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Abstract

The use of assurance cases (e.g., safety cases) in certification raises questions
about confidence in assurance argument claims. Some researchers propose to
assess confidence in assurance cases using Baconian induction. That is, a writer
or analyst (1) identifies defeaters that might rebut or undermine each proposi-
tion in the assurance argument and (2) determines whether each defeater can
be dismissed or ignored and why. Some researchers also propose denoting
confidence using the counts of defeaters identified and eliminated—which they
call Baconian probability—and performing arithmetic on these measures. But
Baconian probabilities were first defined as ordinal rankings which cannot be
manipulated arithmetically. In this paper, we recount noteworthy definitions of
Baconian induction, review proposals to assess confidence in assurance claims
using Baconian probability, analyze how these comport with or diverge from
the original definition, and make recommendations for future practice.

1 Introduction

The safety case approach has been used in some industries and regulatory do-
mains for many years [1]. An organization using the approach adopts an ap-
propriate safety management system, performs a hazard assessment, selects
appropriate controls, and implements these. A written safety case documents
the safety management system, hazards, controls, and evidence of the controls’
adequacy [2]. The safety case combines safety evidence such as fault tree anal-
ysis results and test reports with an safety argument, typically defined as an
“argument . . . that a system, service or organisation will operate as intended
for a defined application in a defined environment” [3]. When similar cases are
made for properties beyond safety, the general terms assurance case and as-
surance argument are used. A safety case might serve many purposes, one of
which is to explain the safety rationale and evidence to an assessor who must
decide whether the hazard controls and related evidence are adequate. Such
use, which has analogues in security and other assurance matters, raises the
question of assurance argument sufficiency. This question leads in turn to the
concept of confidence (and its opposite, uncertainty) in the argument’s claims.

In 1620, Francis Bacon proposed a scientific method that relies on what we
now know as Baconian induction. Safety researchers propose using this induc-
tion to reason about the confidence justified by assurance cases [4–9]. They
propose that analysts (a) identify doubts about safety claims (known variously
as argument defeaters or assurance deficits) and (b) determine whether each
can be dismissed or ignored and, if so, why. Some further propose denoting
confidence using the counts of defeaters identified and eliminated, a metric they
call Baconian probability and propose to manipulate arithmetically [4–6, 8, 9].
But Baconian probability was first formalized as a family of ordinal ranks,
which cannot be manipulated arithmetically. This subtle difference has large
implications for the validity of the proposed measure.
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In Section 2, we summarize Bacon’s scientific method and noteworthy def-
initions of Baconian induction and Baconian probability that appear in the rel-
evant foundational literature. In Section 3, we review current proposals to use
Baconian induction to assess confidence in assurance claims. We show that two
proposed uses of Baconian probability change its definition subtly but funda-
mentally from an ordinal rank to a cardinal measure. In Section 4, we analyze
how the differences were key to the original concept’s validity and explore what
remains to be shown about the validity of the new measure. In Section 5, we
conclude by recommending (i) that the new measure be renamed to avoid con-
fusion with the original and (ii) that the need for careful study of its validity be
communicated clearly to researchers, regulators, and developers.

2 Background

In 1620, Bacon defined a scientific method that relies on a specific form of in-
duction1 [10,11]. He was not the first to propose using induction: philosophers
have defined and criticized forms of induction for millennia [12]. But Ba-
con’s induction is defined in terms of testing the impact of relevant variables
rather than counting instances. Bacon did not define his form of induction
precisely [10, 11]. But later philosophers defined a syntax for Baconian induc-
tion and proposed using Baconian probability to grade conclusions reached by
chains of inference from evidence [13–17].

In this section, we summarize the background needed to understand Baco-
nian induction and how it might be used to grade confidence in an assurance
argument’s claims. We recount (1) Bacon’s scientific method, which relies
upon a method of induction by consideration of relevant variables that Bacon
does not define in detail; (2) Cohen’s proposed formalization of such a sys-
tem of induction; and (3) Schum’s extension of Cohen’s system to chains of
reasoning in applications beyond science.

2.1 Bacon’s Scientific Method

Baconian probability takes its name from Francis Bacon [10,11]. His contribu-
tion to the subject was to define a procedure for deriving general rules of nature
from scientific observations by using “true induction” [10].

A scientist using Bacon’s method to investigate a phenomenon compiles a
set of tables and uses them to generate and assess hypotheses. The scientist
begins by compiling a table of instances. Each instance is an observation of
the occurrence of the phenomenon of interest, Bacon calls a nature. For exam-
ple, Bacon’s example instances of heat include “the rays of the sun, especially
in summer and at noon” and “lightning” [10]. The scientist then compiles a
table of divergency comprising “instances where the nature of heat is absent
but which are in other ways close to ones where it is present.” The scientist

1 The term induction has different meanings in argumentation and mathematics. Here, we
use it to refer to a form of argument in which conclusions are likely but not entailed.
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finishes data collection by compiling a table of degrees. This table catalogues
“instances in which the nature being investigated is found in different degrees,
. . . either by comparing the amounts of it that a single thing has at different
times or by comparing the amounts of it that different things have.”

The scientist is to use the tables to define hypotheses about natures causing
or giving rise to other natures “and then, after a sufficient number of negatives,
to reach a conclusion on the affirmative instances”:

The job of these three tables is . . . to present instances to the intel-
lect. After the presentation has been made, induction itself must
get to work. After looking at each and every instance we have to
find a nature which

• is always present when the given nature . . . is present,
• is always absent when the given nature is absent,
• always increases or decreases with the given nature, and
• is a special case of a more general nature [10].

Bacon derides “the induction that proceeds by simply listing positive in-
stances” for providing “conclusions on the basis of too few facts.” He proposes
instead that the strength of support for a generalization grows with the num-
ber of relevant circumstances it has been shown to hold in, noting that a single
counterexample disconfirms a hypothesis. Bacon defines heuristics for good
source data in the form of privileged instances to be put into the tables. But
while he proposes “to establish degrees of certainty,” the first volume of his
Novum Organum does not define a mechanism for assessing or quantifying
confidence. While Bacon planned to define induction more precisely in a later
volume, he never did [12].

