

National Aeronautics and Space Administration Marshall Space Flight Center

Key Quality Assurance Metrics in Additive Manufacturing

Doug Wells NASA MSFC Huntsville AL

NASA Quality Assurance in Additive Manufacturing A Workshop on Assuring AM Product Integrity

> Beckman Auditorium, Cal Tech Pasadena, CA

> > October 11-12, 2016

- 1. Assuring AM product integrity requires process control rigor:
 - Clear definition of the AM process and its metrics
 - Continuous evaluation of the AM process relative to metrics
- 2. Open loop AM technologies rely upon passive observation of metrics or post-build evaluation of witness specimens
 - Evolving AM monitoring technologies will provide better methods
- 3. Selected key metrics within the AM process
 - Qualified Metallurgical Process Record
 - Foundational
 - Defines key metrics for evaluation of the process
 - Witness testing for process control
 - Needs to be adequate and intelligent

Release target: December 2016

- Draft NASA MSFC Standard
- Methodology for qualification of AM parts and processes for critical applications
 - Space Launch System
 - Commercial Crew Program

SpaceX SuperDraco

Draft NASA MSFC Standard implements four fundamental aspects of process control for AM:

Metallurgical Process Control Part Process Control Equipment Process Control

Build Vendor Process Control

- Each aspect of process control has an essential role in the qualification of AM processes and parts and certification of the systems in which they operate.
- The standard provides a consistent framework for these controls and provides a consistent set of review/audit products

Quality Management System [QMS] Equipment Control Plan [ECP]

PDP = Part Development Plans (Overview and implementation)

- Communication, convey risk
- Classification and rationale
- DVS = Design Value Suite (properties database)
 - "Allowables," integrated through PCRDs
- QMP = Qualified Metallurgical Process (foundational control)
 - Analogous to a very detailed weld PQR
- PCRD = Process Control Reference Distribution
 - Defined reference state to judge process consistency
- FAI = First Article Inspection
- MRR = Manufacturing Readiness Review
- QPP = Qualified Part Process
 - Finalized "frozen" part process
- ECP = Equipment Control Plans
 - Machine qual, re-qual, maintenance, contamination control
- QMS = Quality Management System
 - Required at AS9100 level with associated audits

- Draft NASA MSFC Standard identifies AM as a unique material product form and requires the metallurgical process to be qualified on *every* individual AM machine
- Developed from internal process specifications with likely incorporation of forthcoming industry standards.

Qualified Metallurgical Process (QMP)

- Feedstock control or specification
- AM machine parameters, configuration, environment
- As-built densification, microstructure, and defect state
- Control of surface finish and detail rendering
- Thermal process for controlled microstructural evolution
- Mechanical behavior reference data
 - Strength, ductility, fatigue performance

Qualified Metallurgical Process (QMP)

- As-built densification, microstructure, and defect state
- Thermal process for controlled microstructural evolution

Reference parts:

Metrics for surface texture quality and detail rendering

Overhanging, vertical and horizontal surface texture, acuity of feature size and shape

Qualified Metallurgical Process (QMP)

- Reference Parts
- Control of surface finish and detail rendering
- Critical for consistent fatigue performance if as-built surfaces remain in part

- Mechanical behavior reference data
 - Strength, ductility, fatigue performance
 - Process Control Reference Distributions (PCRD)
- Establish and document estimates of mean value and variation associated with mechanical performance of the AM process per the QMP
 - May evolve with lot variability, etc.
- Utilize knowledge of process performance to establish meaningful witness test acceptance criteria

Types of AM build witness specimens

- Metallurgical
- Tensile (strengths and ductility)
- Fatigue
- Low-margin, governing properties (as needed)

What is witnessed?

- Witness specimens provide direct evidence only for the systemic health of the AM process during the witnessed build
- Witness specimens are only an in-direct indicator of AM part quality through inference.

Mechanical Property Witness Procedures

- Move away from spot testing for acceptance against 99/95 design values or specification minimums
- Evaluate with sufficient tests to determine if the AM build is within family
- Compromise with reasonable engineering assurance
- Proposed
 - Six tensile
 - Two fatigue

Evaluate against the PCRD of the QMP

- Ongoing evaluation of material quality substantiates the design allowable
- Only plausible way to maintain design values

PCRD Process Margin ≥ 0 $\mu_{witness}$ $\sigma_{witness}$ Property PCRD 99/95 μ 1σ DVS Property DVS 99/95 (design)

Example of AM build witness specimen evaluations

Nominal process is blue, off nominal in red

Process shift hard to discern

Process shift discernable with analysis of mean and variation

Simulation is used to evaluate small sample statistical methods for witness specimen acceptance Design acceptance criteria for the following:

- Keep process in family
- Minimize false negative acceptance results
- Protect the design values witnessed
- Protect the inferred design values

- 1. Assuring AM product integrity requires classic process control rigor:
 - Clear definition of the AM process and its metrics
 - Evaluation of the AM process relative to the metrics
- Open loop AM technologies rely upon passive observation of metrics or post-build evaluation of witness specimens
 Evolving AM monitoring technologies will provide better methods
- 3. Key metrics within the AM process
 - Qualified Metallurgical Process Record
 - Foundational
 - Defines key metrics for evaluation of the process
 - Witness testing for process control
 - Needs to be adequate and intelligent

Thank You

Additive Manufacturing at MSFC

