

TriTech Small Business Development Center Presentations

Authored by:

Laura Fobel, Mark Davis, Janeya Griffin, Jerry Budd, John Del Frate, Hon (Patrick) Chan

Approved TN 37239

NASA STMD 2016

SPACE TECHNOLOGY MISSION DIRECTORATE

Towed Glider Air Launch System

Prepared by: Jerry Budd, Project Manager NASA Armstrong Flight Research Center Edwards, CA

Contact Information: Office Phone: 661-276-3377 Cell Phone: 661-607-1483 Email: jerry.budd@nasa.gov

NASA STMD 2016

TOWED GLIDER LAUNCH PLATFORM

A remotely-piloted glider, towed by a modified business jet, releasing a launch vehicle with payload at 48K', M=0.75, up to a 70^o flight path angle, safely & effectively.

TOWED GLIDER LAUNCH PLATFORM CONOPS

NASA

Why Towed Glider?

- Performance:
 - Pull-up maneuver provides a 30% increase in payload performance to orbit over current air-launch approaches, up to 70% increase over ground launch
- Geometry:
 - Can lift significantly larger payloads to altitude vs modifying a same size, direct carry, "conventional" aircraft for external carriage
- Cost: Less expensive to build, operate, and maintain than developing and building a one-of-a-kind, custom carry aircraft
 - Simple glider, devoid of expensive, complex systems
 - No hydraulics, fuel system, engines, life support, egress systems
 - Leverages the advantages of air-launching
 - No dependence on critical ground based launch facilities/assets
 - Launch operations cost is reduced to 7%-12% of ground launch cost at a "traditional" range
- Safety: Unmanned glider eliminates aircrew concerns for carrying LV
 - · LV doesn't have to be human-rated (blast proximity), nor does the glider
- Technology: No new technologies required, just an integration of existing, already proven technologies

Independent Concept Validation Studies

- NASA contracted with three separate entities in 2012 to study and assess the viability of the Towed Glider Air Launch System Concept
 - Georgia Tech University
 - SAS/Rutan Designs
 - Morgan Aircraft Co.
- All three studies concluded that:
 - The concept is viable;
 - It offers significant improvements in efficiency, performance, and cost, over current state of the art launch methods.

The studies showed the concept is do-able...**next step is the Proof of Concept**

Design Carry Efficiency: 1.85

Towed Glider Technology is Scalable

Glider and Launch Vehicle Size/Weight

Current Risk Reduction Testing - 1/4 Scale Model Glider

NASA funds used to develop a 27' span twin fuselage glider for testing under tow behind a NASA small, unmanned model aircraft

- Glider remotely piloted using a stick and rudder based Ground Control Station with down-linked video and a Heads Up Display
- 1st Flight on October 21st, 2014; subsequent flights focused on general handling qualities evaluations (including stall)
- Future flights planned for
 - Glider rocket motor risk reduction testing
 - Glider aerodynamic characterization
 - Surrogate payload carry and release demonstration

Business Case Differentiators

of Payloads is

multiple, modular

accomplished through

center wing/ fuselages

Rapid Deployment with Cost Savings

Strategically Located Launch Vehicle on an

unmanned glider protects human crew from potential LV safety concerns

Custom-Sized Low-CostScalable Gliders optimizeservice for an array of payloadsizes

- S Reduces launch delays
- \$ Reduces range safety/launch approval & licensing costs
- \$ Avoids costs associated with human rating of launch vehicle
- \$ Reduces overhead costs for smaller payloads

Savings in Time and/or Money versus Traditional Launch

The Towed Glider concept architecture saves time and money

Mobile Range Approach allows for flexibility in launch operations from airfields around the world

NASA STMD 2016

Summary

- **Goal: Enable** Affordable, Resilient, Responsive, Space Access
- **Approach:** Remotely piloted GLIDER carrying a small LV, TOWED by a minimally modified business jet, releasing the LV at the optimal trajectory for launch
- **Program:** NASA provides FTEs, infrastructure, and \$\$; DoD provides procurement \$\$; Industry partners provide towed glider system and small LV's
- **Key:** GLIDER enables small, affordable launch vehicles to reach orbit, reduces launch cost and overhead, yielding highly resilient, agile launch operations

Backup Material

Glider Design Creates Trade Space

Next Generation Air-Launch Design

Towed Glider flexibility ensures design success

Its all about Weight Distribution...

Towing, on the ground, or in the air, is more efficient for moving large, heavy objects

NASA