2.2 Cohen’s Eliminative Induction

In a series of works, Cohen developed both a scientific method and an ac-
companying syntax of induction that is variously called Baconian induction,
eliminative induction, or variative induction [13–15]. He illustrates these by
describing how von Frisch investigated a generalization about bees, namely
that they discriminate between different colors. Von Frisch tested this hypothe-
sis by testing whether bees would return to a transparent source of sugar placed
on a piece of blue cardboard.

2.2.1 The Method of Relevant Variables

In Cohen’s Method of Relevant Variables, each field of enquiry has its own
established list of relevant variables [14, §§42–45]. Each variable represents
a type of circumstance that “suffices to falsify at least one generalization in
that field.” For example, von Frisch investigated the hypothesis that bees dis-
criminate between different colors by testing their ability to use color to re-
turn to a provided source of food. He manipulated the shape, odor, etc. of the

3



food source to investigate whether these other variables might better explain
the bees’ ability to return to the food source.

The list of variables is sorted in decreasing order of falsificatory potential
based on “empirically influenced judgements of relative importance” [14, §45].
A corresponding list of tests t1, t2, . . . , tn determines whether altering each vari-
able or circumstance falsifies a proposed generalization. Each test also hierar-
chically includes the preceding tests. That is, it includes manipulations of both
a new variable of interest and all of the variables manipulated by preceding
tests. Thus, if a generalization passes test ti and j < i, it must also pass test t j.

The support that evidence gives to each generalization in a field can thus
be ranked or graded according to the last test each passes. For example, sup-
pose hypothesis H1 passes test ti but hypothesis H2 does not. Because the tests
are ordered and inclusive, it is not possible that a tested variable falsifies hy-
pothesis H1 but fails to falsify hypothesis H2. But there is at least one variable
that falsifies hypothesis H2 but not hypothesis H1. It can thus be said that the
evidence supports hypothesis H1 better than hypothesis H2.

Cohen denotes the evidential support for a generalization i|n, where ti is the
last test passed and n the number of tests. This figure is sometimes called the
Baconian probability of the generalization on the given evidence.

The form of induction used in Cohen’s and Bacon’s scientific method is
not the more familiar enumerative induction. Cohen calls his form of induction
eliminative (or variative [15]) to distinguish it from this better-known alterna-
tive. While enumerative induction is concerned with how many tests a gen-
eralization passes, eliminative induction is concerned instead with how many
types of circumstances it has been shown to hold in. Replication of a test might
show that prior results were erroneous. If a generalization seemed to pass ti
but replication showed that it did not, the rank of evidential support for that
generalization would fall to i−1. But no amount of replication can show that
a generalization holds in a new kind of circumstance. Thus, no amount of
repetition could raise the rank of support to i+1.

2.2.2 Grading Inductive Support for Statistical Hypotheses

The difference between Baconian induction and statistical testing (e.g., life
testing to establish a component’s failure rate) illustrates the nature of Baco-
nian induction. This difference can be seen in Cohen’s suggestion for grading
hypotheses about statistics. Consider hypotheses of the form

p[S,R] = p± ε (1)

i.e., the probability that any given R is an S is p± ε . Cohen asserts that each
such hypothesis “has at least one equivalent that is a universally quantified
conditional” [13, §13]. This might take the form “for any set V , if V is included
in R, there is a set W such that V is included in W and W is co-extensive with
R and p[S,W ] = p± ε .” When testing this, “what is required is that there
should be some set of objects or events that satisfies three conditions: it must
be a sample of R on which an estimate p[S,R] = p± ε may be based, it must
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be selected under some particular manipulation of relevant variables, and its
composition must be unbiased by other factors than variants of the variables
being manipulated.” The inductive grading of the quantified conditional form

must not be conceived of as a measure of the evidential support for
the hypothesis as a whole, but rather as an indication of the nature
of the trials from which this-or-that grade of support is sought or
attained. To have a higher coefficient of confidence for the same
estimate we need a larger sample, and this may cost time, trouble
and money. . . . A higher grade of support, on the other hand,
may not be so readily available. Whether we can achieve it or not
depends on the operation of the relevant natural variables as well
as on the price we ourselves are prepared to pay for a performance
of the appropriate test. The grade of inductive support attained by
a hypothesis is determined solely by the extent to which it remains
unfalsified under the manipulation of a cumulative hierarchy of
relevant variables.

In this usage, the grade of inductive support is not a measure of the proportion
of a sampled population that exhibits a characteristic. Nor does it measure the
degree to which a measurement of that proportion reflects the effect of random
chance on which members of a population were sampled. Instead, it reflects our
knowledge about whether the sample was a sample of the population specified
in the hypothesis or of a materially different subset of that population. The
more the statistical hypothesis is tested and holds across subpopulations defined
by relevant variables, the more confidence one should have in it.

2.2.3 An Ordinal Rank, Not a Cardinal Measure

Cohen’s formulation of induction provides a way to rank and compare the de-
gree to which hypotheses within a specific class are supported by evidence.
But Cohen insists that Baconian probabilities are ordinal rankings of eviden-
tial support, not cardinal measures of that support. That is, the inductive ranks
of evidential support for each of a set of comparable hypothesis show which
is best supported, which second best, and so on, but not by how much. Be-
cause the relevant variables—and the support function defined by the list of
tests covering them—are specific to each class of hypotheses,

the support-functions for different categories of generalizations are
largely incommensurable with one another. Zero and maximal val-
ues of these functions do have the same significance for each cat-
egory, betokening no resistance and full resistance, respectively,
to the falsifying effects of relevant variables. But intermediate
values cannot be equated because of the differences in number,
complexity, importance, etc. of the relevant variables in different
series [14, §45].
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Cohen considered potentially universal measures of inductive support such as
“the numbers of appropriate trials—trials in variants of variables relevant to
[a hypothesis]—that [the evidence] reports [the hypothesis] to have passed or
failed” [13, §5]. He rejected that proposal for several reasons, two of which are
grounds for despairing that any viable alternative could ever be found:

First, there is no reason to suppose that test-results on materially
dissimilar hypotheses are commensurable. . . . The concept of a
test articulated here is one that relates a test to a class of empiri-
cally discoverable variables that are relevant for any one of a class
of materially similar hypotheses. This concept seems to allow
no empirical basis for cross-field comparisons between materi-
ally dissimilar hypotheses. On what grounds would it legitimately
be assumed that the interconnections of factors and characteris-
tics prevailing in one field were precisely paralleled in another . . .
which were not also grounds for taking hypotheses in these two
fields to be materially similar? . . .

