with
significant weights for the three surfaces.

Because the points were unequally weighted, it is hard to quantify the fit-
ting error with a single number but we obtain 0.075, 0.18, and 0.12 for the
weighted average root-mean-square error for the A0, first A00, and second A00

surfaces, respectively. This means, for example, that on the first A00 surface,
geometries with energies less than 0.01 Eh will have typical errors ✏ times less,
i.e. 0.0018 Eh=1.1 kcal/mol, while geometries with energies higher will have
percent errors of a hundred times more, i.e. 18 percent.

In Fig. 5 to Fig. 7, we show cuts through the CO+O potentials similar to
Fig. 1 for CO+Ar. We plot the analog of V int for CO+Ar, i.e. the di↵erence
between the full potential and V CO evaluated at the abscissa. However, since we
compare to the Schmidt et al.[24] data which was laid out on a di↵erent grid,
rather than using the coordinates of Fig. 1, we use bond-length-bond-angle
coordinates with the bond angle fixed at 120 degrees. Because of the di↵erent
coordinates, the curves do not show the local maxima like in Fig. 1, but we can
see from this figure that the fit does a good job of interpolating the ab initio
data.

In Figs. 8 to 16 we show contour maps of the di↵erence between the full
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potential and V CO for rvib shown on the y axis. These plots show the same
contours and rvib values that we showed in Fig. 2-4 for CO+Ar, so they can be
directly compared. We also show for reference the geometries of the Schmidt et
al. calculations, as well as our MRCI+Q and CCSD(T) calculations that were
used to generate the analytic representation.

First we contrast the CO+Ar PES and the CO+O PESs as a whole, and
then we compare the di↵erent CO+O PESs. For bond lengths near the CO
equilibrium geometry, i.e. Figs. 2 and 8-10, we see some similarities and some
di↵erences. We see that CO+O has more long range attraction then we see
in CO+Ar, but the lower part of the repulsive part of the PESs are not that
dissimilar. The higher parts of the repulsive regions are quite di↵erent between
CO+Ar and CO+O: we see that an O atom can get much closer to CO than the
Ar atom can. Also an O atom can get closer to the CO bond midpoint than to
either the C or O end of CO, which the reverse of the situation for CO+Ar. But
perhaps the biggest di↵erence occurs in the intermediate repulsive region: for
Ar, the transition from lower repulsion to higher repulsion is smooth, whereas
for O, there is local minima on the 3A0 and lowest 3A00 surface, and all CO+O
surfaces show some sort of flatness in the intermediate region.

Moving on to rvib = 3, i.e. Figs. 3 and 11-13, we see that the similarities
between CO+Ar and CO+O have decreased: the lower parts of the repulsive
part of the PES are much more compact for CO+O, and in fact, for sideways
approach on the lowest 3A00 PES, there is no lower part of the repulsive potential
before the local minimum. The local minima on the CO+O PESs have gotten
significantly deeper, and although the CO+Ar PES shows some ability of the
Ar atom to get closer to the CO bond midpoint than to either the C or O end
of CO, on the CO+O PESs, we see a narrow range where the O atom can get
significantly closer to the CO bond midpoint than to either the C or O end of
CO.

If we stretch the CO bond length to rvib = 4, Figs. 4 and 14-16, we see that
now the CO+O PESs have a strongly attractive ring around the CO and high
energy O atoms can actually get to the CO bond midpoint.

Let us now compare and contrast the di↵erent CO+O PESs. The highly
repulsive parts of all three PES are very similar, and the strongly bound parts
of the 3A0 and lowest 3A00 surface are also very similar. In the weakly bound
and weakly repulsive part, the second 3A00 surface tends to show more extended
repulsion, and the lowest 3A00 surface tends to show more extended attraction,
while the 3A0 surface is intermediate in both categories. Now due to the di↵er-
ences in weak repulsion on the three CO+O PESs, it is interesting to consider
a cut through the local minimum.

6 CO potential curve

For our dynamics calculations, we wish to use as accurate as possible CO vibra-
tional potential. This means for CO+Ar, we will add this vibrational potential
to V int to have the full potential. For CO+O, we will substitute the accurate
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CO vibrational potential for the vibrational potential we used in the CO+O’
and CO’+O diagonal matrix elements. It should be noted, that in this substitu-
tion, the accurate diatomic potential must be shifted to match the asymptotic
energy of the vibrational potential used to generate the analytic representation.

Perhaps the most accurate published potential energy curve for CO is that
due to Coxon and Hajigeorgiou[33], who generated a analytic representation
based on reproducing very accurate spectroscopic data for the CO molecule via
accurate numerical solutions of the ro-vibrational problem. However they forced
the long range part of the potential to go as r�5

vib, consistent with quadrapole-
quadrapole interaction, which on face value is appropriate for atomic states
that both have nonzero quadrapole moments. However we have analyzed the
result of extensive ab ititio calculations on the CO molecule, and find that the
asymptote where the two electronic angular momenta couple[34] to form L = 2
indeed has quadrapole-quadrapole interaction, but the asymptote where the two
electronic angular momenta couple to form L = 0 has no quadrapole-quadrapole
interaction. The ground 1⌃+ state correlates to the latter and the first excited
state correlates to the former. This does lead to a large rvib curve crossing, but to
simplify the treatment, we assume the nuclear dynamics will behave diabatically
in this region, thus we force the long range part of the adiabatic potential to
go as r�6

vib. Therefore, we decided instead to use a calculated potential energy
curve to represent the CO molecule for our PESs.

