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Abstract 

Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however 
prohibitively time consuming and cannot be generalized across wide variations of body shapes and 
poses. In this work, we have developed a new design tool based on the statistical analysis of body 
shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body 
size and shoulder pose for a target population. This new process, when incorporated with CAD software, 
will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance 
between the suit and body surface at reduced time and cost. 
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1. Introduction 

It is well known that the human shoulder will deform considerably during motions due to soft tissue 
deformation (muscle bunching) and clavicle/scapula movement. Restricting shoulder elevation and 
protraction during shoulder movements can cause increased strain on the muscles around the shoulder, 
especially the rotator cuff, potentially increasing the risk of injury. Shoulder injury is one of the risks that 
have the potential to impair crewmembers’ performance and health in long-duration spaceflight. Overall, 
64% of crewmembers experience shoulder pain after extravehicular training in a space suit and 14% of 
symptomatic crewmembers require surgical repair [1]. 

Suboptimal suit fit, in particular at the shoulders, has been identified as one of the predominant risk 
factors. However, traditional suit fit assessments and laser scans represent only a single person's static 
data, and thus may not be generalized across wide variations of body shapes and poses. Computational 
models have been developed to estimate human body shapes using different anthropometry 
parameters [2]–[4], but overall lack in the quantification of skin deformation patterns, which are crucial 
for suit-to-body contact assessments. 

A previous study at NASA utilized the static poses from subjects to develop a set of quasi-static models 
of the shoulder joint in different phases of motion. These models represent actual shoulder morphology 
in a series of postures [5]. These models were developed to be used in a CAD environment to determine 
human-hardware interactions with a new prototype space suit and to give suit designers a 
representation of how the human shoulder moves when uninhibited by a suit. This method was limited 
due to the ‘assembly’ nature of CAD and lack of ability to alter body poses or sizes.  

The aim of this work was to develop a software tool based on statistical analysis of a large dataset of 
crewmembers’ body shapes. This tool can predict the skin deformation and shape variations for any 
body size and shoulder pose for a target population, from which the geometry can be exported and 
evaluated against suit models in commercial CAD software.  

 

 



2. Methods 

2.1. Body Scanning 

2.4.1. Subjects 

Twelve subjects (9 males and 3 females) participated in body scanning. The average stature and body 
weight of the subjects were 167.5 (SD 9.8) cm and 74.8 (SD 13.5) kg, which correspond to a body mass 
index (BMI) 24.1 (SD 2.6) kg/m2. The mean age was 25.9 (SD 5.5) years. None of the subjects had any 
known musculoskeletal injuries or pain at the time of testing.  
 

2.4.1. Equipment 

A 3dMD optical whole-body scanner (Atlanta, GA, USA) was used, which was set up to scan the 
subject’s whole body geometry within a capture volume of 440 (length) x 346 (width) x 225 (height) cm.  
The scanner used twelve sets of camera modules, which can capture both the 3-D geometry and color 
texture of the body. 
 
2.4.1. Procedures 

The stature and body weight of the subject were measured using an anthropometer and a scale. Male 
subjects were asked to remove their shirts and female subjects were asked to wear a sports bra. A set 
of markers (light-blue paper stickers of 1.25 cm diameter) were attached to anatomical landmarks on 
the subject’s torso, neck, shoulders and arms. The subject was asked to stand upright in the center of 
the scanner volume and assume nine different poses with the right arm and shoulder (Fig. 1). The pose 

set included shoulder elevations at -45° (the arm pointing down), 0° (horizontal), and 45 (pointing up) 

in permutation with horizontal rotations at 0° (pointing rightward), 45°, and 90 (pointing forward). The 
forearm was extended and the hand was open in a “natural” pose without attempting to make pronation 
or supination. The left arm remained in a neutral pose beside the torso. Each pose was assumed upon 
the experimenter’s instruction, and the body geometry of the corresponding pose was captured using 
the 3dMD body scanner. The subject was asked to return to a neutral pose (arms at sides) after each 
scan. Each scan was completed within approximately 0.8 seconds and each pose was scanned for 
three times. The testing procedure was approved by the NASA Internal Review Board.  
  
 

 

Fig. 1. Scanned poses with the right shoulder elevated to -45 (pointing down), 0 and 45 (pointing 

up). Shoulder horizontal rotation to 0 (A), 45 (B), and 90 (C).  

 

2.2. Data Processing 

The geometry from the neck and above was removed from the raw scan data to de-identify the subjects. 
Each scan was hole-filled using a surface Poisson reconstruction technique [6] in MeshLab v1.3.3 
software [7]. The raw scan, originally consisting in approximately 500,000 vertices, was reduced into 
75,000 vertices.  
 
The positions of the anatomical landmarks were programmatically identified on the scan data. 
Specifically, the color texture map associated with each scan was thresholded and filtered to isolate the 
pixels containing the color sticker patches placed on the skin. Then the center of each pixel cluster was 
located by a blob detection algorithm [8]. The identified cluster centers were manually matched and 
labeled with the corresponding anatomical locations.  