Thirdly, and more seriously, one test may be capable of giving
greater support than another even when the number of variables
manipulated is the same or smaller, because one of these variables
is especially relevant—especially successful at falsifying hypothe-
ses of the type in question. For example, mating/not-mating is
perhaps a more relevant variable than temperature in relation to
hypotheses about bird-plumage; and pregnant/not-pregnant is per-
haps a less relevant variable than medical history in relation to
hypotheses about drug-toxicity [13, §5].

2.3 Schum’s Extension to Chains of Reasoning

Schum proposes using Bayesian probability to rank evidential support for gen-
eral hypotheses [16,17]. While Cohen focused on grading support for scientific
hypotheses, Schum’s interest includes both nonreplicable events and chains of
reasoning. Schum repeatedly uses the example of witness testimony in a legal
proceeding.

2.3.1 The Witness Testimony Example

In Schum’s example, a witness W gives testimony E∗ that event E occurred [17,
§3.2.3]. One might challenge this testimony on at least three grounds:

• Veracity, i.e. the witness’s testimony E∗ might differ from the witness’s
belief about whether event E occurred

• Objectivity, i.e. the witness’s testimony E∗ might be inconsistent with the
witness’s observations related to event E

• Observational sensitivity, i.e. the witness’s observations might not accu-
rately reflect whether event E occurred

6



E*:  Testimonial evidence from person W

Eb: W believes E occurred

Es: W’s senses give evidence of E

E: E occurred

“Our senses correctly record events”
Es→E

Objectivity

Observational 
sensitivity

Veracity

“People believe the evidence of their senses”
Eb→Es

“People report events they believe”
E*→Eb

Figure 1: A synthesis of Figures 3.6 and 5.10 from [17]. The filled and open circles
represent evidence and propositions, respectively. Connecting lines show inferences.

Finding these three issues to be distinct, Schum presents a three step argu-
ment from witness W’s testimony E∗ to the proposition that event E occurred.
Figure 1 depicts this argument. The first reasoning step uses a generalization
about witness veracity to infer from witness W’s testimony E∗ that the witness
believes that event E occurred (Eb). The second reasoning step uses a gen-
eralization about witness objectivity to infer from witness W’s belief that the
witness’s senses detected that event E occurred (Es). The final reasoning step
uses a generalization about witnesses’ observational sensitivity to infer from
witness W’s having sensed event E that event E actually happened. Clearly
these three generalizations do not apply with full force to all witness testimony.

2.3.2 Grading the Credibility of a Witness

While Cohen’s work focused on single inferences, Schum proposes grading the
force of multiple inferences through detachment of belief in the intermediate
premises. Earlier argument steps are to evaluated first and their conclusions
detached—that is, taken as true at a given Baconian probability—when evalu-
ating later argument steps. In the case of Schum’s witness testimony example,
an observer evaluating the strength of the testimonial evidence should begin by
grading the force of the first inference:

Suppose that there is some number nv of possible tests of this ve-
racity generalization to see if it does in fact apply to W and his
present testimony E∗. . . . Answers to questions such as these sup-
ply ancillary evidence about W’s veracity. Suppose we have asked
i of these questions and that the answers are all favorable to the
generalization [E∗ → Eb] so far as W is concerned. In Baconian
terms, if we have confidence in these answers, we are entitled to
detach a belief in Eb at least at grade level i/nv [17, §5.5.3].
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By grading the generalizations Eb → Es and Es → E in the same way, an ob-
server can detach beliefs first in Es and then in E. In Schum’s example, witness
W passes j of no tests of objectivity and k of ns tests of observational sensitivity,
so the relevant Baconian probabilities are j/no and k/ns.

2.3.3 Arithmetic on Baconian Probabilities?

Schum then notes that the tests not passed for each stage of the argument shown
in Figure 1 represent a ceteris paribus (i.e., “all other things being equal”)
assumption. He characterizes the strength of this assumption in terms of the
numbers of questions identified and settled favorably:

A long-standing expectation is that inferences should be weakened
as we add links in chains of reasoning. There is a definite Baco-
nian counterpart to this expectation. The number of unanswered
questions accumulates as we reason from one stage to another.
The detachment of belief at any stage of an inference actually in-
volves consideration of the total number of recognized questions
that have not been answered at this stage and at stages lower in
the chain of reasoning. In the example we have left unanswered
(nv− i) at the first stage, [(nv− i)+ (no− j)] at the second, and
[(nv− i)+(no− j)+(ns− k)] at the third. Thus, for example, our
final detachment of a belief that E did occur, based on W’s testi-
mony, has a ceteris paribus assumption with content equal to the
[(nv− i)+ (no− j)+ (ns− k)] questions that have been left unan-
swered. This content indicates how complete has been our cover-
age of matters relevant to W’s credibility. The more questions we
leave unanswered about W’s credibility, the less confident we can
be in believing what he tells us [17, §5.5.3].

A slightly different version of this example appears in earlier work [16, §3.4.2].
In it, Schum defines the “inductive probability” that event E happened on testi-
mony E∗ and the detached beliefs in Eb at level i and Es at level j as at least2

(i+ j+ k+3)
(nv +no +ns +3)

(2)

The constants in Equation 2 represent a benefit of the doubt given at each stage
of the argument. Schum then observes that

in all of these formal expressions that the difference between nu-
merator and denominator in a Baconian probabilistic expression
always indicates the number of recognized relevant variables that
have not been included in the test of credibility-related generaliza-
tions. Stated another way, the difference between numerator and

2 In his earlier work, Schum uses the variables j, k, and m in place of i, j, and k in his later
work and nb in place of no. I present this example in terms of the variables used in the later
version for the reader’s convenience.
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denominator in a Baconian probability shows (i) the number of rel-
evant credibility-related queries left unanswered, (ii) the content of
one or more ceteris paribus assumptions, or (iii) the “weight” of
the ancillary evidence resulting from the number of tests actually
performed when this number is compared with the total number of
tests that might have been performed.