In order to be as accurate as possible, our calculated potential is based on the
ACPF method, correlating all electrons, with a very large one-electron basis. We
used the aug-cc-pV5Z basis for C and the d-aug-cc-pV5Z basis for O, with only
the p functions contracted. To this basis we added the extra tight pdfgh core-
valence correlating basis functions of Schwenke.[35] The molecular orbitals were
determined from state-averaged MCHF calculations that keep the three lowest
a1 orbitals doubly occupied and included an active space consisting of three a1
orbitals and two each of b1 and b2 orbitals. We used the dynamic weighting
scheme of Deskevich et al.[23] with energy parameter 2 eV�1, and included 14
3A1 states, 17 3B1 and 3B2 states, and 15 3A2 states in the state averaging
process. In the ACPF calculations, we correlated all electrons, and used the
second order Douglas-Kroll-Hess method[26][27] to include scalar relativistic
e↵ects.

We represent the diatomic CO potential curve by the form

V CO = V LR + V SR + V in, (8)

where the long range term is given by

V LR = C1 � C6/(r
6 + �6), (9)

the short range term is given by

V SR = 48 exp(�↵r)/r, (10)

and the intermediate range term is given by

V in = rn exp(�ar)
X

i=0,n
x

Ci(r � rm)i, (11)
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and r is the bond length. We determined the long range coe�cients C1 and C6

by a least squares fit to the large r data points, with the fitting weights being r2.
The damping parameter � and the short range parameter ↵ were determined
simultaneously fitting the small r data points to the sum V SR + V LR. In this
fit, we started with an initial guess for �, then fit {log[(V � V LR)r/48]}/r to
a constant. Then we varied � to minimize the error in the fit. Finally, we
performed fits to determine the linear coe�cients in Ci. We only fit energies less
than C1, but we used unit weights for these energies. We chose the exponential
parameter a as rm/n, where rm was the lowest energy geometry in the input
data. This ensures that the maximum of rn exp(�ar) occurs at rm. We then
varied n by hand to minimize the fitting error when nx = 4. This yielded n = 9.
We then fixed n and increased nx to get our final fit, and the final value of nx

was 11.
In Fig. 17 we compare our analtyic representation of the 5Z all-electron

ACPF calculations to that of Coxon and Hajigeorgiou.[33] In this figure, the
abscissa covers 0.86-2.00 Ångstrom, the range over which Coxon and Hajigeor-
giou thought their potential was well constrained by spectroscopic data. In the
scale of this figure, the two curves are virtually indistinguishable, except at the
upper right hand end of the curves: this reflects the di↵erent long range form
of the two potentials.

Our computed re is 1.128908 Å (2.133327 ao) while that from Coxon and
Hajigeorgiou is 1.128229476 Å, and our computed De is 90563 cm�1 vs. their
value of 90674.0 cm�1.

7 Stationary Points

Qualitative models of dynamics require as input the various stationary points,
minima and transition states, thus we have computed these for the present OCO
PESs.

The stationary points were found as follows: a three dimensional grid of
points in rvib, x = Rc sin ✓c, y = Rc cos ✓c space was generated, and at each point
on the grid, the magnitude of the gradient of the potential was minimized using
the downhill simplex method[32] followed by polishing with Powell’s method.[32]
The gradient was computed analytically. Each unique geometry with zero gradi-
ent was then analyzed to determine the normal mode frequencies. The Hessians
were computed numerically using central di↵erence formulas for multiple step
sizes and extrapolated with polynomials to zero step size. In all calculations,
we used the PESs with the CO vibrational potential from Sect. 6 replacing the
ab initio one.

All energies are reported with the zero of energy being the minimum of
the CO vibrational potential. The O+C+O dissociation limit is at 11.22 eV
(258.9 kcal/mol), and the C+O2 asymptote is at 6.139 eV (141.6 kcal/mol).
The asymptotic CO harmonic frequency is 2172 cm�1 and the asymptotic O2

harmonic frequency is 1547 cm�1.
The 3A0 PES has a minimum in the strong interaction region: it has depth
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0.7768 eV (17.91 kcal/mol) and occurs when RCO = RCO0 = 2.348 ao and
✓OCO0 = 128� and has normal mode frequencies of 528, 1027, and 1417 cm�1.
The 1 3A00 PES also has a minimum, but its depth is only 0.2996 eV (6.91
kcal/mol), but it occurs at a similar geometry: RCO = RCO0 = 2.359 ao and
✓OCO0 = 128� while the normal mode frequencies are 148, 712, and 1388 cm�1.
The 2 3A00 PES shows no triatomic minimum with depth greater than 1 kcal/mol.

On the 3A0 and 1 3A00 PESs, the transition states for the homogenous ex-
change reaction are very similar and have fairly low barriers: only 0.191 eV
(4.4 kcal/mol) with RCO = 2.138(2.138) ao, RCO0 = 3.554(3.498) ao and
✓OCO0 = 121(126)� and imaginary frequency of 340(439) cm�1, where first num-
ber is for the 3A0 PES and the number in parenthesis is for the 1 3A00 PES. The
remaining vibrational frequencies are 325 (342) and 2145 (2145) cm�1 for the
two surfaces.

