

Everything is Bigger on Mars!

Everything is Bigger on Mars!

Global Dust Storms

Recent Mars Robotic Missions

Mars Exploration Rovers

Mars Odyssey

Mars Phoenix

Mars Science Laboratory

Mars Reconnaissance Orbiter

Dust Storm at the Opportunity Landing Site

Dust Accumulation on Spacecraft

NASA/JPL-Caltech/Cornell

Sol 332 (December 2004)

Sol 2814 (December 2011)

Dust Devils on Mars

Curiosity in Gale Crater

Curiosity's Journey

Samples Delivered to Instruments

- > 14 Drilled Samples
- 2 Scooped Samples

Sandstone overlying Mudstone

Mudstone Mineralogy

- Clay Minerals
- Iron oxides
 - Hematite (oxidized)
 - Magnetite (reduced)
- Sulfates
 - Calcium sulfates (neutral?)
 - Iron sulfates (acidic)
- X-ray amorphous materials

Ancient Lake in Gale Crater

Windblown Deposit Mineralogy/Chemistry

- 2-3 wt. % water release
- Oxygen, hydrochloric acid, and chlorinated hydrocarbon releases from decomposition of perchlorate salts

Radiation Environment on Mars

Radiation Assessment Detector (RAD)

- RAD measured the radiation flux from galactic cosmic rays and solar energetic particles, in cruise and at Mars' surface
- The surface dose rate is about half that measured in cruise
- > ~1000 millisievert of exposure on a trip to Mars with 500 sols on the surface (only about 75 millisievert dose during 6 months on ISS; 2-3 millisievert/year on Earth)

Hessler et al. (2014), Science

Technology Challenges/Benefits For Humans

- Radiation WILL be an issue (but not a "show stopper")
 - Shielding (what materials should we use for shielding?)
 - > Minimize exposure

NASA/JPL-Caltech/Corne

50 - A - CO₂ - CO₂ (a) - C

Leshin et al. (2013), Science

- Martian dust must be addressed
 - > Toxicology e.g., perchlorates
 - > Tribology effects on seals, joints, airlocks, etc.
 - Minimize dust in living spaces and suits
- > Extraction of resources (In Situ Resource Utilization)
 - > Water extraction for propulsion, life support, etc.
 - Regolith, minerals with high water content, ice?
 - > CO₂ atmosphere extraction and O₂ production
 - > Other resources?

Can We Grow Plants in Martian Regolith?

- Regolith ("Soil") contains all essential plant growth nutrients.
 - N present but will likely have to fertilize.
 - > Others?
- Perchlorates may be an issue collecting in plant tissue.
- Other salts? Other issues?
- As an agronomist by training – I think we CAN grow plants in Martian "soil."