A reader might take Schum to be defining Baconian probabilities in terms of
numbers of unanswered questions and the Baconian probability of a multi-
stage inference as the sum of unanswered questions at each stage. But such
an interpretation would conflict with what Schum writes about the nature of
Baconian probabilities elsewhere in the same works.

2.3.4 An Ordinal Rank, Not a Cardinal Measure

In several places, Schum reminds readers that Baconian probabilities are or-
dinal in nature and thus “cannot be meaningfully combined in any algebraic
way” [16, §1.1, §3.4.1, §5.0], [17, §2.3.1, §§5.5–5.5.3, §5.6.3]. Relaxing Co-
hen’s assumption of inclusive tests, Schum writes that

the Baconian probability B(H,E∗) ≥ i/n means that the general-
ization licensing an inference of H from evidence E∗ has been sup-
ported through level i in a sequence of n evidential tests involving
variables believed to be relevant to the testing of this generaliza-
tion [17, §5.5.2].

But, as in Cohen’s definition, the tests remain ordered. Baconian probability
thus defines an ordinal rank of evidential support:

Grading the support [that] evidence provides hypotheses in elim-
inative and variative inference can only be performed in compar-
ative terms (i.e., they cannot be combined algebraically), as these
two properties of monadic and dyadic Baconian probabilities show:

i. For monadic probabilities: B(H1)≥ B(H2) or
B(H2)≥ B(H1).
For dyadic probabilities: B(H1,E∗1)≥ B(H2,E∗2) or
B(H2,E∗2)≥ B(H1,E∗1).

ii. For monadic probabilities: if B(H1)≥ B(H2) and
B(H2)≥ B(H3), then B(H1)≥ B(H3.).
For dyadic probabilities: if B(H1,E∗1)≥ B(H2,E∗2) and
B(H2,E∗2)≥ B(H3,E∗3), then B(H1,E∗1)≥ B(H3,E∗3).

These two properties concern ordinal gradings (property i) that are
also transitive in nature (property ii) [17, §5.5.2].

A reader might suppose that Schum both reports Cohen’s definition of Ba-
conian probabilities as ordinal and proposes his own non-ordinal interpretation.
But Schum writes that Cohen objected to interpreting Baconian probability as
a number between 0 and 1 for three reasons:
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First, it is clear that not all experimental tests are on the same par.
In [Cohen’s scientific method], the tests become successively more
complex as well as more thorough. What this means, for example,
is that the difference between 4/n and 3/n is not necessarily the
same as the difference between 2/n and 1/n. By itself this rules
out [support for hypothesis H on evidence E] having interval or
cardinal scale properties (and also ratio properties). Second, there
is no obvious way to grade the degree of relevance of the tests
being employed any more than there is to grade the relevance of
any evidence. In the example the best you can do is to stand your
tests in rank order in terms of their perceived importance. Third,
there would be considerable difficulty in the meaning of i/n as a
fraction when it is used grade the support provided to different hy-
potheses tested under possibly different circumstances. Suppose,
for example, that you have a competitor who has produced her
version S′ of this system; she also performs n tests of S′. Sup-
pose that your version S passes the first three tests out of n you
performed and that her version S′ passes 4 tests out of the n she
performed. These results would not be comparable in any cardinal
way if she ordered her eliminative tests differently or employed
different tests [17, §5.5.1].

In neither work does Schum claim that these objections do not apply to his
proposed use of Baconian probability. While he points out that achieving
discipline-wide agreement on the ordering of tests for a class of generaliza-
tions might be difficult outside of science, he does not cite this as grounds for
reimagining Baconian probability as a cardinal measure:

Experience in legal and other affairs supplies us with a list of rel-
evant questions that might be asked regarding how well the above
generalization holds in the present case of W and his testimony E∗.
. . . The more of these tests that W passes, the more we are enti-
tled to infer that this veracity generalization holds in the present
instance of W and his testimony E∗. . . . But we cannot expect
to manipulate relevant veracity-related variables in the same way
that we manipulated the variables in the systematic testing of sys-
tem S. In the first place, W has made a specific report about a
unique or singular event that either happened or didn’t happen; this
is one reason why there are no veracity-related statistics. Second,
there would almost certainly be argument about the relative impor-
tance of the six veracity questions as far as W is concerned. There
might also be disagreement about whether W has actually passed
or failed any of these veracity-related tests. Though the idea of
performing an increasingly thorough factorial test disappears, the
essential Baconian idea remains in the testing of generalizations
such as the one we have examined. A generalization is supported
to the extent that this generalization survives our best attempts to
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show that it is invalid in the particular instance of concern. Such
support can only be graded in ordinal terms [17, §5.5.1].

2.3.5 A Plausible Interpretation of Schum

Schum’s discussion of arithmetic on counts of questions asked and answered
(as reported in Section 2.3.3) might be interpreted as a proposal to redefine Ba-
conian probability as a cardinal measure of the number of identified questions
that have been satisfactorily answered. But that interpretation conflicts with his
insistence that Baconian probabilities are ordinal (as reported in Section 2.3.4).
It also leaves readers to wonder why Schum does not address charges—Cohen’s
and his own—that variables and questions do not have uniform importance.

Schum’s words can be interpreted in a way that avoids this problem. In
this interpretation, (i) Schum proposes to use ordinal Baconian probabilities as
Cohen defined them to rank and compare evidential support for general claims
and (ii) his references to counts of questions identified and answered are meant
to illustrate and justify the validity of that mechanism.

Suppose that jurists define (or a particular jurist defines) an ordered set of
questions to be asked about the applicability of each of the three generaliza-
tions described in Section 2.3.2. These questions define an ordinal scale by
which to rank similar claims made on similar evidence. By detaching claims
used in further inference at a particular rank, Schum accumulates a vector of
ranks that collectively grade evidential support for the conclusion of the final
inference. Suppose that two claims, H1 and H2, are supported by similar chains
of reasoning, so that the same questions and scale apply to both. If the rank of
claim H1’s evidential support at each position in the vector is no less than the
corresponding rank for H2, one could say that the evidence for H1 supports H1
at least as well as the evidence for H2 supports H2.