On the 2 3A00 PES, the homogenous exchange reaction transition state barrier
is significantly greater, at 2.41 eV (55.8 kcal/mol). The geometry is also very
di↵erent, having RCO = RCO0 = 2.469 ao and ✓OCO0 = 123� with an imaginary
frequency of 1564 cm�1 and vibrational frequencies 221 and 1117 cm�1.

The transition state for the formation of O2+C is in the exit channel on the
3A0 PES, occurring when RCO = RCO0 = 6.441 ao with an OO bond length
of 2.299 ao, which is very close to the asymptotic O2 minimum geometry of
2.297 ao. The barrier height is only 0.04 eV (1.0 kcal/mol) above the O2+C
asymptote, and the imaginary frequency is 71 cm�1, with vibrational frequen-
cies of 50 and 1541 cm�1. On the 3A00 PESs, the situation is di↵erent. For
the first state, there are two transition states separated by a hill top, with the
first occurring at RCO = RCO = 3.031 ao, ROO = 2.414 ao with barrier height
5.85 eV, or 0.10 eV above the O2+C asymptote, and the second occurring at
RCO = 2.768 ao, RCO0 = 4.528 ao, ROO0 = 2.492 ao with height 5.93 eV, or
0.20 eV above the O2+C asymptote. The imaginary frequencies of the two tran-
sition states are 774 and 1177 cm�1 respectively, and the vibrational frequencies
are 332 and 850 cm�1 for the first transition state and 175 and 816 cm�1 for
the second transition state. The hill top separating the two transition states oc-
curs at RCO = 2.763, RCO0 = 3.807, and ROO = 2.552 ao with height 6.00 eV,
or 0.24 eV above the O2+C asymptote. The imaginary frequencies are 1159
and 222 cm�1, while the vibrational frequency is 869 cm�1. The second 3A00

PES only has a single transition state occurring at RCO = RCO = 4.227 ao,
ROO = 2.354 ao and has barrier height of 7.45 eV, or 1.3 eV above the O2+C
asymptote. The imaginary frequencies is 341 cm�1 and the vibrational frequen-
cies are 61 and 1333 cm�1.

8 Dissociation Dynamics

Because of the very large number of bound ro-vibrational states of X 1⌃+ CO
- we obtain 13754 ro-vibrational levels on our CO potential curve - we had to
sample preferentially from higher lying levels to obtain accurate rate coe�cients
over the entire temperature range.
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We have used the above potential energy hyper-surfaces to carry out quasi-
classical trajectory calculations of the thermal equilibrium dissociation rate co-
e�cient for CO+Ar. The quasi-classical trajectories calculations were carried
out using the trajectory code VVTC[30] (Vectorized Variablestepsize Trajectory
Code). In these calculations, we sampled the relative translational energy and
impact parameter as part of the Monte-Carlo integration over the CO angle vari-
ables. The impact parameter was chosen in an e�cient manner via stratified
sampling.[36] In our initial calculations, we sampled the initial ro-vibrational
levels of CO from the complete list of bound and quasi-bound levels determined
from the WKB calculations.[30] This involved J from 0 to 293 and v from 0 to
a maximum value of 83 for J = 0, for a total of 13754 levels. For CO+Ar, even
though we ran over 700,000 trajectories for each temperature, we could only
find dissociating trajectories for T> 10000 K.

Thus to improve our sampling statistics, we consider calculations where lower
energy ro-vibrational levels were excluded from the sampling. We considered
three such choices: first we only considered long lived quasi-bound levels, i.e.
levels with predicted lifetimes[30] greater than 200 ps. Second we included
those levels plus all bound levels with energies within 0.1 Eh of the dissociation
limit. Finally we added the bound levels with energies within 0.2 Eh of the
dissociation limit. The four sets of results are shown in Fig. 18. One can see
that the results from the calculations sampling just from long-lived quasi-bound
levels are much too low, while on the high-T side of the plot where all the other
sampling techniques give converged results, the other methods give very similar
results. As T goes down, the 0.1 and 0.2 Eh sampling results agree very well
until the error bars for the later results begin to grow. Thus we conclude that
sampling just including levels within 0.1 Eh of the dissociation limit provides
a proficient and reliable means for computing the equilibrium dissociation rate
coe�cients. We fit the CO+Ar dissociation rate coe�cient to the function
2.781⇥ 10�5T�0.8514 exp(�128741.4K/T ), and this is also shown in the figure.
In this fit, we fixed the exponential parameter the value of D0 obtained from
our computed CO diatomic potential as described in the previous section. See
the discussion section for more information about this fit.

We carried out similar tests for the CO+O PESs, and found very similar
results. In Fig. 19, we show the results for the equilibrium dissociation rate
coe�cients for the three di↵erent CO+O PESs, as well as the average and our
fit to the average. The average is the physically relevant quantity. The 3A0 and
23A00 surfaces give rate coe�cients that are quite similar, while the 13A00 gives
a rate coe�cient that is about twice the sum of the results for the other two
surfaces. We fit the average to the function 0.1733T�1.71 exp(�128741.4K/T ).

