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Outline

* Atmospheric entry, thermal protection, and arc jet testing
* Two photon LIF as an arc jet diagnostic

* Short history of arc jet LIF at NASA

* LIF systems redevelopment at NASA Ames

* Example results

* Current status and future work
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Planetary entry aeroheating and thermal
protection systems
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* Spacecraft kinetic energy is converted to thermal energy
during atmospheric entry deceleration

* Part of that thermal energy reaches spacecraft through
convective and radiative heat transfer

* Thermal protection system (TPS) mitigates heat transfer to
substructure

° TPS materials are developed and validated with arc jet
wiesting 3



Arc jet facilities and TPS testing

* Atmospheric entry aeroheating
environments for TPS materials testing

- Heat flux, heat load, pressure, shear

° Nonequilibrium free stream

- Highly dissociated — conditions not
encountered in flight

- TPS material response can be sensitive to the
degree of nonequilibrium

* TPS testing methodology relies on facility
characterization and simulation
- High fidelity CFD simulations validated with facility performance data
- Boundary conditions for TPS material response modeling
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Two photon absorption LIF (TALIF) of atomic N and O NA
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° Non-intrusive, species-selective diagnostic for
combustion and plasma flows

* Tunable UV laser excitation, near-infrared fluorescence
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Arc jet flow property measurement with LIF

reference (lab) arc jet
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° Laser excitation scan over absorption transition reveals
three important flow properties
- Velocity from Doppler shift
- Temperature from line shape width
- Species density from integrated signal magnitude

* LIF-measured flow properties and facility data are used to
compute total and modal enthalpy of arc jet free stream
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TALIF in NASA arc jet facilities — timeline

1998: AHF v.1 (N)
2002: AHF v.2 (N, radial profile)

2016: AHF v.3.5 (N, O)

ARC Aerodynamic Heating Facility (AHF)

2015: IHF v.3.5 (N, O)

ARC Interaction Heating Facility (IHF)

JSC Test Position 2 (TP-2) .
Q3 2013 |+ Critical review and
redevelopment

* Rebuild AHF system
7
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TALIF process

A * Rate equation analysis:
Accounts for state population
dynamics
e
radiative decay
* Magnitude of fluorescence
W signal: function of
12 N, :
A spectroscopic and

0 experimental parameters
Y collisional quenching

laser excitation

* Proportional to four factors
N and a calibration constant
—
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TALIF signal interpretation

Excitation line shape Integrated signal magnitude
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Velocity and Temperature Species density

* Expressions that characterize TALIF signal response
- Calibration and analysis to recover flow properties

* Defines data requirements for experiment
Implementation
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Experiment configuration requirements — v.3.5 NA

* Calibration methodology — means to obtain calibration
constants for measurement of absolute atomic N and O
densities In arc jet

* Validation capability — experiments to assess
conformance to TALIF theory (reveal systematic errors)
- Quadratic pulse energy dependence
- Linear density dependence
- Line shape function modeling

* Comprehensive and efficient data acquisition
- Optimum use of arc-on time
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Calibration methodology for arc jet N and O densities@_r_j,

* Traceable to known absolute atomic N and O densities
- Laboratory reference source

* Kr and Xe used as proxies of N and O

- TALIF characteristics and experiment configurations are nearly identical

* Nand O TALIF responses in the arc jet are calibrated

15—

lab

Nitrogen

Ao
3P Sy

| BT
1 2P S

WS nm

2 x 206.7 nm

3s 4p°

Krypton

5p'[3/2],

\826 nm

55 [1/2],

2 x204.2 nm

15—

10

energy (eV)

43
120 Py 0

Oxygen

3
3p°Pi5,

2 x 225.7 nm

through Kr and Xe TALIF measurements in the arc jet and

Xenon
6p'[3/2],

NS\?;S nm

6s'[1/2],

2x 2243 nm

61
Sp~ S,



Implemented features for calibration and validation NA

* Laboratory and arc jet calibration sources
- Target species at prescribed pressures and quantifiable densities

* Detector system
- Dynamic range accommodation: sensitive over 3 orders of magnitude

° Laser pulse energy
- Continuously variable and quantifiable over 1.5 orders of magnitude

* Experiment management and data acquisition program

- Multiple independent parameter modes (laser wavelength, pulse
energy, pressure, flow rate)
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LIF laboratory optical configuration —v.3.5
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Laboratory flow reactor calibration source  Nasa
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AHF LIF configuration
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IHF LIF configuration
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LIF collection telescope —v.3.5

Flat mirror

T——D — Fiber optic bundle

* Reflective optics

* Imaged fluorescence is coupled out of facility through fiber optic
bundle

* One telescope — used in both facilities



Fiber bundle and integrated LIF detector — v35‘A
LS

Flberoptlc ’ g Fiber bundle
bundle “ | feedthrough
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Arc jet Kr, Xe calibration source

Laser beam

Gas supply and vacuum system

Laser energy sensor

& Nozzle exit

* Glass tube flow cell with optical access windows
* Programmable mixtures of Kr or Xe (~ 104 — 1016 cm-3)
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Linear density dependence

* Ensures conformance to TALIF theory for signal interpretation

* Enables quantification of random error for uncertainty estimates
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Demonstration test results — AHF

AHF” (TP'B arc heater) Arc Current (A) | N2 Flow (g/s) | Oz Flow (g/s) | Add Gas (N;) Flow (g/s) [Enthalpy (MJ/kg)
*7.5” dia. nozzle
Z=6.0" 1205 177 71 62 19.7
Nitrogen Oxygen
40 ‘ : ; — ; 80 : = t
H H : L] oW reactor EX | ion n . oW reacior
Excitation scan L_. oM Curve Fit citation sca |‘—’ Curve Fit
. 30t . ...................... 4 Arc Jet . 60 ; 4 Arc Jet
S \ Curve Fit S Curve Fit
3] 3]
= 20l A0k fo e N D V.= 3 693+ 170.m/s.
g 20 V = 3737 + 524 mis] g 40 T <1319 £ 176 K
@ T=1166 + 333K @ -
: 10 ____________________________________ : 20 .......................................
0 i i | i 0 i i | i i
620.205 620.21 620.215 620.22 620.225 620.23 6771 677.105 677.11 677.115 67712 677.125 67713
Dve Laser Wavelength {nm) Dve Laser Wavelength {nm)
1 ' ' s — 3 Flow react
— oW reacior —FlOow reactior
ol TUcrescencepulse —Curve Fi o5 FluOTESCENCEpUlse —Curve Fi
o _ —Arc jet e ' —Arc jet
= Teff = 23.7 1S ——Curve Fit S 2f ——Curve Fit
s s :
o T 1.5}
| oy | oy
2 =
w w 1 L
L L
— —
0.5_ .................. J
s I i i ‘ ‘ Sl I i il
450 500 550 600 650 700 750 800 450 500 550 600 650
Time (ns) Time (ns)

June 16, 2016

22



Demonstration test results — IHF
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Summary and next steps

* Revised LIF system design for the Ames arc jet facilities
- Critical review of measurement requirements
- Modifications to enable validation experiments
- New arc jet LIF receiver and detector system
- New experiment management software

* Updated existing IHF LIF system

° Rebuilt AHF LIF system

- Inactive since 2005
- Incorporated design improvements

* Both systems have identical functionality and capabillities

° Future work
- Operational optimization
- Comprehensive error analysis
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