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Introduction

* Advanced Exploration Systems (AES) Program:
* pioneering approaches for rapidly developing prototype systems
 validating concepts for human missions beyond Earth orbit

 Life Support Systems Project (LSSP):
* mature environmental subsystems
* derived directly from the ISS subsystem architecture
* reduce developmental and mission risk
* demonstrate concepts for human missions beyond Earth orbit
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The CDRA 4BMS Beds

* Multiple sorbent layers:
RK38 (5A), G544 (13X), Sorbead WS (SG), Sylobead B125 (SG)

* Multiple sorbates: CO,, H,O
* Variable flow rates, concentrations, and temperatures
* CO, bed desorbed with vacuum and in-situ heaters
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Model Approach

e Use Toth isotherms from other work
* Describes how the sorbate and sorbent interact

* Use dimensionless correlations (Re, Nu, Pe, Pr)
* Derives mass dispersion and thermal transfer coefficients

* Assume binary mass diffusion is valid

* Assume constant porosity in each bed layer
* Use Rumpf-Gupte permeability relationship
* Assume 1-D Darcy Flow

* Fit the single model parameter (LDF) using Cylindrical
Breakthrough Test (CBT) data



COMSOL 4BMS Model

Use COMSOL Multiphysics to solve in 1-D (for each layer in each bed):
« Transport of Concentrated Species (sorbate)
* includes reactions, diffusion, and advection
* time-dependent Mass Fraction inlet condition
* Heat Transfer

* in solids for Can, Sorbent, and Insulation
* Sorbent has sorption and heater Heat Sources
* in fluids for Gas mixture
* ideal gas with constant ratio of specific heats
* inlet Temperature boundary condition

* all are coupled via thermal coefficient Heat Sources
* temperature-dependent material properties
* Darcy’s Law (pressure and superficial velocity)
* inlet Mass Flux boundary condition
* constant outlet Pressure (except for vacuum desorption phase — see next slide)
* includes Mass Source due to sorption
* General Form PDE: pellet loading via LDF & Toth
* General Equations: heater switches



COMSOL 4BMS Model
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Vacuum desorption of the CO, bed: ool

* The adsorption effluent end is closed off
* BC changed from ‘pressure’ to ‘no flow’
* Desorption effluent end of the bed is piped back to
the cabin with a pump for ~ 10 minutes
* ‘air save’ mode removes N, and O, still in bed
* single strand of the bed heaters is turned on too
* At the end of air-save: 0.3
e 2nd heater strand is turned on sl
* effluent end of the bed is piped to space vacuum |
* The low-pressure BC is applied to the effluent with a k/—\
P(t) based on test data 0 O 0 150
* Bump due to pure CO, desorbing from bed
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1-D Model
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e Separate Physics Nodes and Steps for each bed

* Switch BC types for each half-cycle using Physics Tree

* Fine temporal and spatial resolution required to capture fronts and BC changes
* Boundaries between bed layers marked by m

* Runtime on a desktop is slightly faster than real time

* No user interaction (‘nursing’) is required
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All cases match removal rate and efficiency to better than 10%

Test inputs (dew point, inlet temperature, ambient temperature,
heater power, flow rate) vary from test to test and within a test

Expected model uncertainty ~10%, so the Virtual Laboratory works!



* 2 torr CO,, 25 SCFM,
and 154 min HC

* Desiccant influent &
effluent shown

* ‘burp’ at start of HC
reproduced

* Slight break-through
at end of HC

* Heavy CO, loading of
the 13X desiccant
layer predicted

* Competing CO,/H,0
isotherm and/or P(t)
issues for spike?
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4BMS-X Optimization

* Four person crew for exploration (fewer than ISS)

* 13X desiccant layer reduced in size (had excess capacity)

* CO, sorbent bed layer reduced (had excess capacity)

* Various new CO, sorbents modeled (have more capacity)

* Different heater methods modeled (reducing power requirements)
* Aiming to reduce equivalent mass and improve -ilities

* Virtual Laboratory says:
* can remove 50% of the 13X and 30% of the 5A
* with new sorbents, can remove as much as 60% of the CO, sorbent
* average heater power can be reduced by ~50%
* verification of these predictions are now underway!



Summary

- Have constructed a predictive CDRA 4BMS 1-D Comsol model
* Calibrated with CBT on various sorbates, sorbents, flow rates, concentrations

* Applied to CDRA-4EU Baseline data

* Shows sorbent bed CO, breakthrough for nominal operation

* Shows impact of the 13X CO, ‘reservoir‘ behavior
* quantitatively can be improved with better competition model

* Matched test results to better than 10% for all tests
* Now being used to inform next generation CDRA (4BMS-X) optimization

—>Virtual Laboratory of any 4BMS System open for work!