We also carried out calculations for CO+O where we again sampled from all
the CO levels to get estimates of the rates for homogeneous exchange reactions
and reactions that form O2+C. Since the homogeneous exchange reaction has
a very low barrier, this reaction is quite fast, we were able to get good statis-
tics for all temperatures with 200000 trajectories, but not so for the exchange
reaction to form O2+C. Increasing the number of trajectories to 600000 did
not significantly improve the situation. For this case we sampled from bound
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energy levels within 0.25 Eh of the dissociation limit plus all long-lived quasi
bound levels. The calculated rate coe�cients for this case were within 65-75% of
the values obtained by sampling all levels for temperatures between 12,000 and
20,000 K and appear to be well behaved down to 5000 K. The rate coe�cients
for exchange reactions are discussed in the next section.

9 Discussion

During a typical scenario of a spacecraft entering the Martian atmosphere, the
shock that forms in front of the vehicle is characterized by a rapid increase
in pressure and temperature of the atmospheric gas. The vibrational and elec-
tronic modes of the gas are excited more slowly, so the translational temperature
overshoots the thermal equilibrium value because it reflects all the energy gen-
erated by the compression of the gas. For an entry speed of 8 km/s, the time
for the translational temperature to rise from the free stream to the peak value
is about 1 µs, corresponding to a shock thickness of  1 cm. Full relaxation
of the internal energy modes occurs in 1-5 µs (local thermal equilibrium) and
chemical relaxation time is generally 10-20 µs. The dissociation of CO2 into CO
(1⌃+) and O(3P ) is immediate and complete for entry speeds above 5 km/s.
On the other hand, CO dissociation is relatively slow and incomplete. Initially
the collision partners for the latter process are atomic oxygen and other CO
molecules, which formed with equal mole fractions from CO2 dissociation. As
CO and N2 slowly dissociate, N and C mole fractions increase. Their contri-
bution to CO dissociation is not considered in the present study. However, the
reaction between CO and O which forms molecular oxygen,

CO +O ! C+O2, (12)

followed by rapid dissociation of O2 provides an alternate two-step pathway for
CO dissociation. The endothermicity of this reaction is about 6.123 eV which is
only 54% of the CO bond energy. The Park model[3] includes these reactions.

Our rate coe�cients for collisional dissociation of CO by collision with ar-
gon and oxygen atoms are in rough agreement with the published shock tube
experiments, all of which date to before 1993. The experiments to determine
dissociation rate coe�cients for CO/Ar mixtures were carried out by Davies[11],
Appleton et al.[12](who also used CO/O2/Ar) and Mick et al.[13] Determina-
tions for pure CO were carried out by Presley et al.[14], Chackarian[15] and
Hanson[16]. All the data up to 1974 are tabulated and compared in the com-
pendium by Baulch et al.[17] who included their recommended Arrhenius rate
coe�cient expression, which is mostly based on the experiments of Davies and
Appleton et al. That compendium also tabulated relative dissociation e�cien-
cies for di↵erent CO collision partners relative to CO + Ar, i.e., rate coe�-
cient ratios kCO+CO

diss /kCO+Ar
diss = 1 � 2 and kCO+O

diss /kCO+Ar
diss = 15. The ratio for

kCO+O
diss /kCO+Ar

diss comes primarily from Appleton et al., but the recommendation
for kCO+O

diss /kCO+Ar
diss is not really supported by the experiment. There is insuf-

ficient data to ascertain the temperature dependance of this ratio, so they are
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considered to be independent of temperature. Various methods were used to
monitor reaction progress: 117.6 nm VUV and IR emission from CO, atomic
resonance absorption spectroscopy, pressure variation and C2 Swan emission
(C2 being formed by secondary reaction of CO with carbon atoms).

Unless stated otherwise, the comparisons between these di↵erent experi-
ments and our calculated rate coe�cients are based on the published Arrhenius
fits to the experimental data. For CO + Ar and CO + O the relevant exper-
imental data are given in Figs. 20 and 21, respectively, along with the results
from the present work. All of the Arrhenius fits of the rate coe�cient data are
given in Table 1. We have determined dissociation rate coe�cients for thermal
equilibrium conditions, whereas the rate coe�cients extracted from the experi-
mental data are for quasi-steady state conditions which may di↵er from thermal
equilibrium. At high temperatures, i.e., greater than 15000 K, we expect the
steady state rate coe�cients to be 2-5 times smaller than the thermal equilib-
rium values, as has been demonstrated in detailed master equation studies of
N2 dissociation (Panesi et al.[37], Valentini et al.[38]). It can be seen that the
agreement between these various determinations is fairly good at temperatures
between 8500 K and 12,000 K. Also shown in figure 20 for CO+Ar and figure
21 for CO+O are the rate coe�cients recommended by Baulch et al.[17], the
rate coe�cients used in the Park model[3] and the new Johnston and Brandis
model[18] discussed below. Davies[11], Appleton et al.[12] and Mick et al.[13]
used CO-Ar mixtures for their shock tube experiments with the initial CO mole
fraction 0.05. At 9000 K, the highest temperature run in the Mick et al. study,
the rate coe�cients for Mick et al. and Davies are 3.5 times smaller and 2.0
times larger, respectively, than the Appleton et al. rate coe�cient. Throughout
the temperature range 7000 K to 20,000 K the Appleton et al. rate coe�cients
are bracketed by the Davies and Mick et al. values, but the relative di↵erences
between them are larger for lower temperatures. In the Appleton et al. study
O2 was added to the CO-Ar mixture for some runs so the CO dissociation rate
coe�cient for CO + O collisions could also be determined. The other shock tube
studies[14, 15, 16] used pure CO and measured dissociation of CO due to CO,
C and O collisions. Chackerian also attempted to determine rate coe�cients
for CO + CO collisions by analyzing the data at short times immediately after
the shock and for CO + C and O collisions at longer times. Appleton et al.[39]
previously had used this approach for determining dissociation rate coe�cients
for N2 + Ar, N2 + N2 and N2 + N from shock tube experiments using N2-Ar
mixtures. In the experiments carried out with pure CO, the rate coe�cients for
CO + O and CO + C could not be di↵erentiated.

