Is it Worth It? - The Economics of Reusable Space Transportation

International Cost Estimating and Analysis Association
(ICEAA)
2016 International Training Symposium

Bristol, UK
October 17-20, 2016

Presented by:
Richard Webb - KaR Enterprises richard.webb@karenterprises.net

- Introduction
- Key Considerations
- Who Cares?
- Stakeholders - Users and Suppliers of space transportation
- Why Are You Doing This?
- Motivations for investing in reusable space transportation
- If You Build It They Will Come. . .
- Demand for space transportation
- A Matter of Degree
- Degrees and types of reusable transportation systems
- How Many
- Fleet size
- Size Matters
- Size and cost - ramifications for reusable systems
- Conclusions

MIPSS

Is it Worth It? - The Economics of Reusable Space Transportation

- The Quest for Low Cost Space Transportation
- Reusable versus Expendable Systems
- Central Thesis: " It's cheaper if you don't throw stuff away, especially expensive stuff like rocket engines and avionics".
- Is it true?
- Industry has been at it for over 50 years.

> "Costs of Reusable Launch Vehicles: Should We Pay Up Front to Build in High Reliability or Pay Later to Buy More Vehicles?": demonstrated that there is no scenario in which the economics of reusable launch vehicles makes them preferable in cost to expendable launch vehicles."
> Dr. Stephen Book, PARAMETRIC WORLD, Winter 2012

The payoff of a reusable rocket is only possible if the launcher is flown many times, and market outlooks in the commercial sector and with European institutional missions do not add up to tip the scales in favor of reuse (he said).
--Stephen Israel, Chairman an CEO, Arianespace, Spaceflight Now.com, 1/11/2016
"If one can figure out how to effectively reuse rockets just like airplanes, the cost of access to space will be reduced by as much as a factor of a hundred. A fully reusable vehicle has never been done before. That really is the fundamental breakthrough needed to revolutionize access to space."
--Elon Musk, SpaceX.com, 3/31/2013
Commercial space exploration can advance at the fast pace of Internet commerce only if the cost is reduced through advances in reusable rockets. Jeff Bezos, Amazon CEO, bloomberg.com, 4/12/2016

Is it Worth It? - The Economics of Reusable Space Transportation

INTRODUCTION

- Where We've Been
- Early Concepts - Ehricke, Bono, Sanger, Hunter, others
- Space Shuttle - more than a "reusable launch vehicle"
- Buran- USSR Shuttle - Energia
- Significant investments in multiple large scale development programs

Program	Approx. Invest (TY\$)
X20 Dynasoar	$\sim \$ 400 \mathrm{M}$
Project START	$\sim \$ 1 \mathrm{~B}$
Space Shuttle	$\sim 12 \mathrm{~B}$
X30 National Aerospace Plane (NASP)	$\$ 3-\$ 5 \mathrm{~B}$
Delta Clipper Flight Experiment	$\$ 50 \mathrm{M}$
X33 Advanced Technology Demonstrator	$\$ 1 \mathrm{~B}$
X34 Technology Testbed Demonstrator	$\$ 219 \mathrm{M}$
X37 Advanced Technology Flight Demonstrator	$\$ 301 \mathrm{M}$

Source: National Space Transportation Policy Issues for the Future, Hogan and Villhard, WR-
105-OSTP, October 2003

- Where We Are
- Commercial Investment
- SpaceX, Blue Origin, Virgin Galactic, Others
- Government Investment
- XS-1
- Over \$10B invested so far

MIPSS
Team SB Diversity

Is it Worth It? - The Economics of Reusable Space Transportation

Engineering
Cost
WHO CARES?