 
A reference mesh (“template”) was created using an open-source human modeling software 
MakeHuman v.1.0.2 [9]. The template, which was composed of 11,831 vertices, was used to 
homologically represent the scan data across different subjects and poses. In this study, the 2,043 
vertices in the upper body, shoulders and extremities were taken into the modeling (Fig. 2).  
 
A two-step fitting process was used to align the template geometry with the scan surface. In the first 
step (coarse fitting), a non-rigid registration procedure (“morphing”) was applied to the template. The 
morphing procedure was based on a radial basis function interpolation method [10], which aligns the 
landmark locations of the template and scanned mesh. In the second step (fine fitting), an implicit 
surface fitting procedure [11] moved each template vertex into the corresponding mathematical surface 
approximated from the scan data. The detailed steps of the fitting process have been previously 
described [2]. 
 

2.3. Statistical Modeling 

The global coordinates of the upper body vertices were extracted from the fitted templates. However, 
global coordinates alone may not be sufficient to model the skin deformation associated with the 
shoulder joint articulation. Thus the local coordinates were also extracted from the right arm and 
shoulder segments by transforming the global coordinates of the corresponding segments into the right-
arm centered coordinates (Fig. 2). A right-arm centered reference system was defined using a vector 
from the mid-scye (middle point between anterior and posterior scye landmarks) to the mid-elbow 
(middle point between the elbow tip and crease landmarks) point. A homogeneous transformation 
matrix was composed for transformation (Equation 1).  
 

𝐩𝑖
Local = 𝐓Global

Local 𝐩𝑖
Global      (1) 

 

where  𝐩𝑖
Local: The coordinate of the i-th vertex in the local reference frame 

 𝐓Global
Local : Homogeneous transformation matrix of the global to local reference frame 

 𝐩𝑖
Global: The coordinate of the i-th vertex in the global reference frame 

 
A combined data matrix was composed by concatenating the flattened global coordinates and the local 
coordinates, both of which correspond to the j-th subject and k-th shoulder pose (Equation 2).  
  

[

⋮
[𝐩Global]
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[𝐩Local]
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⋮

]         (2) 

 
A principal component (PC) analysis was performed on the combined data matrix. From the 108 
available PC scores, the first 25 PC scores corresponding to the largest eigenvalues were selected to 
reduce the data dimensions for the subsequent analyses, as a preliminary analysis indicated that these 
25 PC scores account for 98% of the data variance.  
 
Each of the 25 PC scores was predicted with a statistical linear regression (Equation 3) as a function 
of the corresponding subject’s anthropometry (stature and BMI) and shoulder pose. A shoulder pose 

was represented by a horizontal rotation () and vertical elevation () measured from the upper-
extremity segment vertices similarly as for the right-arm centered reference frame. 
 

PC𝑚 = 𝛃𝑚[1, Stature𝑗 , BMI𝑗 , 𝜃𝑗,𝑘, 𝜑𝑗,𝑘]
T

+ 𝜀     (3) 

 

m denotes a vector of the least-square estimates of the regression coefficients for m-th PC score, which 

minimizes the estimation error magnitudes (𝜀). 
 

2.4. Parametric Geometry Estimation 

With the analysis above, the upper body geometry was estimated as a function of the anthropometry 
and shoulder pose parameters. Specifically, PC scores were predicted as in Equation 3, and a 
combined data matrix was reconstructed by an inverse transformation of the predicted PC scores. The 
reconstructed data matrix was separated into the global and local coordinate matrices, as defined in 
Equation 2.  



 
The entire upper body, including the torso and both left and right upper extremities and shoulders, was 
preliminarily estimated using the global coordinates. For the right shoulder and upper extremity 

segments, however, an additional set of coordinates (�̂�𝑖
Global) were estimated by transforming the local 

coordinates (Equation 4). A homogeneous transformation matrix 𝐓Local
Global(𝜃, 𝜑) represents the global 

with respect to a local reference frame constructed for the given shoulder pose parameters (𝜃, 𝜑).  
 

�̂�𝑖
Global = 𝐓Local

Global(𝜃, 𝜑)𝐩𝑖
𝐿𝑜𝑐𝑎𝑙   (4) 

 
Thus, the right shoulder and upper extremity geometry can be constructed either of two different sets 
of vertex coordinates, namely the global coordinates and the coordinates estimated from the local-to-
global transformation (Equation 4). To resolve the redundancy, a weighted average function (Equation 

5) was applied to determine the final averaged coordinates (𝐩𝑖
Averaged

).  

 

𝐩𝑖
Averaged

= (1 − 𝑤𝑖)𝐩𝑖
Global + 𝑤𝑖  �̂�𝑖

Global    (5) 

 

The weight coefficients (𝑤𝑖) were assigned on the template in a way that the value at the mid-scye 
regions corresponds to 0.5 and gradually increases to 1 as the vertex is located more adjacent to the 
elbow, and decreases to 0 in the opposite direction toward the torso (Fig. 2). 
 
The final upper body geometry was constructed using the weight-averaged vertex coordinates. The 
estimation accuracy and errors were also assessed by the L2-norm between the measured and 
estimated vertex coordinates. 