A di↵erent approach was taken by Park[4, 6, 7, 5, 3] in formulating 2-T
chemical kinetics models to describe the non-equilibrium flows observed in the
shock tube experiments and during hypersonic entry of spacecraft into planetary
atmospheres. Park used separate vibrational and translational temperatures to
enable simulations to account for the slower relaxation across a shock of vibra-
tion and electronic energy modes, compared to translation and rotation. Park
created empirical dissociation rate coe�cients using an average temperature
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(Tave = (TTvib)1/2) in the three-parameter Arrhenius expression

kdiss(T, Tvib) = ATn
ave exp(�Trxn/Tave), (13)

where A is a constant, n is the temperature coe�cient and Trxn is the charac-
teristic reaction temperature based on the dissociation energy. As the system
reaches thermal equilibrium, Tave ! T and the expression reduces to the famil-
iar Arrhenius form. For CO2 and CO dissociation and the exchange reactions
CO + C ! O + C2 and CO + N ! O + CN, Park calibrated the Arrhenius A
parameters to best reproduce the radiative emission from a CO2-Ar mixture in
a reflected shock experiment. The relevant band systems for these reactions[3]
were CO2 IR emission for CO2 dissociation, CO 4th positive radiation for CO
dissociation, C2 Swan radiation for CO + C and CN violet radiation for CO +
N exchange reaction. Previously, Park showed that using Tave in the Arrhenius
expression for dissociation rate coe�cients worked well if the temperature pa-
rameter n is small[7], so for the CO2 and CO dissociation reactions he set it to
unity and adjusted A so the resulting rate coe�cient at 10,000 K matched the
published value of choice. For CO dissociation that was the dissociation rate
coe�cient determined by Hanson[16]. The resulting collision partner e�cien-
cies, based on Baulch et al.[17] for Ar:O and Hanson for CO:O are Ar:CO:O =
1:10:15.

Recently, Johnston and Brandis[18] repeated this procedure for three dis-
sociation reactions (CO2, CO and C2) and two exchange reactions (CO +
N mentioned above and CN + O ! NO + C) in the Park Mars chemistry
model[3], fitting the A parameters to best reproduce spectra of the CO2 and
CO IR emission, CO 4th positive VUV emission and CN violet emission as
recorded in the NASA Ames Electric Arc Shock Tube (EAST) facility[40]. To
make this comparison, the authors used the coupled flowfield-radiation solver
LAURA/HARA[41, 42, 43, 44]. They created a new baseline Mars chemistry
model that included their newly calibrated rate coe�cients along with updates
of some other parameters based on more recent work since the Park model was
presented in 1994[3]. The most significant finding of this work is the observation
that use of the Park model leads to greater CO 4th positive intensity than is
seen in the EAST spectra and that faster removal rates for CO are required to
obtain satisfactory agreement between flow field computation and experiment.
Johnston and Brandis kept the relative collision partner e�ciencies used by
Park, but increased all the dissociation rate coe�cients by a factor of 5.2.

It should be noted that most of the Arrhenius fits of the experimental data
were obtained by assuming Trxn equals the CO bond dissociation temperature,
which was taken as 129,000 K. This value was the accepted value when the
Park model was created, however a more accurate value is now available: this
is 130462 K.[33] Thus, only the parameters A and n were fit to the measured
data (T, kdiss(T)). For some of the experiments, Refs. [11],[12], and [16], an
alternate fit was used with n=0. In these cases Trxn is always lower than the
bond dissociation temperature. For a given experiment, the quality of these two
fits are comparable. So there is no reason to pick one Arrhenius expression over
the other.
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A straightforward comparison of the experimental data and our computed
rate coe�cients for CO+Ar is given in Fig. 22. It can be seen that the results
of the present study are in good agreement with the data from Mick et al.[13]
and the lower temperature data of Appleton et al.[12]. The agreement with the
results of Davies [11] is less satisfactory. Overall, our rate coe�cients agree with
the aggregate experimental data for temperature between 6000 and 15,000 K.
We have fit our calculated rate coe�cients to both two- and three-parameter
Arrhenius expressions in the same manner as was done for the experimental
data, i.e., the dissociation temperature is fixed for the 3-parameter fit. For
our PESs, the CO dissociation energy (D0) is 11.242 eV, equivalent to Tdiss

= 128,741.4 K. The best experimentally determined value is 128,901 K [33].
The resulting rate coe�cient parameters are given in Table 1 and the Arrhenius
expressions are shown in Figures 20 and 21. The fits were determined from the
calculated rate coe�cients over the temperature range 7500-20,000 K. There is a
noticeable change in curvature at higher temperatures and the low-temperature
data (5000-7000 K) show scatter due to larger statistical errors in the Monte
Carlo sampling. The rate coe�cient data and Arrhenius fits for both CO+Ar
and CO+O (average of values for the three PESs) are shown in Fig 23. The
3-parameter fits are preferred because they better represent the rate coe�cients
when extrapolated to to full temperature range of the data. It can also be seen
that the temperature dependences of the CO+Ar and CO+O rate coe�cients
are di↵erent. The CO+Ar rate coe�cients have a steeper slope.

