

Analysis of Load Test Annex (LTA) Floor Anchor Lateral Stiffness Test Results

Mark Brethen University of Alabama in Huntsville/MAE 683 Graduate Seminar DSI/Jacobs ESSSA Group Marshall Space Flight Center

Overview

- SLS Stages Special Test Equipment (STE)
- Floor Anchor Point Capabilities
- Intertank (IT) Test Structure
- LTA Floor Anchor Test
- Data Reduction
- Specimen Behavior
- Multiple Linear Regression Analysis
- Comparative Analysis
- Summary and Conclusion

SLS Stages Special Test Equipment (STE)

- NASA Space Launch System (SLS) Core Stage (CS) Structural Qualification (SQ) testing is being performed at MSFC.
- Four SLS CS elements
 - Engine Section
 - LH2 Tank
 - Intertank
 - LOX Tank
- SLS STE includes
 - facilities
 - structural fixtures
 - mechanical load application hardware
 - access platforms
- Mechanical Structural Analysis Branch at MSFC providing stress analysis of STE.

LTA Floor Anchor Point Capabilities

Table I. LIA Recommended Maximum Loads					
Load Test Annex (LTA)- Recommended Maximum Load Capability					
Area	Tensile (kips)	Shear (kips)			
Area B, Full Load Capability	111	18			
Area A, De-rated Load	30	18			
Capability					

* The de-rated region of the LTA floor is comprised of the outer two rows of anchor points around the perimeter of the entire LTA floor.

- ** Reference NASA Stress Analysts' memo ED28-93-54 (08/23/1993)
- *** Reference LTA Facilities Calculation Book, Section T (1962)

- The center region of the LTA load reacting floor is made up of 2,356 hold down anchor points.
- Anchors are arranged in a square pattern on 18" centers, with a 2.75"-8UN thread interface.
- Total concrete thickness
 - 11' primary floor area
 - 6' 1.25" overhang regions
- In the interest of maintaining the LTA floor's condition, it is prudent that the floor is not overloaded.

MSFC Load Test Annex (LTA) during construction phase.

Drawing FE-C-4619-S-2, Zone E4, MK AB-1 Anchor Point Detail of the LTA 11ft Primary Floor

Intertank (IT) Test Structure

- During analysis of the IT structure, high shear reactions in certain areas of the flange were observed.
- A trade study was performed on a thick flange (4" plate) with several rows and columns of anchors.
- Baseline analysis with pinned boundary conditions (123) is conservative for stress and anchor tension and shear.
 - FEM is over-constrained using several anchor points with infinitely stiff constraints.
- Solution is to model anchors, considering the thickness of the grout (E = 568,000 psi) and the flange.
 - The shear reaction is significantly affected by the length of the stud.
- What are realistic values for the lateral resistance of the anchor bolts that attach to the threaded floor inserts?

Baseline LC1, Tension + Shear

Intertank (IT) Test Structure

- The shear reaction is significantly affected by the boundary conditions assumed in the FEM.

Shear Trade Study Percent Difference										1			
Results Summary			LC1, Tension + Shear				LC2, Tension				LC3, Shear		
				Anch. Max	Anch. Max			Anch. Max	Anch. Max			Anch. Max	Anch. Max
LC	Title	Disp.	Stress	Tension	Shear	Disp.	Stress	Tension	Shear	Disp.	Stress	Tension	Shear
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	Baseline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	Fixed	-1.6	-1.0	-2.8	-2.2	-1.7	0.0	-2.8	-2.6	-0.6	0.0	-4.8	-0.7
3	Anchors 1"	3.0	0.0	-4.1	-39.6	3.4	0.7	-4.0	-42.7	1.8	0.0	-2.6	-17.3
4	Anchors 4"	14.0	0.8	-11.1	-69.1	13.9	2.3	-11.1	-76.8	10.7	0.1	-3.4	-19.9
5	Contact BL	-1.6	-0.9	13.2	-1.8	-1.7	0.0	15.7	-2.0	-3.0	0.8	166.4	0.8
6	Contact 2 Ptty Pin.	-0.3	-0.2	-0.2	-0.5	-0.7	0.1	-0.1	-0.4	-1.8	0.6	-2.8	0.4
7	Contact 3 Ptty Anch.	13.7	0.8	-11.1	-69.3	13.9	2.3	-11.1	-76.8	7.7	0.9	-7.4	-19.2

LTA Floor Anchor Test

- Testing was initiated by the Structural Strength Test Branch:
 - Conducted in the north and east areas of the Load Test Annex (LTA) floor.
 - 2.75-inch diameter bolts were selected for testing and are representative of the thread interface.
 - Bolt installations simulated various grout thicknesses.
 - The specimens were subjected to low-cycle loading/unloading to run the hysteresis out of the system.
 - Loading was continued to approximately 15 kips maximum (18 kips capacity).
 - LVDT's provided a continuous record of deflection versus load up to 1/8 inch (3.18 mm) of deflection.
- The objective was to determine the effect of load input height upon the lateral resistance attainable.