 

 
Fig. 2. Upper body template. GF: Global reference frame. LF: Shoulder-
centered local reference frame. The dark blue versus red area indicates a 
higher weight assigned to the global versus shoulder-centered local 
coordinates for geometry estimation, respectively. 

 

3. Results 

3.1. Model-Estimated Geometry 

A set of sample body shapes generated by the model are illustrated in Fig. 3. The model parameters 
corresponded to a large (190 cm stature and 30 kg/m2 BMI), medium (175 cm stature and 25 kg/m2 
BMI), and small body size (160 cm stature and 20 kg/m2 BMI). The shoulder poses were also varied 
across multiple different combinations of horizontal rotations and vertical elevations. These arm poses 
are representative of motions and ranges performed while wearing a space suit [12].  
 



 
Fig 3. Body shapes generated by the model using different anthropometry and shoulder pose parameters. 

 

3.2. Estimation Accuracy 

For model accuracy assessments, body shapes were first generated using the stature and BMI 
measurements of each scanned subject. Then the model errors were calculated by calculating the L2-
norms between the corresponding subject scan versus model-estimated vertex coordinates. The errors 
were averaged across all the subjects. Two sample shoulder poses were considered (Fig. 4). The errors 

are 12.90 (SD 6.88) mm on average for the shoulder pose with the right arm rotated forward to 45 and 

lowered by 45 (Fig. 4A). Similarly, the errors are 11.98 (SD 6.59) mm for the rotated forward by 45 

and elevated up by 45 (Fig. 4B). Overall the errors tend to be larger in the arms at the biceps and 
triceps areas and upper abdominal areas. 
 

 

 

  
Fig. 4. Model estimation errors for sample poses.  



 

3.3. Application to Suit Fit Assessments 

The model-estimated body shapes were incorporated with the CAD drawings of a space suit (Fig. 5), 
specifically a medium-size Extravehicular Mobility Unit (EMU), including the hard upper torso (HUT), 
display and control module (DCM), scye rings, and upper arm assembly excluding soft goods. The 
sample body shapes were generated using a parameter set of 176 cm stature, 25 kg/m2 BMI. The 

shoulder poses corresponded to 30 horizontal rotation forward and -20 (Fig. 5A) and 20 (Fig. 5B) 
vertical elevations. The position of the body shape and EMU joint configurations were manually adjusted 
in a way to minimize the overlaps. 
 
Overall, the sample illustrations demonstrate that the model-estimated body shapes and space suit 
CAD drawings can be incorporated to quantify the contact volume and clearance between the suit and 
body surfaces. For example, the clearance on the rear of the upper arm reduces as the shoulder is in 
an elevated pose, as shown in Fig. 5B. In general, it was observed that the clearance tends to be 

reduced as the shoulder approaches extreme positions, such as 0 and 90 horizontal rotations and 

30 and -30 vertical elevations. 

 

  
Fig. 5. Model estimated body geometry incorporated with the CAD drawings of an Extravehicular Mobility 
Unit (EMU) space suit.  

 

3. Discussion 

In this study, a model framework was developed to parametrically estimate an upper body geometry as 
a function of the anthropometry of the target population and shoulder poses of interest. Based on the 
scans of nine different shoulder poses, a two-step fitting technique, namely an initial morphing followed 
by an implicit surface fitting, generated a homological representation of body shapes across the scans 
in different body sizes and poses. A statistical model of the global and local coordinates of the fitted 
templates was able to reconstruct the skin deformation patterns varying with the different articulations 
at the shoulder. The estimation errors are approximately 11-12 mm on average, which are suitable for 
the purpose of this study to assess space suit. The fit assessment in a CAD environment was 
demonstrated as a proof of concept. Future effort will be made to geometrically quantify and analyze 
the interactions between the suit and body surface.  
 
This model is based on the upper body poses articulated without wearing a suit (“active poses”). 
However, it has been reported that wearing a space suit, particularly with the HUT and scye bearings, 
generally changes the patterns of upper body poses [12], [13]. For example, the orientation of the scye 



bearings often results in subjects protracting their shoulders forward to a much greater extent even in 
a neutral pose than they would normally do when standing neutrally unsuited. Thus the resulting poses 
in a suit may not be an exact match to the active poses considered in this study. A future study should 
represent the “passive” poses that suit geometry forces the body into. 
 
Another limitation of the present model is the combination of male and female scan data due to the 
insufficient number of subjects. With more subjects across different body shapes, other crucial factors 
for the skin morphology can be more accurately represented, including gender and muscularity. Further 
the present model used a weighted averaging map pre-defined on the template as illustrated in Fig. 2. 
This approach was simple to implement and demonstrated a good level of estimation accuracy. 
However, future effort can be made to statistically survey and analyze the weight mapping patterns 
directly from the scan data.  
 
Overall, the model developed in this study can be used to predict the skin deformation and shape 
variations for any body size and shoulder pose for the crewmember population. It is expected that the 
virtual fit process that can be developed from this study would help to reduce the time and cost of the 
iterative processes for the suit design, fit and evaluation.  
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