In order to make detailed comparisons between the results of the present
study and the previous work we plot the ratios of rate coe�cient fits from the
older work to the QCT values in Fig 24 for CO = Ar and Fig 25 for CO + O.
These ratios are computed from the Arrhenius fits. For the experimentally de-
termined rate coe�cients, the ratios are only shown for the temperature range
of the experiments. The overall agreement between the present study and pre-
vious work is rather good for CO+Ar as all the ratios are between 0.3 and 2.0.
The values from experiment have fairly steep slopes, indicating a di↵erent tem-
perature dependence. The 3-parameter expression of Appleton et al.[12] is in
closest agreement with the QCT fit over the entire temperature range. Note
that the Park model[3] uses rate coe�cients that are approximately a factor of
three lower than ours and the Johnston and Brandis model[18] a factor of 1.5-2
higher. For CO+Ar the situation is problematic. The computed rate coe�cients
are generally much smaller than the experimentally determined values and the
values used in the Park and Johnston and Brandis models. These di↵erences
are more pronounced at lower temperatures. Another way to consider the our
computed rate coe�cients is to examine the ratio of CO+O to CO+Ar disso-
ciation rate coe�cients. This is shown in Fig 26. The values for T  10,000
K vary between 2 and 8, much smaller than the constant value of 15 chosen
by Park and used by Johnston and Brandis. An explanation for the apparent
disagreement between our study and previous work is presented below.

Our QCT calculations for CO + O collisions also can be used to obtain rate
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coe�cients for the exchange reaction (Eq. 12) and

CO +O0 ! CO0 +O, (14)

where the 0 is used to distinguish the two oxygen atoms. The latter process
(homogeneous exchange) has a very low energy barrier (about 5 kcal/mol) and
thus its rate coe�cient is quite large for the entire 5000-35,000 K temperature
range of the present study. This reaction, while not changing the chemical
composition of the gas, results in faster translational to ro-vibrational energy
transfer between the collision partners than would occur due to inelastic colli-
sions alone. The other exchange process, Eq. 12, is endothermic by 6.123 eV
and provides an additional channel for removal of CO molecules, as the nascent
oxygen molecules should readily dissociate at these temperatures. The rate co-
e�cients for this exchange reaction are shown in Fig. 27 along with the direct
dissociation and overall CO removal rate coe�cients. Also shown are the rate
coe�cients from shock tube experiment of Dean et al.[45] and the corresponding
value in the Park model[3]. It can be seen that the exchange reaction is faster
than direct dissociation for temperatures up 16,000 K and, therefore dominates
the removal of CO molecules throughout the temperature range of the shock
tube experiments. Dean et al. actually studied this reaction in the reverse
(exothermic) direction for temperatures between 1500 and 4200 K. They com-
ment that the atomic oxygen product may be formed in either the 3P or 1D
state. The corresponding rate coe�cient in the Park model[3] is attributed to
a paper by Thorne et al.[46] that describes a model for hydrocarbon kinetics.
The Arrhenius parameters for this reaction are listed in a table of 163 reactions
without references to the original work. Thus, the accuracy of these published
values for the exchange rate coe�cient is questionable. Also shown in Fig.27 is
the CO removal rate coe�cient given as the sum of dissociation and exchange re-
actions. This corresponds to the quantity actually measured as CO dissociation
in the shock tube experiments of Appleton et al. and others.

Figure 26 shows the ratio of CO + O to CO + Ar rate coe�cients. When
exchange and dissociation are combined, this ratio is very large at low temper-
ature and tends toward unity for temperatures greater than 20,000 K. For the
temperature range of interest to Mars entry (6000-8000 K), it has values greater
than 25. In contrast, the ratio for dissociation without exchange varies between
3.0 and 4.3 over these temperatures. A 2-parameter Arrhenius fit of the com-
puted exchange reaction rate coe�cient data between 5000 and 10,000 K results
in the following expression for this reaction: kCO+O

exch = 5⇥10�10 exp(�77600/T ).
The reaction temperature is equivalent to 6.69 eV, which is 0.57 eV larger than
the endothermicity.

10 Conclusions

We have carried out first principles quasi-classical trajectory calculations of the
thermal dissociation rate coe�cients for CO+Ar and CO+O over a wide tem-
perature range using new potential energy surfaces. Our results are not really
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consistent with the intepretation of the 20-45 year old experimental data. We
find the ratio between rate coe�cients for dissociation due to O-atom and Argon
collisions is considerably smaller than the conventional value of 15. Also, it is
not constant with respect to temperature (as assumed previously), varying from
1.5 to 3.3 over the temperature range considered by the experiments. Also our
rate coe�cients show considerably less curvature on an Arrhenius plot than the
published values. Our calculations do not support the recent upward adjust-
ment of the CO dissociation rate coe�cients made by Johnston and Brandis,[18]
which was made to improve the prediction of CO 4th-positive radiation observed
in test facilities at NASA Ames Research Center.

