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1 Introduction 

1.1 Background 

National Aeronautics and Space Administration (NASA) Headquarters chartered the Technology 

Evaluation for Environmental Risk Mitigation Principal Center (TEERM) to coordinate agency 

activities affecting pollution prevention issues identified during system and component acquisition 

and sustainment processes. The primary objectives of NASA TEERM are to: 

 Reduce or eliminate the use of hazardous materials or hazardous processes at

manufacturing, remanufacturing, and sustainment locations.

 Avoid duplication of effort in actions required to reduce or eliminate hazardous materials

through joint center cooperation and technology sharing.

Corrosion is an extensive problem that affects the National Aeronautics and Space Administration 

(NASA) and the European Space Agency (ESA).  The damaging effects of corrosion result in steep 

costs, asset downtime affecting mission readiness, and safety risks to personnel.  Consequently, it 

is vital to reduce corrosion costs and risks in a sustainable manner. 

NASA and ESA have numerous structures and equipment that are fabricated from stainless steel.  

The standard practice for protection of stainless steel is a process called passivation. Passivation 

is defined by The American Heritage Dictionary of the English Language as “to treat or coat (a 

metal) in order to reduce the chemical reactivity of its surface.”  Passivation works by forming a 

shielding outer (metal oxide) layer that reduces the impact of destructive environmental factors 

such as air or water.  Consequently, this process necessitates a final product that is very clean and 

free of iron and other contaminants.  

Typical passivation procedures call for the use of nitric acid; however, there are a number of 

environmental, worker safety, and operational issues associated with its use. Citric acid is an 

alternative to nitric acid for the passivation of stainless steels. Citric acid offers a variety of benefits 

including increased safety for personnel, reduced environmental impact, and reduced operational 

cost. 

American Society for Testing and Materials (ASTM) A 967 “Standard Specification for Chemical 

Passivation Treatments for Stainless Steel Parts” and Aerospace Material Specifications (AMS) 

2700 “Passivation Treatments for Corrosion-resistant Steel”, allow for the use of citric acid in 

place of nitric acid for the passivation of stainless steel. Citric acid is similarly called out in the 

ASTM A 380 “Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, 

Equipment, and Systems” standard. Unfortunately, specific processing parameters are not 

specified in the standards. 

Citric acid passivation is not a new technology; it was developed (many years ago) for the beverage 

industry in Germany to process containers that were free of iron which causes an unwanted taste 

to the beverage.  It was determined that nitric acid passivation could not provide the degree of 
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passivation required.  Other industries in the U.S. have only recently begun using citric acid.  There 

are a variety of benefits from the substitution of citric acid for nitric acid for passivation. 

This test plan “NASA and ESA Collaboration on Alternative to Nitric Acid Passivation, Project 

Plan; May 2016” contains the critical requirements and tests necessary to qualify citric acid as an 

alternative to nitric acid. These tests were derived from engineering, performance, and operational 

impact (supportability) requirements defined by a consensus of NASA and DoD participants. 

1.2 Objective 

The primary objective of this effort is to qualify citric acid as an environmentally-preferable 

alternative to nitric acid for the passivation of stainless steel alloys. While citric acid use has 

become more prominent in industry, there is little evidence that citric acid is a technically sound 

passivation agent, especially for the unique and critical applications encountered by NASA and 

ESA. 

2 Test Articles 
This section outlines the preparation of the test panels. Test panels will be 4” x 4” x 0.125” 

approximate. Some of the stainless alloys may not be available in 0.125” thickness.  Three (3) test 

panel replicates per passivation procedure were used for all testing. 

2.1 Stainless Steel Alloys 

For this project the following stainless steel alloys were tested. 

2.2 Test Panel Preparation 

The stainless steel test panels were prepared per Figure 1. This preparation process was used during 

a previously completed NASA TEERM Project, “Alternative to Nitric Acid Passivation; 2015”. 

Test specimens were processed the same in all respects other than the actual passivation.  Citric 

acid concentration/time/temperature passivation conditions were varied as part of this 

experimental effort. 