Returning to Schum’s courtroom testimony example, suppose that witness
W1 testifies (E∗1) that event E1 happened and witness W2 testifies (E∗2) that event
E2 happened. In keeping with the notation used in Section 2.3.2, let i1 stand
for the number of the last veracity question asked of both witnesses that was
satisfactorily answered in the case of witness W1, etc. If B(Ei,E∗i) stands for
the grading of the support that witness Wi’s testimony provides for the claim
that event Ei occurred,

(i1 ≥ i2∧ j1 ≥ j2∧ k1 ≥ k2)→ B(E1,E∗1)≥ B(E2,E∗2) (3)

The number of veracity, objectivity, and observational sensitivity questions (nv,
no, and ns) need not appear in Equation 3 because the same ranking scales,
defined by the same questions sorted in the same orders, are used to evaluate
the support provided by both witnesses’ testimony.

On this interpretation, Schum’s proposed use of Baconian probability does
not provide a total ordering of evidential support for a claim through multi-
ple reasoning steps, much less a means of comparing support across different
types of claims. If different jurists assign different orders to the veracity-related
questions, they might reach different conclusions about the relative strength of
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two witnesses’ testimonies. The proposal might be useful nevertheless, and it
has the virtue of comporting with what both Cohen and Schum have written
about the syntax and nature of Baconian probabilities.

Under this interpretation, Schum’s discussion of the counts of questions
identified and asked does not redefine Baconian probability. The discussion
instead illustrates Baconian probability and defends Schum’s proposed appli-
cation of it. If each greater Baconian grade of support for a proposition did
not represent greater knowledge about the proposition’s truth, a skeptic might
question the proposal’s validity. That an increase in rank represents a decrease
in the number of unanswered questions is a defense against this line of attack.
On this interpretation, the apparent contradiction disappears: Baconian proba-
bilities are ordinal ranks, not cardinal counts of unaddressed defeaters, but as
the former rises, the latter falls as expected.

3 Proposals for the Use of Baconian Induction in As-
surance Argumentation

Researchers have proposed using Baconian induction in the writing and as-
sessment of assurance arguments. In this section, we review the most relevant
proposals and assess how each comports with the definitions given in Section 2.
While the first comports with the original concept of Baconian induction, the
latter two subtly redefine Baconian probability as a cardinal measure rather
than an ordinal rank.

3.1 Assured Safety Arguments

Hawkins et al. propose using eliminative induction as part of assured safety
arguments [7]. Each assured safety argument comprises both a main safety
argument and a confidence argument. The former records safety claims and
their relationship to evidence. The latter “documents the reasons for having
confidence in the safety argument” [7]. Assurance claim points in the safety
argument identify the parts of that argument to which each part of the confi-
dence argument applies. Figure 2 illustrates this use. Writers using the authors’
argument patterns then justify confidence in an argument step by arguing the
truth of three premises:

1. “Credible support exists” for the evidence or inference

2. The assurance deficits have been identified

3. The remaining deficits are acceptable

Each assurance deficit represents a “knowledge gap that prohibits perfect (to-
tal) confidence” [7]. The argument supporting the first premise gives reasons
to accept the safety argument step in question. The argument supporting the
second premise speaks to the adequacy of the process used to identify possible
shortcomings in that rationale. And the argument supporting the third premise
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DIP.G1.  Insulin pump 
is adequately safe for 
routine use

DIP.A1.  Pump 
design 
documentation

…
ACP.A1 . . .

DIP.S1.  Argument 
over credible hazards

ACP.S1

DIP.G2.  Risk of hypogly-
caemia adequately mitigated

DIP.G6.  Risk of allergic reaction 
to materials adequately mitigated

. . .

…
. . .

Figure 2: An example safety argument adapted from [7] and depicted in the Goal
Structuring Notation [3] (with extensions). Assurance claim points such as ACP.S1
identify argument steps that are discussed in the confidence argument.

gives either reasons for believing either that (a) “significant counter evidence
associated with [the] assurance deficit is sufficiently likely to exist” or (b) “the
sensitivity of the safety argument to the assurance deficit is acceptably low.”
Figure 2 illustrates the use of assurance claim points to identify steps in the
main safety argument. Figure 3 presents a pattern for arguing confidence in
inferences such as ACP.S1 in Figure 2.

Instantiations of the confidence argument shown in Figure 3 are an appli-
cation of eliminative induction to assurance arguments. Bacon’s table of diver-
gency and Cohen’s list of variables are means of identifying categories of cir-
cumstances in which a general rule of nature might not apply. In a confidence
argument, “recognising assurance deficits . . . helps to identify the possible ar-
eas in the argument where counter-evidence may exist” [7]. Just as Cohen
grades inductions according to entire categories of possible counterexamples
tested, Hawkins et al. note that to identify assurance deficits is to “guid[e] . . .
the otherwise boundless search for counterevidence.” The authors do not define
a means of quantifying or ranking confidence in safety claims. However, they
hypothesize that the proposed confidence argument patterns capture the details
that are needed to support qualitative reasoning about confidence. A critical
reader could search the confidence argument for evidence that its writers have
overlooked an important assurance deficit or overestimated the degree to which
evidence shows that an identified deficit is mitigated.
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ACP1.  Sufficient confidence exists 
in {asserted inference at ACP}

CC1.  Credible 
support exists for the 
truth of {asserted 
inference at ACP}

CC3.  Residual 
assurance deficits in 
{asserted inference at 
ACP} are acceptable

CC2.  Assurance 
deficits at {ACP} 
have been 
identified

SC3.  Argument over 
each identified residual 
assurance deficit

Con1.  {Identified 
residual assurance 
deficits at ACP}

CC4.  {Assurance 
deficit} is acceptable

Number of residual
assurance deficits

At least 1-of-2

CC5.  Significant counter 
evidence associated with 
{assurance deficit} is 
sufficiently unlikely to exist

CC3.  The sensitivity of 
the safety argument to 
the {assurance deficit} 
is reasonably low

Figure 3: Confidence argument pattern adapted from [7]. A complete confidence
argument would contain instantiations of this pattern for each assurance claim point
like ACP.S1 in Figure 2.