We also computed the thermal reaction rate coe�cients for the CO + O
exchange reaction that produces C + O2. We find this reaction to be faster
than collisional dissociation for temperatures below 16,000 K, and especially so
below 10,000 K. This reaction is endothermic by 6.123 eV (only 54% of the CO
dissociation energy) and with the subsequent collisional dissociation of the O2

product provide an alternative dissociation pathway for CO.
Because of phenomenological adjustments to the Mars chemistry model, the

use of the presented dissociation and exchange rate coe�cients instead of the
values in the Park model[3] or the new Johnston and Brandis model for sim-
ulations of spacecraft entering the Martian atmosphere will not necessarily re-
sult in improved agreement between simulations and measurements. However
this would most likely indicate problems with other reaction rate parameters
rather than problems with the rate coe�cients determined in the present work.
Nonetheless, we recommend that the computed dissociation and exchange rate
coe�cients computed in the present study be used in place of the values in
the Park model[3] and the new Johnston and Brandis model for simulations
of spacecraft entering the Martian atmosphere. Preliminary testing of the new
rate coe�cients in Mars entry simulations have shown very promising results,[47]
suggesting that the physics in the Mars chemistry model is nearing a very solid
foundation.
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Table 1: Parameters for Analytic Representation of CO Dissociation Rate Co-
e�cients

Source Aa n Trxn (K) Temp. Range (K) Comment

CO+Ar

Present work 3.910⇥10�9 - 118712.6 7500-20000 2-p
2.781⇥10�5 -0.8514 128741.4 7500-20000 3-p, Trxn fixed

Davies[11] 5.800⇥10�12 0.5 92830 7000-9500 low-T
2.620⇥10�13 0.5 63820 9000-12000 high-T
1.890⇥1012 0.5 83550 7000-15000 all-T

Appleton et al.[12] 4.400⇥10�10 - 98600 8000-15000 2-p
2.800⇥103 -2.86 129000 8000-15000 3-p, Trxn fixed

Micket al.[13] 7.140⇥103 -3.1 129000 5500-9000 Trxn fixed
Baulch[17] 1.461⇥106 -3.52 128700 Trxn fixed

Park et al.[3] 3.819⇥10�5 -1 129000 n,Trxn fixed
Johnston and Brandis[18] 1.993⇥10�4 -1 129000 n,Trxn fixed

CO+O

Present Study 3.120⇥10�9 - 108436.1 7500-20000 2-p
1.733⇥10�1 -1.7104 128741.4 7500-20000 3-p, Trxn fixed

Appleton et al.[12] 6.860⇥10�9 - 98025 8000-15000 2-p
Chackerian[15] 4.150⇥10�1 -1.5 129000 6000-16000 Trxn fixed
Hanson[16] 1.345⇥10�9 - 83300 2-p

1.330⇥1015 -5.5 129000 5600-12000 3-p, Trxn fixed
Baulch[17] 6.860⇥10�9 - 98025

Park et al.[3] 5.65⇥10�4 -1 129000 n,Trxn fixed
Johnston and Brandis[18] 1.993⇥10�3 -1 129000 n,Trxn fixed

a units are cm3 molec�1s�1.
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Figure 1: Cuts through CO+Ar PES with ✓a = 135�. Black Open squares are
V int for CCSD(T) energies multiplied by 1.022, Blue filled squares are V int for
MRCI+Q energies, and the line is the analytic representation. The di↵erent
cuts, from top to bottom, are for Rc =4, 4.5, 5, 5.5, 6, 6.5, 7, and 8 bohr.
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Figure 2: Contours for CO+Ar rvib = 2.2 ao. Green is the zero contour, red
are positive energy contours, and blue are negative energy contours. The solid
curves are in steps of 0.05 Eh, and the dashed curves are in steps of 0.25 mEh.
The filled black squares show the C and O nuclear positions, with the O on top,
and the blue filled squares show geometries where there are MRCI+Q calcula-
tions, and black squares show geometries where there are CCSD(T) calculations.
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Figure 3: Same as Fig. 2, except rvib = 3 ao.
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Figure 4: Same as Fig. 2, except rvib = 4 ao.
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Figure 5: Cuts through OCO PES with OCO bond angle 120� for the 3A0