Alloy C Mn Cr Mo Ni Fe Si P S Al Cu Ti

304 0.08 2 18 - 20 8 - 10.5 BAL 0.75 0.04 0.03

316 0.08 2 16 - 18 2 - 3 10 - 14 BAL 0.75 0.04 0.03

321 0.08 2 17 - 19 9 - 12 BAL 0.75 0.04 0.03 0.7

13-8PH 0.05 0.1 12.25 - 13.25 2 - 2.5 7.5 - 8.5 BAL 0.1 0.01 0.008 .9 - 1.35

15-5PH 0.07 1 14 - 15.5 3.5 - 5.5 BAL 1 0.04 0.03 2.2 - 4.50

17-4PH 0.07 1 15 - 17.5 3 - 5 BAL 1 0.04 0.03 3 - 5

17-7PH 0.09 1 16 - 18 6.5 - 7.5 BAL 1 0.04 0.03 0.75 - 1.5

A286 0.08 2 13.5 - 16 1 - 1.5 24 - 27 BAL 1 0.025 0.025 0.35 0.5 1.9 - 2.35

AL6XN 0.03 2 20 - 22 6 - 7 23.5 - 25.5 BAL 1 0.04 0.03 0.75
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Figure 1 – Preparation of Stainless Steel Test Panels 

Prior to grit blasting, each panel was stamped with a unique alphanumeric descriptor to indicate 

alloy type. Each panel was grit blast with a fine steel media to impart contamination to the surface.  

Perfectly clean panels would be unlikely to show much corrosion within the testing period.  The 

steel grit also removed the protective passivation layer provided by the manufacturer for storage 

and transport.  The steel grit (ALC Item #S1587) used for the blasting process left a roughened 

finish on the surface of the metal. 

After grit blasting, the samples were collated and organized by alloy and passivation treatment. 

The panels were carefully cleaned through the series of degreasing, cleaning, and rinsing steps as 

outlined in Figure 1. 

Each panel was initially degreased with an acetone wipe of the surface.  A second degreasing was 

performed with a detergent degreaser.  The detergent degreaser consisted of a 15% by volume 

solution of Bruhlin 815 GD (30 minutes at 74 ºC).  The panels were removed from the degreaser 

and subsequently placed into a heated DI water bath to remove excess contaminants and the 

degreasing agent.  The panels were then rinsed using an ambient temperature DI water spray.  

Following the second rinse, a caustic (alkaline) cleaning was performed.  This solution consisted 

of 7 ounces of Turco 4090 per gallon of DI water (20 minutes at 93 ºC).  After cleaning, the panels 

were rinsed in a heated DI water bath (5 minutes at 66 ºC), followed by a DI spray-down with 

ambient temperature DI water.  In order to verify that the degreasing and cleaning steps were 

performed successfully prior to passivation, the water-break of the final rinse was inspected to 

ensure appropriate removal of organic contaminants.  

Cleaned panels were placed in passivation baths that contained citric acid solutions using the 

appropriate concentration, time and temperature conditions.  Stainless steel tanks (using covers to 

limit evaporation (Figure 2)) were used.  After each passivation was performed, rinses were 

conducted according to the USA (United Space Alliance) passivation process (Figure 1).  
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Figure 2  Test Panels Soaking in Citric Acid Passivation 

In order to determine the optimal citric acid passivation procedure for each alloy the following 

passivation parameters were employed.  

 Time:  60 minutes, 90 minutes, and 120 minutes

 Temperature:  38 °C, 60 °C, and 82 °C

 Concentration: 4%, 7%, 10%

Parameters used for physical testing were determined by the stakeholders based upon the results 

of prior testing by the NASA TEERM office and USA.   

After the rinsing process was performed, the pH of the water on the surface of each panel was 

checked to ensure that that it remained at a pH between 6.0 to 8.0.  Ordinary pH paper was used 

to perform this function.  The pH is typically of concern when a high volume of panels are being 

processed due to the increased possibility of residual passivation solution contaminating the rinse 

tanks.  Although this study processed a relatively small number of panels, this step was included 

to remove any doubt that the acidic passivating solution was removed from the surface.  Verifying 

that this parameter was met, the panels were subsequently dried with gaseous nitrogen.  All panels 

were packaged in gaseous nitrogen prior to ASTM B117 salt spray exposure. 

