

International Space Station (ISS) Orbital Debris Collision Avoidance Process

Presented by:

James S. Cooney

IMOC II

October 2016

Program Description

- Risk of orbital debris
- History of NASA orbital debris collision avoidance process prior to the ISS
- Current NASA orbital debris collision avoidance process for ISS

Business Problem – Risk of Orbital Debris

- Orbital debris presents one of the highest risks to the ISS
 - ISS is one of approximately 23,000 objects currently tracked by the Space Surveillance Network (SSN)
 - New objects enter the catalog (launches, debris generating events, deploys)
 - Old objects leave the catalog (directed deorbit, natural decay)
 - Debris has been collecting since the early space age
 - Oldest satellite in the catalog is over 60 years old
 - Collision between one of these objects and the ISS could be catastrophic
 - The joint American and Russian flight control teams have been prepared to maneuver the ISS out of the way should the threat of a collision trigger a certain threshold since the launch of the first ISS module

Technology Solution – Early DAM Process Pre ISS 📻

- Pre-Challenger little thought given to orbital debris
- Post-Challenger refocused attention on flight safety
- A process was created to limit risk to Space Shuttles from orbital debris
- A box, centered on the Shuttle was defined, such that predicted violations by a cataloged object could result in a maneuver
 - Maneuvers not likely
 - low catalog count, Shuttle maneuverability, short duration missions
 - No maneuvers and few notifications prior to ISS related missions

Technology Solution – Early DAM Process Pre ISS 📻

- ISS's long duration, continuous space operations demanded more focus on debris
- The Shuttle "shoebox" method was found to be inappropriate
 - Inconsistent with potential ISS and debris position uncertainties
 - Statistically inefficient: too many false positives and/or negatives
 - Predicted high debris avoidance maneuver rate
 - ISS limited maneuverability
- A strict probability based method was investigated
 - Maneuvers based on risk of collision only
 - Screening volume and maneuver thresholds efficiently chosen to maximize protection while minimizing maneuver rate
 - But ... requires trajectory position uncertainties for debris and ISS
 - ISS need for high quality state uncertainty information drove joint NASA/USAF Space
 Command improvements now used by many US Government missions as well as a host of current commercial and foreign satellite owner/operators

- Propulsion Capability
 - All core propulsive capability is performed by the Russian segment controlled by Mission Control Center – Moscow (MCC-M)
- DAM ΔV
 - Typically ≤1m/s
- DAM propulsion source options
 - Progress resupply vehicle
 - Service Module (SM)
- DAM attitude
 - Dedicated attitude maneuver
 - Torque Equilibrium Attitude (TEA)

- Identify Risk
 - Personnel at the Joint Space Operations Center (JSpOC), located at Vandenberg Air Force Base, maintains a catalog of objects in orbit based on radar tracking
 - Screens the ISS trajectory against all other objects in the catalog three times per day
 - Notifies the ISS Trajectory Operations and Planning Officer (TOPO) if anything is predicted to pass within a ±2 km (local vertical) x 25 km x 25 km (local horizontal) volume within the next 72 hours
 - TOPO uses data from JSpOC to compute the probability of collision (P_c)
 - Based on a set of criteria, TOPO notifies flight control teams in Houston and Moscow of the potential collision hazard
 - Time of Closest Approach (TCA) ≤ 48 hours
 - **Local vertical miss** ≤ 0.5 km or $P_c \ge 1E-06$ (1 in 1,000,000)

- When do you need to start DAM planning?
- How long can you wait before required to make the Go/No-Go decision?
- Hurricane Ike example below (September 2008)

Landfall - 48 hours

Landfall - 24 hours

Landfall - 5 hours

- Maneuver Decision
 - TOPO continues to refine P_c as new tracking information arrives on both ISS and threat object
 - TOPO monitors trends in orbit determination, covariance behavior, miss distance, and $P_{\rm c}$
 - Flight Rules govern when a DAM should be performed to minimize risk of collision
 - P_c threshold to maneuver depends on ISS activities underway or planned in near future
 - Flight Rules dictate the exceptions to perform a DAM
 - Example inbound crewed Soyuz has launched requires higher P_c to warrant a DAM
 - Action thresholds:
 - **Black** Pc \geq 1.0 E-2 (1 in 100)
 - Red Pc ≥ 1.0 E-4 (1 in 10,000)
 - Yellow Pc \geq 1.0 E-5 (1 in 100,000)
 - Green Pc < 1.0 E-5 (no action taken)</p>

- Maneuver Execution Legacy Debris Avoidance Maneuver (DAM)
 - Dedicated command script (cyclogram) built by Moscow flight controllers uplinked to ISS
 - Pros:
 - Custom ΔV within vehicle capability useful if eliminating near-term planned reboost
 - ISS can maneuver from any attitude to the DAM attitude LVLH YPR 0,0,0 or 180,0,0 deg
 - Cons:
 - Requires approximately 24-hours notice due to requirements to run on dedicated test stand
 - Late-notice conjunctions with high risk
 - Crew must shelter-in-place inside Soyuz
 - Risk of debris not always known well at 24-hour decision point
 - Unused work DAM planning which is ultimately canceled once risk decreased below action thresholds

- Maneuver Execution Pre-determined Debris Avoidance Maneuver (PDAM)
 - New operation late 2012 and primary method for ISS DAM
 - Pre-canned cyclogram executed by MCC-M or the crew 1 hour before the PDAM ignition
 - Normally, ignition occurs ~2 hr 20 min prior to closest approach
 - ΔV options (expanded from original 0.5 m/s only option)

0.3, 0.5, 0.7, 1.0 m/s using aft engines (Progress, Service Module)

0.3, 0.5 m/s using Progress docked to DC1-nadir port

- PDAM can be performed from either LVLH YPR 0,0,0 or 180,0,0 deg attitude
- Pros
 - Decision point to perform maneuver as late as 5 hr 20 min prior to closest approach
 - Long pole is getting ISS US systems configured for reboost (appendages in position and power down, if required)
 - Reduced unused work
 - Reduced chance of ISS crew needing to shelter-in-place for high-risk conjunctions
- Cons
 - ΔV limited to discrete options
 - ISS must be near LVLH YPR 0,0,0 or 180,0,0 attitude for PDAM cyclogram to initiate

Future Roadmap

- PDAM Enhancements in work
 - Later PDAM options
 - Houston and Moscow flight control team personnel working together to allow PDAM to occur NLT 30 minutes prior to closest approach
 - Allows planning process to start NLT 3hr 30 min prior to closest approach
 - ISS maneuvers from any attitude to preferred PDAM attitude
 - Currently, ISS must be near either the LVLH YPR 0,0,0 deg or 180,0,0 deg attitude to initiate PDAM
 - ISS may not be near either option for PDAM initiation
 - Best PDAM attitude may the option opposite of current operations
 - Example retrograde PDAM may be preferable in some circumstances

Contact Information

James S. Cooney (Jim)

Email: jscooney@sgt-inc.com or james.s.cooney@nasa.gov

Phone: (281)-483-2102