

Investigation of Desiccants and CO₂ Sorbents for Advanced Exploration Systems

James C. Knox

and

Gregory E. Cmarik

Background

- Desiccant beds have shown moisture breakthrough failures during use on station but show no pellet degradation issues
 - Better desiccants are desired, if available
- ASRT is the active CO₂ removal sorbent used onboard the ISS, but can no longer be manufactured
 - The search for replacements is ongoing after the first selection, RK-38, failed to remain resilient
- Replacement sorbents must remove as much CO₂ in cyclic operation as ASRT while maintaining integrity over a thousand days of use
 - Performance and reliability must be well understood

Selection Criteria

- Material Strength
 - Minimal dust generation when subjected to compression and abrasion in dry and humid conditioned states
- Capacity
 - Equal or greater adsorption than ASRT
 - At 10°C and 2 torr CO₂
- Reliability
 - Must not irreversibly lose CO₂ capacity after exposure to moisture and attempts to reactivate at system temperatures

CDRA Desiccant and CO₂ Sorbent Beds

Bulk Desiccant Selection

Structural Properties

- Returned flight beds showed no problems
 - Pellet strengths in excess of present material is not necessary
 - Zero "dusting" is highly desirable
- Current material is
 SG B125

Bulk Desiccant Selection

Adsorption Properties

Cylindrical Breakthrough Test Stand

Time (min)

Bulk Desiccant Selection

Adsorption Properties

- Breakthrough capacity at 25°C and a dew point of 10°C can be related to desiccant bed performance
- SG B125 has the best moisture capacity "per bed volume"

Residual Desiccant Selection

Adsorption Properties

 Measured on Humidity Conditioning Test Stand Breakthrough capacity at 20°C and trace dew points to study relative performance

CO₂ Sorbent Selection

Structural Properties

- Single pellet crush testing is an ideal initial screening test
 - Test can be conducted on sample-size quantities of material
 - Useful to eliminate high dusting materials
 - Results are informative but not predictive of 4BMS performance alone
- Measured on Autosorb-1c

CO₂ Sorbent Selection Adsorption Properties

- Replacement must exceed ASRT for CO₂ capacity
- 13X and LiLSX zeolites are prime candidates
- Measured on Autosorb-1c

Moisture Risk Assessment, pt. 1

Hydrothermal Stability Test Stand

ESSSA Group

Moisture Risk Assessment, pt. 1

- CO₂ <u>dynamic</u> capacity was measured before and after saturation with water at -21°C D.P. and reactivation
 - Recovery at CDRA temperature (204°C) led to a sharp loss of CO₂ capacity for some zeolites

Moisture Risk Assessment, pt. 1

- Comparing bulk removal capabilities
 - 5A zeolite recover most and eventually all CO2 capacity
 - 13X and LiLSX zeolites drop by a factor of 4 in capacity and show little recovery over time

Moisture Risk Assessment, pt. 2

Moisture Risk Assessment, pt. 2

- CO₂ <u>equilibrium</u> capacity was measured before and after exposure to water and reactivation
 - At 204°C and all higher temperatures, 5A zeolites had the lowest capacity

Conclusions

- The present bulk and residual desiccants show no performance issues and no candidates warrant selection over these
- Most likely candidate for future 4BMS CO₂ sorbent is a type-13X or LiLSX zeolite
 - System design considerations must be made for activating this material due to the possibility of moisture intrusion
 - Extended structural characterization in the hydrothermal stability test stand will be a critical factor
 - Alternative bed packing arrangements may forego the risks of moisture intrusion