3 Parameter Optimization Testing 
Previous testing by the NASA TEERM office and USA determined that the parameters for citric 

acid passivation that resulted in optimum performance varied by substrate. The studies found that 

passivation with elevated temperature and longer immersion times (temperature > 100 °F and time 

> 30 minutes) provide significantly better corrosion protection than treatments at ambient

temperature or shorter immersion times (T ≈ 100°F and t ≈ 30 minutes). The data obtained during

the prior studies focused on a citric acid concentration of 4%. Parameter optimization testing,

however, was necessary to determine the best parameters for other concentrations of citric acid.

Parameter optimization testing for this project evaluated citric acid concentrations of 4%, 7% and

10%.
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Table 1 outlines the parameters that were tested to determine the best passivation process for the 

alloys that were investigated in this project. For each stainless steel alloy previously tested, 54 test 

panels were required; two (2) concentrations X three (3) bath temperatures X three (3) dwell times 

X three (3) replicate panels = 54 panels. For each stainless steel alloy that has not yet been tested, 

81 test panels will be required; three (3) concentrations X three (3) bath temperatures X three (3) 

dwell times X three (3) replicate panels = 81 panels.   

Table 1 – Parameter Optimization Test Outline 

3.1 Salt Spray Resistance 

ASTM B117 salt spray testing was used to rapidly evaluate the ability of the passivation process 

to protect stainless steel alloys from corrosion. Table 2 outlines the parameters that were used for 

salt spray testing.     

Table 2 – Salt Spray Testing Parameters 

3.1.1 Test Procedure 

Test panels were sorted by their unique alphanumeric descriptor and further by their citric acid 

concentration. Figure 3 shows the sorting process. 

Figure 3  Sorting the Test Panels 

Alloy Passivation

304 4 7 10 38 60 82 60 90 120

316 4* 7 10 38 60 82 60 90 120

321 4* 7 10 38 60 82 60 90 120

13-8PH 4 7 10 38 60 82 60 90 120

15-5PH 4* 7 10 38 60 82 60 90 120

17-4PH 4 7 10 38 60 82 60 90 120

17-7PH 4* 7 10 38 60 82 60 90 120

A286 4 7 10 38 60 82 60 90 120

AL6XN 4 7 10 38 60 82 60 90 120

* Optimization testing completed in a previous project

Concentration (%) Bath Temperature (
o
C) Dwell Time (minutes)

Citric Acid

Test Corrosion Protection Requirement Test Methodology Evaluation Acceptance Criteria Location

ASTM D 610

@ 2 hours

@ 168 hours

Passivation OnlySalt Spray
NASA Corrosion

Technology Lab

Alternative performs as well

or better than control process
ASTM B 117SAE AMS 2700
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Test panels were subjected to a 5 percent NaCl salt-spray, pH-adjusted to a range of 6.5 – 7.2, in 

accordance with ASTM B 117 (Standard Practice for Operating a Salt Spray (Fog) Apparatus). 

According to the testing standard requirement (SAE AMS 2700), test panels only had to be tested 

in the salt-spray chamber for 2 hours then evaluated for corrosion. In order to obtain the best 

possible test results, the test panels were further exposed for an additional 166 hours (168 hours 

total). After each test, the panels were rinsed with deionized (DI) water and were then dried using 

compressed air. The test panels were evaluated for signs of corrosion following 2 hours and 168 

hours of salt spray testing.  

One (1) color photograph of the test coupons for each substrate was taken before testing. One (1) 

color photograph of the test coupons was taken after two hours of salt spray exposure and at the 

conclusion of testing. 

3.1.2 Evaluation Procedure 

Per SAE AMS 2700, “Passivation of Corrosion Resistant” test panels were evaluated after two 

(2) hours of salt spray exposure. According to SAE AMS 2700, “Parts shall not show evidence

of red rust following completion of the test”.

Figure 4  Evaluation of Test Panels after 168 hours 

After completing the initial analysis per SAE AMS 2700, salt spray testing continued for an 

additional 166 hours. The additional testing gave an overall exposure duration of 168 hours, 

which was the exposure duration used during a previous NASA TEERM Project “Alternative to 

Nitric Acid Passivation; 2015”.  

4 Laboratory Results 
Each panel was assessed on a pass/fail evaluation in accordance to SAE AMS 2700. Table 1 

shows how the test panels preformed after 2 hours in the salt-spray chamber. Table 4 shows how 

the test panels preformed after 168 hours in the salt-spray chamber. Green indicates that, the 

panel showed no evidence of red rust following completion of the test, thus it passed. Red 

indicates that the panel showed signs of rust, thus it failed. Both tables depict how the panels 

were laid out for evaluation and pictures (found in Appendix A– Pictures from Each Evaluation 

Set). Some of the panels showed no overall corrosion but contained a single corrosion pit, thus 

they were considered a failure as well. 