3.2 Eliminative Argumentation

Goodenough et al. propose an argumentation approach that includes both graph-
ical confidence maps and Baconian probability [5, 6, 8, 9]. They name their
complete approach eliminative argumentation to emphasize its focus on elimi-
native induction [9].

3.2.1 Confidence Maps

Like the argument pattern shown in Figure 3, a confidence map records possible
reasons to doubt a safety claim and whether and how each is mitigated [6, 9].
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Special symbols distinguish between three different kinds of argument de-
feater:

• Rebutting defeaters, which directly contradict claims

• Undermining defeaters, which represent doubts about evidence

• Undercutting defeaters, which signify doubts about inference rules

Unlike arguments in the Goal Structuring Notation, confidence maps do not
end in evidence citations [3, 9]. Instead, confidence maps end when defeaters
are marked either OK or assumed OK. When attached to an inference rule,
the former “asserts that the rule has no undercutting defeaters because it is a
tautology” [9]. Argument writers use the latter to signify having reached a point
where “positing a new doubt seems unproductive.” A reviewer might challenge
that assertion (or any other part of confidence map or assurance argument).
Figure 4 gives an example the authors use to illustrate their proposal.

3.2.2 Baconian Probabilities in Eliminative Argumentation

Goodenough et al. build upon Schum’s summary of Cohen’s work on Baconian
probabilities [9, 15, 17]. They explain that

For Cohen, the notion of “evidence” refers to the result of ex-
amining whether a hypothesis is favored when evaluated under
various conditions that that have the potential to cast doubt on
the hypotheses (e.g., variations in temperature, humidity, shock,
electromagnetic interference). He defines Baconian probability as
B(H,E) = i/n, where E represents the number of tested conditions
(n) as well as whether test results are deemed to favor or disfavor
hypothesis H. In his formulation, results are available for all n test
conditions, and i is the number of favorable results. B(H,E) = i/n
represents the tendency of the evidence to favor the hypothesis.

This description does not impose three conditions that are central to Cohen’s
definition of Baconian induction, namely that:

1. Tests are defined specifically for classes of hypotheses of interest

2. Tests are ordered according to their relevance

3. Each test is inclusive of all lower-numbered tests

In eliminative argumentation, the Baconian probability of a claim in a con-
fidence map is given as i|n, where n is the number of “defeaters at or nearest
the leaves of the [argument] tree” (supporting that claim) and i is the number
of these that have been eliminated (i.e., marked OK) [9]. For example, in Fig-
ure 4, the Baconian probability of claim C1.1 would be iC1.1|nC1.1, where nC1.1

is the number of defeaters at leaves such as inference rule IR2.4 and iC1.1 is the
number of these that have been marked okay (also like inference rule IR2.4).
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Figure 4: Example “multi-legged confidence map” adapted from [9, Fig. 24].
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The practitioner is counseled that “it is best to focus not on the number of
eliminated doubts or the fraction of eliminated doubts but instead to focus on
the residual doubt—that is, the number of uneliminated doubts—because this
represents the additional assurance work that is required to develop complete
confidence in the top-level claim.” A prior report gives an example where two
approaches to enumerating defeaters yield Baconian probabilities of 1|2 and
3|4 for the same claim and evidence [5]. That report cautions that the example

shows why Baconian probabilities cannot be compared directly
and the care that must be taken when interpreting their meaning.
Whether our confidence is expressed as 1/2 or 3/4, there is still
one remaining doubt to be considered [5].

3.2.3 A Cardinal Measure, Not an Ordinal Rank

Like Cohen and Schum, the authors note that “in any set of defeaters, it is
unlikely that they all seem equally important” [8]. If there are two defeaters
and the first is more important than the second, then

if we are able to eliminate the first defeater and not the second,
shouldn’t we have higher confidence in a claim of system safety
than if we are able to eliminate the second defeater and not the
first? Yet both situations would have Baconian probability 1|2 [8].

Nevertheless, “incorporating a notion of relative importance of defeaters into
our proposed grading of confidence . . . is not essential” because

Just as a system developer would not represent extremely unlikely
and minimally impactful safety hazards in a safety case as a way of
justifying an increase in confidence, under our framework a system
developer would not take into consideration low impact defeaters
and justify an increase in confidence by demonstrating their elim-
ination [8].

In any case, “eliminating two out of three defeaters (2|3) provides more sup-
port for a claim than 1|3 and less than 3|3” [9]. By treating all defeaters as
practically equivalent in consequence and performing arithmetic on them as
described in Section 3.2.2, eliminative argumentation departs from Cohen and
Schum by defining Baconian probability as a universal cardinal measure rather
than as an ordinal rank of hypotheses in a given class.

The papers proposing eliminative induction do not define a fully realized
framework for arithmetic on cardinal Baconian probabilities. Earlier work
notes that such a probability “is neither a reducible fraction nor a fractional
representation of a numerical value between zero and one” [5]. The most re-
cent paper notes that “more work is needed to determine what methods of con-
fidence calculation are most useful for given purposes and what practical effect
various confidence numbers may have” [9].
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3.3 Mapping to Beta Distributions

Duan et al. propose to assess confidence in assurance arguments using Baco-
nian induction and quantify and visualize the Baconian probability of assurance
claims using the beta distribution [4]. The beta distribution is characterized
by two parameters, α and β . In the proposed quantification, “the number of
doubts eliminated can be mapped directly onto the α parameter and the num-
ber of doubts remaining can be mapped directly onto the β parameter” [4].
Specifically, “assuming n is the Baconian numerator and d is the Baconian
denominator,”

α = n (4)

and

β = d−n (5)

Echoing Schum, this arrangement is said to make intuitive sense: “as the num-
ber of doubts eliminated grows, so does our confidence” [4].