LTA Floor Anchor Test

Spacer	Force [†]	LVDT Location [‡] (inch)					
(inch)	(inch)	Ground	Lower	Upper	Bolt Top		
0.5	2.815		1.5	4.0	8.0		
0.75	3.065	_	1.75	4.25	8.25		
1.0	3.315	_	2.0	4.5	8.5		

[†]Load point distance from floor

[‡]LVDT height from floor (symmetric to load point)

Data Reduction

0.07

East Region, Block 2 with .50" Spacer Anchor Bolt Hand Tight

- The raw data consisted of load-deflection curves (up to 1/8 inch (3.18 mm) of bolt deflection from DAC EU files (0.1 sec sampling rate).
- Thirty-six observations at 9, 12 and 15 kips are used for the analysis.
- Data from both LVDTs mounted on each block were averaged to estimate the deflection at the load-point.

Specimen Behavior

Specimen Behavior

Table 3. Load cycle data for the 0.5-inch spacer (East Region)									
TIME	Block_2_lowe r_EU	Block_2_upp er_EU	Bolt_2_Top_E U	Block_1_lowe r_EU	Block_1_upp er_EU	Bolt_1_Top_E U	LC1_EU		
	inch	inch	inch	inch	inch	inch	kips		
LTA-Anchor-HalfinchSpacer-Torqued-042314									
11:13:45.717	0.0068	0.0091	0.0125	0.002	0.0026	0.0039	0.3997		
11:16:45.318	0.026	0.0405	0.0612	0.0133	0.0217	0.0315	15.0205		
11:25:15.000	0.0018	0.0024	0.0028	0.0007	0.0009	0.0018	0.0236		
LTA-Anchor- HalfInchSpacer-HandTight-042314									
15:51:28.011	0.0047	0.004	0.0028	0.0036	0.0037	0.0037	0.0307		
15:56:07.018	0.0218	0.0343	0.0522	0.0145	0.024	0.0342	15.0602		
15:57:19.019	0.0013	-0.0011	-0.0044	0.0008	0.0009	0.0011	0.156		

- Hand-tight case generally consistent at the start and end of the cycle; proportional at the peak load.
- Displacements from the torqued case are proportional throughout the cycle.
- Suggests prying, or rotation of the block, either at the spacer or floor.

Multiple Linear Regression Analysis

- Data must be metric or appropriately transformed.
- Regression model relates deflection to applied load, spacer and block number.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

- Block number, x_3 , with two levels is directly entered as a predictor variable, coded as -1 and 1.
- Load and spacer height are coded as follows,

$$x_1 = \frac{Load - 12}{3}, \ x_2 = \frac{Spacer - 0.75}{0.25}$$

- Why use coded design variables?
 - Model coefficients are directly comparable.
 - Estimated with the same precision.
 - Very effective for determining the relative size of factor effects.
- Least squares method chooses coefficients so that the sum of the errors, ε, is minimized.

Multiple Linear Regression Analysis

- Transformation of the response variable (deflection):
 - Stabilize response variance.
 - Make the distribution of the response variable closer to the normal distribution.
 - Improve the fit of the model to the data.
- Selecting a Transformation
 - Plot log S_i vs. log y_i
 - Estimate α Slope of line
 - Use α to select transformation Table 3-9 (Montgomery, 8th Ed.)
 - Box-Cox Method (Implemented in R)

	ТΑ	В	LB	Е	3.	9				
Va	rian	ice	-St	tab	iliz	zing	Tran	sfor	mati	ons

Relationship Between σ_y and μ	α	$\lambda = 1 - \alpha$	Transformation	Comment
$\sigma_y \propto \text{constant}$	0	1	No transformation	
$\sigma_{\rm y} \propto \mu^{1/2}$	1/2	1/2	Square root	Poisson (count) data
$\sigma_{y} \propto \mu$	1	0	Log	
$\sigma_{\rm y} \propto \mu^{3/2}$	3/2	-1/2	Reciprocal square root	
$\sigma_y \propto \mu^2$	2	-1	Reciprocal	

Average Block Deflection - ANOVA for $y^* = \ln(y)$

Analysis of Variance:

Df Sum Sq Mean Sq F value Pr(>F) 1 0.3761 0.3761 7.626 0.009450 ** x1 x2 1 0.8585 0.8585 17.407 0.000215 *** 1 2.8727 2.8727 58.247 1.07e-08 *** x3 Residuals 32 1.5782 0.0493 - - -Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.2221 on 32 degrees of freedom R-squared: 0.722, Adjusted R-squared: 0.696

PRESS: 2.011329, Predicted R-squared: 0.646 F-statistic: 27.76 on 3 and 32 DF, p-value: 4.932e-09

Coefficients:

	Estimate	Std.	Error	t value	Pr(> t)
(Intercept)	-3.8352590	0.037	701354	-103.617733	5.180960e-42
x1	0.1251853	0.04	533214	2.761513	9.449557e-03
x2	0.1891349	0.04	533214	4.172203	2.153744e-04
x3	0.2824860	0.037	701354	7.631965	1.070942e-08

 $\hat{y}^*_{block} = -3.835 + 0.125x_1 + 0.189x_2 + 0.282x_3; \qquad \hat{y}_{block} = e^{ln(\hat{y}^*_{block})}$

Fitted Values

Bolt Top Deflection (North Region) - ANOVA for $y^* = 1/y$

Analysis of Variance:

Df Sum Sq Mean Sq F value Pr(>F) 28.96 9.68e-05 *** x1 1 267.3 267.3 x2 1 673.8 673.8 73.00 6.31e-07 *** 1 1360.8 1360.8 147.44 8.04e-09 *** х3 14 129.2 Residuals 9.2 - - -Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.038 on 14 degrees of freedom R-squared: 0.947, Adjusted R-squared: 0.935 PRESS: 230.6105, Predicted R-squared: 0.905

F-statistic: 83.13 on 3 and 14 DF, p-value: 3.676e-09

Coefficients:

	Estimate	Std. Error	• t value	e Pr(> t)
(Intercept)	31.674491	0.7160750	44.233484	1.919494e-16
x1	-4.719669	0.8770092	-5.381551	9.677819e-05
x2	-7.493263	0.8770092	-8.544110	6.314609e-07
x3	-8.694924	0.7160750	-12.142478	8.037167e-09

$$\mathcal{Y}^*_{bolt(N)} = 31.674 - 4.72x_1 - 7.493x_2 - 8.695x_3; \ \mathcal{Y}_{bolt(N)} = 1/\mathcal{Y}^*_{bolt(N)}$$

30

Fitted Values

50

40

10

20

Comparative Analysis

Table 4. Summary of Mean Stiffness from Fitted Models Spacer

Table 5. Roark's Solution for Various Beam Loadings and Supports

Spacer	L	Mea	n Stiffness, k
(inch)	(inch)		(kips/in.)
case la_	Left end f	ree, right end	fixed (cantilever)
	k = 30/L3	when a = 0	
0.5	2.815	8731.3	IW K
0.75	3.065	6764.3	
1.00	3.315	5346.4	E.
case 1b.	Left end g	guided, right e	end fixed
	k = 12EI/	L^3 when $a = 0$	
0.5	5.13	5770.6	k- a-d W K
0.75	5.38	5003.0	1 k li
1.00	5.63	4365.6	(
case 2a	Left end f	ree, right end	fixed (cantilever)
	k = 8E/L	when a = 0; v	v = w
0.5	5.13	3847.1	WI W HA
0.75	5.38	3335.3	
1.00	5.63	2910.4	Internet
2.75-8UN	Bolt (A354)	
Minor Dia	L = 2.5987	in.	
E = 29E6	psi		
I = 2.2382	7 in⁴		

Summary and Conclusion

- The primary objective of this experiment was to evaluate the effects of applied load and spacer thickness on the deflection of anchor bolts.
- Empirical models were based on tests of isolated anchor bolts loaded in shear.
- It is possible that prying, or rotation of the blocks occurred during test.
 - Measured angular displacement ($r \Delta \theta$) would underestimate the lateral stiffness of the bolt.
- The LTA floor is an active component during test.
 - Anchor points react tension and shear loads.
 - Concrete reacts a compressive load and shear loads.
- The test program did not examine installation of a group of bolts or a lateral load combined with tension.
- The approach adopted by the Mechanical Structural Analysis Branch to model anchors in finite element analyses is conservative.
 - This is based on the assumption that the boundary condition in the FEM is rigid.
 - Stud length equal to the thickness of the grout plus half the thickness of the flange.

BACKUP SLIDES

Bolt Top Deflection

East Region

Bolt Top Deflection - ANOVA for $y^* = \ln(y)$

Analysis of Variance:

Df Sum Sq Mean Sq F value Pr(>F) x1 1 0.4387 0.4387 8.72 0.005856 ** x2 1 0.7595 0.7595 15.10 0.000483 *** x3 1 1.3576 1.3576 26.98 1.13e-05 *** Residuals 32 1.6100 0.0503 ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.2243 on 32 degrees of freedom R-squared: 0.614, Adjusted R-squared: 0.577 PRESS: 2.034107, Predicted R-squared: 0.512 F-statistic: 16.93 on 3 and 32 DF, p-value: 9.125e-07

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-3.2803978	0.03738354	-87.749790	1.038789e-39
x1	0.1351986	0.04578530	2.952883	5.856358e-03
x2	0.1778885	0.04578530	3.885275	4.829027e-04
x3	0.1941948	0.03738354	5.194659	1.127999e-05

Standardized Residual