7 | P a g e

Table 3 – 2 Hour ASTM D610 Evaluations 
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Table 4 – 168 Hour ASTM D610 Evaluations 



 

10 | P a g e  

 

 

 

          

 

 
        

 



 

11 | P a g e  

 

 

5 Conclusions 
Overall, regardless of alloy, the higher citric acid concentration, temperature, and bath dwell time 

yielded the best results. Figure 5 gives a pass/fail percentage for the entire set of panels after 2 

hours of salt spray testing and shows how the panels performed under the specific parameters. As 

the citric acid concentration increased, the percent of panels that passed also increased. When 

analyzing how the different temperatures performed, there is clear evidence that 38oC had a 

significantly greater number of failures than either 60oC or 82oC. When differentiating between 

60oC and 82oC, there is not enough proof to signify that 82oC is better than 60oC because there is 

only a 1 percent difference in the failure data. Furthermore, the increased temperature increased 

difficulty in panel processing.  When scaled to an industrial process, the 82oC baths would require 

constant replenishing.   

 

An investigation of increasing immersion time reveals that an increased number of panels passed 

as immersion time increased.   However, the difference between the percent passed for 90 and 120 

minutes is approximately 2 percent. It was important to continue ASTM B117 testing for an 

additional 166 hours to clarify the results and draw the most accurate conclusions.  

 

Figure 6 illustrates the performance of the test panels after 168 hours of exposure. With an 

increased exposure in the salt-spray chamber, the trend for citric acid concentrations changed 

slightly. The 4 percent pass rate exceeded the 7 percent pass rate by a very slim margin. For the 

series of panels investigated, a citric acid concentration of 10 percent showed an increased pass 

rate at 86.8%. The difference between 4 percent and 7 percent are very close, which makes it 

difficult to determine a clear trend. Following 168 hours of salt-spray exposure, the same trends 

following 2 hour of salt-spray testing regarding pass rates with respect to temperature persisted. 

60oC and 82oC showed very similar pass rates with 82oC having a higher percentage of passing 

ratings. The failure rate of 38oC surpassed the pass rate by 12 percent, which is significant to 

determine that 38oC is not an ideal temperature for corrosion prevention by citric acid passivation. 

With the added time in the salt-spray chamber, the longer immersion times showed a clearer 

positive trend in pass rates. This strengthens the conclusion that 120 minutes may be the optimal 

immersion time.  

 

The data for the differences between temperatures (60oC and 82oC) and immersion times (90 and 

120 minutes) are less than 5 percent. But as the data shows, over time the differences between the 

two parameters increases. The data shows that the highest parameter for concentration, bath 

temperature and bathing time is the best for corrosion prevention of the stainless steel alloys tested. 

Overall, the parameters for the most ideal protection against corrosion using citric acid passivation 

are 10 percent citric acid concentration at 82o C for 120 minutes. Further, when analyzing Table 3 

and Table 4, it is clear that every test panel with those specific parameters passed regardless of 

alloy.  
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Figure 5 – Percent Pass/Fail for Different Test Parameters for 2 Hours 

Figure 6 – Percent Pass/Fail for Different Test Parameters for 168 Hours 
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6 Recommendations 
The next step would be to expand the testing to include atmospheric exposure testing on the NASA 

Beachside Atmospheric Test Site at Kennedy Space Center. Testing the panels under coastal 

atmospheric conditions will provide performance data from exposure to very harsh “real world” 

environmental conditions. This will yield the greatest possible results to determine which citric 

acid passivation process provides the best protection against corrosion.  Continued salt-spray 

testing for additional alloys and longer duration would further differentiate the test results, further 

clarifying which parameters perform best across the alloys.  
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Appendix A– Pictures from Each Evaluation Set 

 

 

4% Citric Acid with Alloy 

304 Post 2 hours 

 

7% Citric Acid with Alloy 

304 Post 2 hours 
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10% Citric Acid with Alloy 

304 Post 2 hours 

7% Citric Acid with Alloy 

316 Post 2 hours 
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321 Post 2 hours 
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