Once reinterpreted as beta distributions, the Baconian probabilities of as-
surance claims can be used in further probability calculations:

We can then use properties of the beta distribution to calculate the
uncertainty. Instead of simply summing up the Baconian probabil-
ity values, . . . we propose a weighting scheme with the beta dis-
tribution parameters. . . . Uncertainty in the beta distribution can
be calculated as the difference between the two inflection points of
the curve [4].

Except for the special case where either α or β is equal to one, the authors
define the confidence represented by a beta distribution as

2
α +β −2

√
(α−1)(β −1)

α +β −3
(6)

The operators also propose to combine confidence in claims using a consensus
operator that Jøsang defined for Shaferian belief frames [4, 18].

But what, to the authors, is a Baconian probability? The paper defines a
Baconian probability as “a ratio of the number of doubts eliminated to the total
number of doubts” [4]. It cautions that “this ratio is irreducible, as 4/5 would
represent an entirely different confidence value than 8/10—the latter shows a
higher confidence value and indicates that more doubts had been found and ulti-
mately mitigated or eliminated.” But arithmetic is undefined on ordinal values.
So, unlike Cohen or Schum, the paper must interpret Baconian probabilities
as cardinal measures rather than ordinal ranks [14, 17]. This interpretation is
corroborated by a citation to the earlier work of Goodenough et al. rather than
to Cohen’s foundational texts [4, 5].
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4 Baconian Induction in Assurance Arguments

As illustrated in Sections 2 and 3, some proposals to use Baconian probabil-
ity to measure confidence in assurance cases define it differently from Cohen.
Specifically, some safety researchers propose defining Baconian probability as
a cardinal value related to the number of defeaters identified and addressed
rather than as a family of ordinal ranks, each grading evidential support for a
specific class of claims. This raises a question: do the difficulties that prompted
Cohen to define Baconian probability in terms of incommensurable ordinal
ranks—each grading evidential support for a specific kind of generalization—
apply to assurance arguments? Might a cardinal, universal metric of unad-
dressed defeaters have utility even if it is subject to these difficulties?

4.1 Defeaters Vary in Importance

As discussed in Section 2.2.3, one of Cohen’s objections to treating Baconian
probabilities as portable measures of evidential support was “the differences
in number, complexity, importance, etc. of the relevant variables in different
series” [14]. In assurance arguments, defeaters play the role of relevant vari-
ables. In some cases, well-known forms of inference might be associated with
well-known lists of potential defeaters. In novel arguments or applications,
new defeaters might apply. But what would be the impact if each defeater did
not contribute an identical quantum to our confidence or uncertainty in the sup-
ported claim? Is there any evidence that defeaters have uniform importance?

If defeaters are not uniformly important, two arguments might provide dif-
ferent degrees of evidential support despite having the same number of unad-
dressed defeaters. This would occur whenever analysis of each revealed an
equal number of unequally important defeaters. Similarly, two conclusions
might have the same degree of evidential support yet have different cardinal
scores. This would occur whenever an analyst identified a different number of
defeaters covering the same overall sources of uncertainty.

An example suffices to both illustrate this possibility and demonstrate that
assurance argument defeaters are not uniformly important. Suppose that the
proposition in question is a claim about software behavior and the evidence
comes from testing:

Claim C1: The software satisfies software safety requirement SSR1
(the definition of which is not germane).

Evidence E1: Software test results.

Suppose that two defeaters for the inference from E1 to C1 are identified:

Defeater D1: The software test results labeled as evidence E1 were
obtained by testing the wrong version of the software.

Defeater D2: The test report labeled as evidence E1 might have
been corrupted by random bit flips in the memory used by
the word processing software with which it was prepared.
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While the possibility of the bit flip at issue in defeater D2 cannot be ruled out,
the possibility of it leading to an undetected error in the test report is so remote
that the defeater might strike some readers as absurd. But it is a potential de-
feater despite being obviously less important than defeater D1. To represent
both defeaters as a single quantum on a cardinal scale of confidence or un-
certainty is to conflate defeaters of very different importance, undermining the
validity of comparisons of confidence or uncertainty based on that scale.

Goodenough et al. assume that developers will not deliberately choose the
scope of defeaters so as to present a misleading indication of confidence [9,
§3.2]. But this assumption is not sufficient to ensure that each defeater repre-
sents an identical quantum of confidence or uncertainty: two analysts might,
with no intention to deceive, identify different-sized sets of defeaters that rep-
resent the same potential reasons for doubt. For example, Goodenough et al.
give an example in which an analyst might choose to represent the same uncer-
tainty arising from incomplete test coverage as either 1/2 or 3/4 depending on
whether the analyst counted paths or basic blocks [5, §5.4].

One might hypothesize that, despite the existence of examples of defeaters
that vary substantially in importance, most relevant assurance argument de-
featers are similar enough in importance that any errors in assessment caused
by their differences can be safely overlooked. If this hypothesis is true, the
proposed cardinal measure might be useful despite its imperfections. But this
hypothesis would require substantial empirical validation. No such empirical
validation has yet been reported in the relevant literature.

4.2 The Order of Defeaters Matters

Cohen advised sorting variables in decreasing order of falsificatory potential
based on “empirically influenced judgements of relative importance” [14, §45].
Perfect achievement of this order is not a prerequisite for defining a valid rank.
Rather, approximating the recommended order is a matter of optimizing the
cost of hypothesis testing: the closer that a test set defined for a given class
of hypotheses achieves this order, the fewer tests will be needed on average to
assess a hypothesis from that class.

As Schum points out, there might not be universal agreement about the or-
der of importance of a set of questions about witness veracity [17, §5.5.1]. And
as Cohen observed and Schum reiterated, there are situations such as court-
room testimony in which one does not have the luxury of testing variables in a
specific order [14, §69] [16, §3.2] [17, §5.1.1].

In safety engineering, it is not clear that there is always an empirical basis
for determining which of two defeaters is most important. Moreover, forcing
analysts to consider and assess defeaters in a specific order would be a substan-
tial imposition. Does this make it impossible to rank defeaters to a particular
kind of inference used in assurance arguments? Is it still necessary to establish
such a rank?