surface. Magenta stars are the Schmidtet al. energies, and the line is the
analytic representation. The di↵erent cuts are for fixed CO bond lengths of 2,
3, 4, 5, 6, and 7 bohr.
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Figure 6: Same as Fig. 5 except lowest 3A00 surface.
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Figure 7: Same as Fig. 5 except second 3A00 surface.
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Figure 8: Same as Fig. 2 except 3A0 surface of CO+O: recall rvib = 2.2 ao. The
magenta stars show the geometries of the Schmidt et al. data, and the green
filled squares show the geometries of the TZ CCSD(T) data.
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Figure 9: Same as Fig. 2 except lowest 3A00 surface of CO+O: rvib = 2.2 ao.
The magenta stars show the geometries of the Schmidt et al. data.
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Figure 10: Same as Fig. 2 except excited 3A00 surface of CO+O: recall rvib =
2.2 ao. The magenta stars show the geometries of the Schmidt et al. data.
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Figure 11: Same as Fig. 2 except 3A0 surface of CO+O and rvib = 3 ao. The
magenta stars show the geometries of the Schmidt et al. data.
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Figure 12: Same as Fig. 2 except lowest 3A00 surface of CO+O and rvib = 3 ao.
The magenta stars show the geometries of the Schmidt et al. data.
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Figure 13: Same as Fig. 2 except excited 3A00 surface of CO+O and rvib = 3 ao.
The magenta stars show the geometries of the Schmidt et al. data.
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Figure 14: Same as Fig. 2 except 3A0 surface of CO+O and rvib = 4 ao. The
magenta stars show the geometries of the Schmidt et al. data.
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Figure 15: Same as Fig. 2 except lowest 3A00 surface of CO+O and rvib = 4 ao.
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Figure 16: Same as Fig. 2 except second 3A00 surface of CO+O and rvib = 4 ao.
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Figure 17: CO potential curve from fit to experimental data (red) and calcula-
tion (green).
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Figure 18: Computed dissociation rate coe�cients for CO+Ar. Red samples
from all CO ro-vibrational levels, green only from long lived quasi-bound levels,
blue from levels within 0.1 Eh from the dissociation limit, and black from levels
with 0.2 Eh from the dissociation limit. The cyan line shows the fit to the blue
symbols.
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Figure 19: Computed dissociation rate coe�cients for CO + O. CO ro-
vibrational levels with energy greater than D0 � 0.1Eh are used in the calcula-
tions. Blue diamonds denote calculations for the 13A0 PES, red circle denote
calculations for the 13A” PES and blue Xs denote the 23A” PES. The total
dissociation rate coe�cient is the average of these three values and is denoted
by the black triangles. The line represents the 3-parameter Arrhenius fit to the
total rate coe�cient.
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Figure 20: Dissociation rate coe�cients for CO + Ar. Arrhenius fits to data
from shock tube experiments by Davies[11] (blue line), Appleton et al.[12] (green
line) and Mick et al.[13] and the review by Baulch et al.[17] (black dashed line).
Also shown are the computed rate coe�cients from the present study (black
diamonds), the Arrhenius rate coe�cient expressions used in the Park model[3]
(red line) and the revised model of Johnston and Brandis[18] (orange dashed
line). CO ro-vibrational levels with energy greater than D0-0.1Eh are used in
the calculations.
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Figure 21: Dissociation rate coe�cients for CO + O. Arrhenius fits to data from
shock tube experiments by Appleton et al.[12] (green line), Chackerian[15] (blue
line) and Hanson[16] and the review by Baulch et al.[17] (black dashed line).
Also shown are the computed average rate coe�cients from the present study
(black diamonds), the Arrhenius rate coe�cient expressions used in the Park
model[3] (red line) and the revised model of Johnston and Brandis[18] (orange
dashed line).
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Figure 22: CO + Ar dissociation rate coe�cient data from shock tube experi-
ments. Points from Davies[11] and Appleton et al. [12] (X) read from figures and
points from Mick et al. [13] (circles). Davies data divided into low-temperature
(6000-9000 K) and high-temperature (9500-16,000 K) regimes (diamonds and
triangles, respectively). Also shown are the QCT data points and 3-parameter
Arrhenius fit from the present study.
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Figure 23: QCT Rate coe�cients for CO dissociation due to collisions with Ar
and O. Rovibrational levels greater than D0�0.1Eh are used in the calculations.
Data points shown for CO + Ar (red Xs) and CO + O (blue diamonds). Lines
are 3-parameter Arrhenius fits to the rate coe�cients for the temperature range
7500 K to 20,000 K.
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Figure 24: Ratios of published rate coe�cients to QCT rate coe�cients for CO
dissociation due to collision with Ar. The horizontal axis is at a ratio of unity,
which indicates complete agreement between present work and previous studies.
The fits to the experimental data are shown over the temperature range of the
experiments. The 3-parameter Arrhenius fit was used for the QCT values.
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Figure 25: Ratios of published rate coe�cients to QCT rate coe�cients for CO
dissociation due to collision with O atoms. The horizontal axis is at a ratio of
unity, which indicates complete agreement between present work and previous
studies. The fits to the experimental data are shown over the temperature range
of the experiments. The 3-parameter Arrhenius fit was used for the QCT values.
Also shown is the ratio of the total QCT rate coe�cient for CO removal to the
dissociation rate coe�cient.
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Figure 26: QCT rate coe�cient ratios for CO removal due to collisions with O
atoms and Ar. Red points only include dissociation: kCO+O

diss /kCO+Ar
diss and green

points are for dissociation plus exchange: (kCO+O
diss +kCO+O

exch )/kCO+Ar
diss . The lines

are ratios computed from the Arrhenius fits to the QCT data as described in
the text.
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Figure 27: Rate Coe�cients for CO+O ! C+O2. Red symbols are for this
reaction, blue symbols are for CO dissociation and the black dashed line is
the sum of dissociation and exchange. Also shown are fitted rate coe�cient
expressions from Dean et al.[45] (salmon dashed line) and from the Park model
[3] (green dot-dashed line). QCT rate coe�cient are averaged over the data for
the three PESs.
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