- Users of space transportation

DEMAND	STAKEHOLDERS	PRIMARY USES
Civil Government	NASA, ESA, NOAA, etc.	earth sciences, astrophysics, planetary exploration, manned exploration, ISS
Military Government	US Department of Defense, Foreign Governments	communications, intelligence, treaty verification
Commercial - Geosynchronous Orbit (GSO)	Communications \& broadcast companies	communications and direct broadcast satellites
Commercial - Low Earth Orbit (LEO)	 remote sensing companies	communications constellations, remote earth sensing
Commercial - Other (LEO)	New/current commercial companies; cube/nano sats; small sats	remote sensing, telecom, broadband internet

Adapted from: ACHIEVING RESPONSIVE ACCESS TO SPACE--
MARKET, MONEY, MECHANICS, AND MANAGEMENT LESSONS FROM X-33,
Meade, Lane, Webb, 1st Responsive Space Conference, April 1-3, 2003

Is it Worth It? - The Economics of Reusable Space Transportation

WHO CARES?

- What Users Value
- Transportation is a means, not an end
- Some or all of:
- Low Price, High Availability, High Reliability
- Cost (price) per pound not necessarily most important
- Users pay a price per flight, not a price (or cost) per pound
- Smaller payloads \equiv smaller vehicle \equiv lower price \equiv less cash out
- Example: NASA PCEC Launch Services ROM Estimator (M15\$)

Destination:						
Mass (kg):	GEO	Planetary	Polar	Lunar	LEO	Helio
< 3,000	\$ 120					
> 3,000	\$ 140					
< 1,000		\$ 80				
1,000 to 2,000		\$ 110				
> 2,000		\$ 175				
< 1,000			\$ 55			
1,000 to 2,000			\$ 85			
>2,000			\$ 130			
< 500				\$ 85	40	
> 500				\$ 160	80	
All						\$ 100

- Approximate price per flight based on destination and mass

Is it Worth It? - The Economics of Reusable Space Transportation COST PER MASS vs. COST PER FLIGHT

- Cost (Price) per kilogram (pound) to orbit is not necessarily the "most important metric" to users of space transportation
- Price is function of mass versus available ETO transportation systems

Is it Worth It? - The Economics of Reusable Space Transportation

WHO CARES?

- Suppliers of space transportation
- Many and varied
- 862015 earth-to-orbit launches
- 21 vehicles; 7 countries
- Commercial
- Government
- Both
- What Suppliers Value

Vehicle	Country	2015 Flights	Vehicle	Country	2015 Flights
CZ (DF-5)	China	17	Zenit	Russia	1
R-7	Russia/EU	16	GSLV	India	1
Atlas 5	US	9	H-2B	Japan	1
Proton	Russia	8	Delta 2	US	1
Falcon 9	US	7	Dnepr	Russia	1
Ariane 5	EU	6	CZ-6	China	1
PSLV	India	4	CZ-11	China	1
H-2A	Japan	3	Safir 1B	Iran	1
Delta 4	US	2	Soyuz 2-1v	Russia	1
Rokot/Briz KM	Russia/EU	2	Super Strypi	US	1
Vega	EU	2	TOTAL		86

SOURCE: spacelaunchreport.com, Ed Kyle

- Depends significantly on motivation
- Generally \$\$: Transportation generally the end
- Metrics depend greatly on market segment being served
- Supplier values what customer values
- Non-Recurring Investment: Capital Budgeting ~ Discounted Cash Flow
- Internal Rate of Return (IRR), Net Present Value (NPV), Payback time
- Recurring Operations: Return on Sales = Profit $=$ High Price - Low Cost
- Tradeoff versus other attributes
- Strategic suppliers may value other metrics

MIPSS

Is it Worth It? - The Economics of Reusable Space Transportation

Engineering
Cost

WHO CARES?

- Becomes a balancing act between multiple, often competing interests of Users and Suppliers
- User's lower cost I Supplier's lower price; lower ROS
- User's higher availability \& reliability \equiv Supplier's higher cost

Civil Government:

- Safety (Human Flights)
- Mission Reliability-Science

Payloads

- Low Recurring Price

DOD:

- Mission Reliability
- Quick Response
- On Time Delivery

Commercial:

- Low Recurring Cost
- High Availability
- On Time Delivery

Systems:

- Low Cost
- Maintain

Industrial/Engineering Base

Commercial Launch

Industry:

- Acceptable Investment

Return

- Recurring Profitability

Is it Worth It? - The Economics of Reusable Space Transportation

- Approach to providing transportation services depends on interplay of several key considerations
- What missions are you supporting?
- Up: Earth-to-orbit, in-space, sortie
- Down: Return missions - e.g. X37, X38
- Requires an earth-to-orbit system to perform mission
- Where: Altitude and Inclinations
- Orbital versus suborbital, Polar, due East, Geosynchronous Transfer, Low Earth, Space Station, other
- This discussion addresses earth-to-orbit transportation.
- A word about Shuttle - a unique system, performed multiple missions
- Delivered earth-to-orbit payloads to multiple destinations
- Civil governments, military, commercial
- LEO, ISS, GTO
- Other missions
- Down payload, human transport, satellite service/rescue, on-orbit laboratory, etc.

Is it Worth It? - The Economics of Reusable Space Transportation

Engineering
Cost WHY ARE YOU DOING THIS?

- What is your motivation? - Ultimately investments in reusable space transportation depend significantly on investors' motivations.
- Financial: typically public company, shareholder value, end = make \$
- Capital investment decisions based on DCF or similar metrics

Versus

- Strategic: typically private company, means to make \$ some other way (size of aperture) - anchor tenant, own means
- Capital investment decisions can be based on other broader strategic considerations
- DCF may be lesser priority
- Other considerations
- Culture - risk tolerance

C)
Tory Bruno @torybruno

Both are correct

James Dean @flatoday_jidean
ULA's Taliancich says rocket reusability is business case decision. SpaceX's Rosen calls it "learning case" decision: informs Mars flight.

- DCX, X33 compared to Falcon 9
- Altruism - Ultimately economics must work
- Altruism is unsustainable without subsidy

Is it Worth It? - The Economics of Reusable Space Transportation

Engineering
Cost

DCF AND REUSABILITY

- Discounted Cash Flow (DCF) metrics generally work against investments in reusable systems
- Internal Rate of Return (IRR): Present value discount rate at which Net Present Value (NPV) is \$0 = quantitative
- Hurdle Rate: Decisional discount rate (opportunity cost) = qualitative

Assume:

- Time Horizon: 10 yrs
- Years to IOC: 5 years
- Return on Sales (ROS): 25\% and 15\%
- Price = \$80M; Cost $=\$ 60 \mathrm{M}$
- \quad Price = \$80M; Cost $=\mathbf{\$ 6 8 M}$

Is it Worth It? - The Economics of Reusable Space Transportation
IF YOU BUILD IT THEY WILL COME

- Demand - arguably most important variable
- And most debated
- Key considerations regarding demand for space transportation

1. Demand is not monolithic - market segmentation very important

- Users (values), destination, weight, etc.

2. "If you build it . . ." (implicitly at least) assumes new markets/users and/or significant expansion of existing users result from lower prices

- Circular problem: high transportation cost prevents development of new space enterprises, keeps demand lower, transport cost high
- E.g. Bigelow Aerospace
- Low-cost-enabled \equiv the "killer app"
- Nano/cube satellites (?): Exploding demand; over 100 launched in 2014 - See Spaceworks "2014 Nano / Microsatellite Market Assessment"

3. The "Holy Grail": ELASTICITY of DEMAND

Is it Worth It? - The Economics of Reusable Space Transportation

Demand Elasticity

- DEFINITIONS: Elasticity of Demand = \% change in quantity demanded for a given \% change in another variable (e.g. price)
- Typically discussed regarding price; but price is not only application
- Increase in demand given changes in (for instance) availability
- Elasticity is not necessarily constant for the same curve
- Inelastic: \% increase in demand less than \% decrease in (price)
- E.g. cigarettes, gasoline, national security space assets
- Marginal Revenue < \$0
- Elastic: \% increase in demand greater than \% decrease in (price)
- E.g. sports cars, vacations, cubesats (?)
- Marginal Revenue > \$0
- Unitary Elasticity: inflection point between elastic and inelastic
- Marginal Revenue = \$0
- One of most important questions surrounding reusable/expendable decisions is: What is the (price) elasticity of demand for mission segments being served?

