THE LUVOIR MISSION CONCEPT: UPDATE & TECHNOLOGY OVERVIEW

Matthew R. Bolcar (NASA GSFC)

SPIE Mirror Tech Days Greenbelt, MD November 1, 2016

What is the Large UV/Optical/Infrared Surveyor?

General purpose, multiwavelength observatory with broad science capabilities

Roots in previous studies over last decade(s):

ATLAST, HDST, etc.

Acronym comes from 2013 Astrophysics Visionary Roadmap

Cosmic origins science goals in Roadmap

Exoplanet science goals in Roadmap

Study Update

Study progress to date:

- 1st Science & Technology Definition Team (STDT) Face-to-Face Meeting (May 2016)
 - Science overview and objectives
 - Initial technology gap assessment
 - Organized into working groups
 - Further develop science objectives, technology needs, and simulation tools

LUVOIR community working groups

Exoplanets

• Leads: Mark Marley (Ames), Avi Mandell (GSFC)

Cosmic Origins

• Leads: John O'Meara (St. Michael's), Jane Rigby (GSFC)

Solar System

• Leads: Walt Harris (LPL), Geronimo Villanueva (GSFC)

Simulations

• Leads: Jason Tumlinson (STScI), Aki Roberge (GSFC)

Technology

• Leads: David Redding (JPL), Matt Bolcar (GSFC)

Study progress to date:

- 1st Science & Technology Definition Team (STDT) Face-to-Face Meeting (May 2016)
 - Science overview and objectives
 - Initial technology gap assessment
 - Organized into working groups
 - Further develop science objectives, technology needs, and simulation tools
- 2nd Face-to-Face Meeting (Aug. 2016)
 - Identified first-generation instrument suite
 - Formed instrument teams to refine science case and performance metrics

Current LUVOIR instrument suite

High-contrast instrument – Lead: Laurent Pueyo (STScI)

Imaging and low-resolution spectroscopy

UV instrument — Lead: Kevin France (U of Colorado)

- Imaging (> 1 arcmin field-of-view)
- High-resolution point-source spectroscopy and mediumresolution multi-object spectroscopy

Wide-field imager – Lead: Marc Postman (STScI)

Imaging (4 – 6 arcmin field-of-view)

Vis / NIR spectrograph – Lead: Courtney Dressing (Caltech)

• Multiple resolution modes up to $R \sim 10^5$

Upcoming work...

● 3rd Face-to-Face Meeting (Nov. 9-10, Yale)

- Day 1: Select architecture(s) to study
 Aperture size, on- vs. off-axis, etc.
- Day 2: Joint meeting with Habitable Exoplanet (HabEx) STDT
 - Collaborate on science & technology topics relevant to both studies
- Dec. 2016:
 - Gather inputs from instrument teams
 - Kick-off detailed engineering design studies
 Integrated Design Center at GSFC

LUVOIR as currently envisaged

Summary of Capabilities

- FUV to NIR wavelength sensitivity
- Suite of imagers and spectrographs
- High-contrast capability (~ 10⁻¹⁰)
- Aperture diameter of order 8 16 m
- Serviceable (astronaut or robot)
- "Space Observatory for the 21st Century" decades of science, instrument upgrades (like Hubble), capability to answer questions we have not yet conceived

Technology

The Technology Working Group

 Over 50 members from NASA centers, academia, industry, and international partners

- Six subgroups working on technology areas
 - Coronagraphy
 - Ultra-stable Opto-mechanical Systems
 - Detectors
 - Mirror Coatings
 - Starshades
 - Instrument Components

Initial Technology Prioritization

• "O1" Deliverable from Study Management Plan

 Delivered to NASA HQ and Program Offices in June 2016

Prioritization will be revised each June as the Study progresses

Full prioritization report available at: <u>http://asd.gsfc.nasa.gov/</u> <u>luvoir/tech/</u>

Technology Area	Difficulty	Urgency
High-Contrast Segmented-Aperture Coronagraphy	CRITICAL	CRITICAL
Ultra-Stable Opto-mechanical Systems (includes Sensing, Control, Mirrors, and Structures)	CRITICAL	CRITICAL
Large Format, High Sensitivity, High-Dynamic Range UV Detectors	HIGH	HIGH
Vis/NIR Exoplanet Detectors	HIGH	MED
Starshade	HIGH	MED
Mirror Coatings	MED	MED
MIR (3–5 µm) Detectors	LOW	LOW

Initial Technology Prioritization

• "O1" Deliverable from Study Management Plan

 Delivered to NASA HQ and Program Offices in June 2016

Prioritization will be revised each June as the Study progresses

Full prioritization report available at: <u>http://asd.gsfc.nasa.gov/</u> <u>luvoir/tech/</u>