No and yes, respectively. While perfect order is unnecessary and while
tests might not be conducted in a specific order, the existence of some nominal
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order for tests of scientific hypothesis is key to the validity of the inductive
ranking mechanism. If tests are ordered and hierarchically inclusive, rank i+1
always indicates greater evidential support than rank i even if the difference
between ranks i and i+1 is not the same as that between ranks i+1 and i+2.
The order of the tests makes comparisons of rank valid.

The same principle applies to Baconian induction in assurance arguments.
It isn’t necessary to perform the assessments of whether each defeater holds in a
certain order. But if defeaters might not represent uniform quanta of confidence
and do not have a nominal order, then greater rank of evidential support might
not imply that greater confidence is warranted and vice-versa.

That some defeaters differ in importance is sufficient to show that relax-
ing the requirement for a nominal order of tests creates at least some cases
where the order of assessed values misrepresents the strength of the assessed
arguments. One might nevertheless hypothesize that defeaters are usually close
enough in importance that such difficulties do not pose practical problems. But
that hypothesis does not yet have any empirical support.

4.3 Ranks Are Incomparable Across Inference Types

Cohen’s Baconian probabilities (except for 0/n and n/n) are incommensurable
across types of hypotheses as described in Section 2.2.3. Schum described how
one might, in some cases, compare the grade of support for identical-length
chains of similar inferences as discussed in Section 2.3. But Schum’s mecha-
nism does not permit comparing the support provided by dissimilar argument
structures. Is it possible to compute a Baconian probability that grades support
for an arbitrary assurance argument such that the grade could be compared to
either a threshold or the grade of an alternative argument?

No. In Cohen’s formulation, different relevant variables might apply to dif-
ferent kinds of generalizations. Since different questions might have different
significance, knowing that a generalization passed test ti of n tests, where n > i,
does not facilitate comparison of the degree of evidential support except to that
for another hypothesis tested using the same tests.

Knowing that an assurance argument inference addresses the first i of an
ordered set of n defeaters, where n > i, permits comparing the strength of that
inference to another inference to which the same set of defeaters also applies.
But, as discussed in Section 4.1, defeaters might not represent uniform quanta
of confidence or uncertainty. Thus one might have addressed the first i of n de-
featers for one inference, and the first i of a different ordered set of n defeaters
for another, even if the actual uncertainty in the conclusions differs.

That some defeaters differ in importance is sufficient to show that there are
at least some pairs of inference types such that Baconian probabilities repre-
senting the degree of support for each would be incommensurate (except for
the limiting cases 0/n and n/n). Again, one might hypothesize that defeaters
are usually close enough in importance that such difficulties are not problem-
atic in practice. But that hypothesis does not yet have any empirical support.
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4.4 Is Unaddressed Defeater Count Useful As a Metric?

As discussed in Section 3, some safety researchers define Baconian probability
in a way that differs subtly but fundamentally from the original definition. That
is, they use the term to refer to a universal cardinal metric related to the number
of unaddressed defeaters rather than to a series of inference-type-specific ordi-
nal ranks. As discussed in Sections 4.1–4.3, this difference relaxes conditions
and restrictions that are key to the original version’s validity. But might the
resulting metric nevertheless be usefully applied to assurance argumentation?

Possibly. But to establish such utility, researchers would need to (1) iden-
tify a (desirable) value that it brings, (2) demonstrate that use of the proposed
metric brings that value, and (3) show that the value outweighs any harms that
use of the metric also brings (e.g., the potential for error when a larger value
actually stands for less confidence). We are not aware of any published stud-
ies that address either of the latter two needs. If such research is attempted, it
would be helpful if the proposed metric were called by a new name to avoid
confusion with the original definition of Baconian probability.

5 Conclusion

Baconian induction and probability differ from both induction by number of
instances and mathematical induction. Bacon proposed to define and assess
scientific hypotheses according to the number of relevant circumstances each
holds in. Cohen formalized Bacon’s induction and defined a syntax and rules
for Baconian probability. Schum proposed applying Cohen’s Baconian prob-
ability to the grading of evidential support for general claims supported by
chains of inference.

Researchers have proposed applying these concepts to the representation
and assessment of assurance arguments. All such proposals replace tests of
relevant scientific variables with assessments of identified potential argument
defeaters. One notable proposal stops at representing both (a) the list of de-
featers and (b) the reason for thinking that each of these has been adequately
addressed or can be safely ignored. Another includes a more syntactically rich
notation for representing that information. This proposal, like a more recent
third proposal, embodies a subtle but foundational redefinition of Baconian
probability. While Cohen and Schum define Baconian probability in terms of
ordinal ranks—each applicable to a specific class of hypotheses or inference
types—these proposals define it as a universal, cardinal measure.

An ordinal rank specific to a type of inference enables comparing the de-
gree of support offered by two alternative assurance argument steps using that
type of inference. A universal, cardinal measure might offer more value, e.g.
the ability to compare support for dissimilar types of inference or even a mea-
sure of the support provided by a complete argument. But Cohen’s definition of
Baconian probability includes conditions that make rank comparison sound de-
spite the non-uniform importance of relative variables. These conditions would
likewise keep comparisons of the strength of similar assurance argument steps
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from being unsound on account of differences in defeaters’ importance. But
proposed cardinal measures related to the number of defeaters identified and
addressed relax these conditions. Given the non-uniformity of assurance ar-
gument defeaters, one argument might measure better than another when its
support is in fact weaker.

Cohen’s Baconian probabilities are ordinal ranks, not cardinal measures.
Because this distinction is crucial to their validity, we recommend that pro-
posed measures related to the number of defeaters identified and addressed be
given a name other than Baconian probability to distinguish them from Cohen’s
ranks. While the non-uniformity of assurance argument defeaters threatens the
validity of the proposed metrics, an imperfect metric might be useful if it is
used with due regard for its potential to mislead. Such utility is an empirical
question of both the value the metric might bring and the potential for harm
due to misinterpretation. Neither that value nor that harm has been studied ap-
propriately. Because the utility of the proposed measures remains in doubt, we
recommend that future writing about these measures make clear to readers that
their validity has not yet been empirically established.
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