Is it Worth It? - The Economics of Reusable Space Transportation

Demand Elasticity

- At some point, "Order of Magnitude" reductions in cost per flight may or may not decrease price per flight
- Even if achievable, economics suggest there is a point at which reductions in price per flight will not increase quantity demanded sufficiently to support reductions.
- i.e. marginal cost > marginal revenue

Demand (Flights) vs. Price

$$
\rightarrow A \backsim B \rightarrow C
$$

Revenue vs. Demand (Flights)

$$
\rightarrow A \leftrightharpoons B \simeq C
$$

Is it Worth It? - The Economics of Reusable Space Transportation

Matter of Degree

- Reusability is not monolithic
- What is reused? How many times is it reused? How is it recovered?
- Rule of thumb: The higher, faster, and farther a rocket stage goes, the more difficult and expensive it becomes to reuse it
- SSTO versus first stage versus multiple stages vs. components
- Most current reusable developments are focused on recovering first stages or parts thereof
- Falcon 9 (SpaceX): first stage powered vertical return (barge/land)
- Reuse engines, first stage avionics, structures \& mechanisms(?)
- SMART (ULA): first stage engine/avionics module only, parachute return, recovered by helicopter
- Adeline (Arianespace/ Airbus-Safran): first stage engines/avionics module only, glideback/propeller-driven, horizontal landing
- (Note - Blue Origin New Shepard and Virgin Spaceship II are sub-orbital)

Is it Worth It? - The Economics of Reusable Space Transportation

Cost of Transportation Systems

- Recurring cost (not price), combined with cost-to-recover is a significant determinate for decisions regarding what to reuse.

Amercas filde to space by iviajor tiements

Is it Worth It? - The Economics of Reusable Space Transportation

HOW MANY?

- Fleet Size: Design Life versus Turnaround Time
- One or the other typically drives fleet size calculations
- Depends upon what customer values - market segment
- E.g. Fixed site versus "portable"; regular tempo versus sortie missions
- "Hull insurance"
- Need to insure high value fixed asset - "fly through failure"
- Experience has been must "self insure": build +1
- Hull insurance (was; is(?)) not available from underwriters
- Other significant considerations - the "sweet spot"
- Maintain production lines
- Technology insertion points
- Obsolescence
- Determination of reusable system fleet size is very important decision
- Reusable vehicle is a fixed asset - needs to be utilized to peak capacity to maximize economics
- Fleet recapitalization
- Attrition rate

Is it Worth It? - The Economics of Reusable Space Transportation

Design Life vs. Turnaround Time

Engineering
Cost Office

- Typically Design Life is determining factor
- Example: DL = 200 flights; TAT = 7 Days; 10 years operations

Is it Worth It? - The Economics of Reusable Space Transportation

Design Life vs. Turnaround Time

- Recovery attrition rate can have significant impact on fleet size requirement
- Same example: Add Recovery Attrition \%
- Assume ascent reliability = 100%

SIZE MATTERS

- Truism: Cost increases as size increases
- Cost vs. mass for launch vehicles increases at increasing rate
- Exponent > 1.00
- Development and production
- Reusability cost penalties as function of size
- Additional subsystems:
- Return (landing): landing gear and wings/tails, parachutes, retrorockets and landing legs, etc.
- Thermal protection: max speed - staging (Mach "?") vs. orbital return (Mach 25)
- Propellant reserve for powered return
- Size is primarily determined by and factors into decisions regarding the other key considerations
- Meeting demand, degree, how many

CONCLUSIONS

- Is Reusability Worth It?

IT DEPENDS!

- Important things to consider:
- Who's doing it and why
- Motives matter - financial, strategic
- Demand for transportation
- Market Segmentation - customer valuations
- Elasticity of Demand - price, other attributes
- Matter of degree
- Degrees and type - payload, stage, SSTO
- How many
- Fleet Size - design life and turnaround time
- Size matters
- Smaller the better