Technology Area	Difficulty	Urgency
High-Contrast Segmented-Aperture Coronagraphy	CRITICAL	CRITICAL
Ultra-Stable Opto-mechanical Systems (includes Sensing, Control, Mirrors, and Structures)	CRITICAL	CRITICAL
Lawren Franzisch, Uliste Constitution, Uliste Domonic		
Range UV Detectors	HIGH	HIGH
Vis/NIR Exoplanet Detectors	HIGH	MED
Starshade	HIGH	MED
Mirror Coatings	MED	MED
MIR (3–5 µm) Detectors	LOW	LOW

High-contrast imaging through wavefront stability

- Stiff, thermally-stable materials and structures
- Active and passive dynamic isolation
- Thermal sensing & control at the milli-Kelvin level

High-contrast imaging through wavefront stability

High-contrast imaging through wavefront control

- Slow, low-order wavefront control from stellar photons
- Fast, higher-order wavefront control from metrology
 - Edge sensors, laser truss, artificial guide star
- Go from 10 minutes to seconds or less

- High-contrast imaging through wavefront stability
- Igh-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
 - Design coronagraphs that can tolerate >10 pm of WFE
 - New optimization techniques open up the design space
 Vector vortex, aperture masks, nulling interferometry, etc.
 - Insensitive to 100s of pm or even nanometers of WFE

- High-contrast imaging through wavefront stability
- Igh-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
- Solution consists of a combination of all three

Technology Assessments (in progress...)

- <u>Rigorous</u> assessments of <u>demonstrated</u> performance for <u>specific</u> technologies
 - Specific technology components and systems, instead of broad technology areas
 - Demonstrated performance supported by references instead of perceived state-of-the-art
 - Rigorous, quantitative description of test configuration, environment, and results

Technology Assessments (in progress...)

- Distinguish true technology development needs from engineering or manufacturing challenges
- Identify highest-maturity, lowest-risk technologies
- Inform engineering design efforts of likely capabilities
- Draft specific development plans for promising technologies

Summary

- LUVOIR Study well underway
 - Diverse participation from academia, industry, NASA centers, and international partners
- Detailed architecture designs of telescope and instruments to begin early 2017
- Technology Working Group hard at work
 - Assessing technologies for current readiness
 - Drafting technology development plan

Get Involved with LUVOIR

Website : http://asd.gsfc.nasa.gov/luvoir/

Contact us!

Study Chairs

Debra Fischer – <u>debra.fischer@yale.edu</u>

Bradley Peterson – peterson.12@osu.edu

GSFC Study Scientist & Deputy

Aki Roberge – <u>aki.roberge@nasa.gov</u>

Shawn Domagal-Goldman – shawn.goldman@nasa.gov

NASA Program Scientist & Deputy

Mario Perez – <u>mario.perez@nasa.gov</u>

Erin Smith – <u>erin.c.smith@nasa.gov</u>

Backup

STDT voting members

Jacob Bean (Chicago)

Daniela Calzetti (U Mass)

Rebekah Dawson (Penn State)

Jay Gallagher (Wisconsin)

Ilaria Pascucci

Olivier Guyon (Arizona)

Marc Postman (STScl)

Karl Stapelfeldt (JPL) 26

Debra Fischer (Yale)

Walt Harris

(Arizona / LPL)

Laurent Pueyo

(STScl)

Brad Peterson (Ohio State / STScI)

Mark Marley

(NASA Ames)

David Redding

(JPL)

Lee Feinberg (NASA GSFC)

John O'Meara (St. Michael's)

Vikki Meadows (Washington)

David Schiminovich (Columbia)

(Arizona)

Jane Rigby

(NASA GSFC)

Leonidas Moustakas (JPL)

Aki Roberge (NASA GSFC)

Britney Schmidt (Georgia Tech)

Kevin France

(Colorado)

Face-to-face meetings

3rd meeting Nov 9 – 10, 2016 @ Yale University, joint w/ the HabEx team

Observers welcome at all LUVOIR meetings

Large UV/Optical/IR Surveyor (LUVOIR)

Science and Technology Definition Team Study Office, and friends

> LUVOIR STDT Meeting #1 Goddard Space Flight Center, Greenbelt MD May 9 - 10, 2016

A possible LUVOIR architecture

"Tech Notes"

- Series of brief, high-level notes
- Intended to inform the STDT on technology challenges and trades:
 - Coronagraphs
 - Starshades
 - Cold Temperature
 Considerations
 - Long-wavelength Performance
 - Exoplanet Detectors

- UV Detectors
- Launch Vehicles
- Polarization & Coronagraphy
- UV Coatings & Shortwave Cutoff

• Available at <u>http://asd.gsfc.nasa.gov/luvoir/tech/</u>