


<u>Johnson Space Center Engineering Directorate</u> L-8: Enabling Human Spaceflight Exploration Systems & Technology Development

Public Release Notice

This document has been reviewed for technical accuracy, business/management sensitivity, and export control compliance. It is suitable for public release without restrictions per NF1676 #_____. Montgomery Goforth November 2016

NASA's Journey to Mars

www.nasa.gov

HUMAN EXPLORATION NASA's Journey to Mars

National Aeronautics and Space Administration

EARTH INDEPENDENT

MISSION: 2 TO 3 YEARS RETURN TO EARTH: MONTHS

Engineering Priorities

- 1. Enhance ISS:
 Enhanced missions and systems reliability per ISS customer needs
- Accelerate Orion:
 Safe, successful, affordable, and ahead of schedule
- 3. Enable commercial crew success
- Human Spaceflight (HSF) exploration systems development
 - Technology required to enable exploration beyond LEO
 - System and subsystem development for beyond LEO HSF exploration

EARTH RELIANT MISSION: 6 TO 12 MONTHS RETURN TO EARTH: HOURS

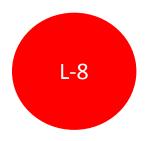
> Mastering fundamentals aboard the International Space Station

U.S. companies provide access to low-Earth orbit Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

PROVING GROUND

MISSION: 1 TO 12 MONTHS RETURN TO EARTH: DAYS

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

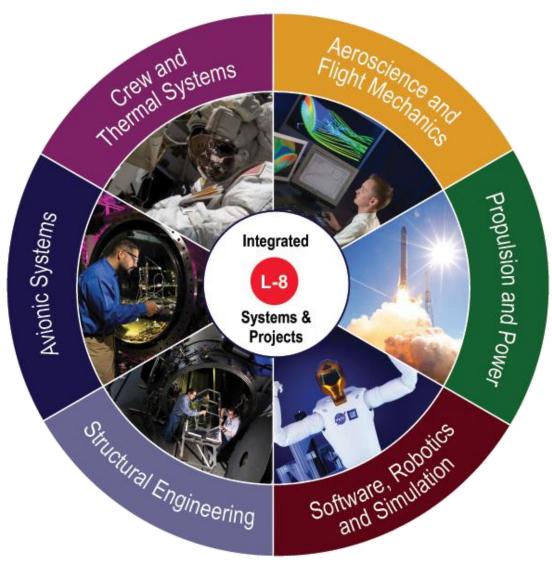

Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov

JSC Engineering's Internal Goal for Exploration

- Priorities are nice, but they are not enough.
- We needed a meaningful goal.
- We needed a deadline.

- Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025
 - Develop and mature the technologies and systems needed
 - Develop and mature the personnel needed



Characterizing L-8

- A program to go to Mars
- Another Technology Road-Mapping effort
- L-8 ls:
 - A way to translate Agency Technology Roadmaps and Architectures/Scenarios into a meaningful path for JSC Engineering to follow.
 - A way of focusing Engineering's efforts and identifying our dependencies
 - A way to ensure Engineering personnel are ready to step up to the plate when the next program is defined
 - A framework supplying rationale for our proposals to obtain funding for technology development
 - An organizing principle for our Domain Implementation Plans

JSC Engineering's Domain Implementation Plan

JSC Engineering: HSF Exploration Systems Development

Robotics -

Thermal Systems Life Support Entry, Descent, & Landing **Active Thermal Control** Autonomous Rendezvous & Docking **EVA** Deep Space GN&C **Habitation Systems** propulsion and Power Avionic Systems Integrated Human System Interfaces Reliable Pyrotechnics -Wireless & Communication Systems Integrated Propulsion, Power, & ISRU _ L-8 Command & Data Handling Energy Storage & Distribution -_ Systems & **Radiation & EEE Parts Breakthrough Power & Propulsion -**_ Projects Structural Engineering Crew Exercise Software, Robotics and Simulation Lightweight Habitable Spacecraft Simulation -Entry, Descent, & Landing Autonomy -Autonomous Rendezvous & Docking Software

AA-2 | iPAS | HESTIA | Morpheus

Vehicle Environments

Avionics Systems Domain Implementation Plan Decomposition Example

Pathstones:

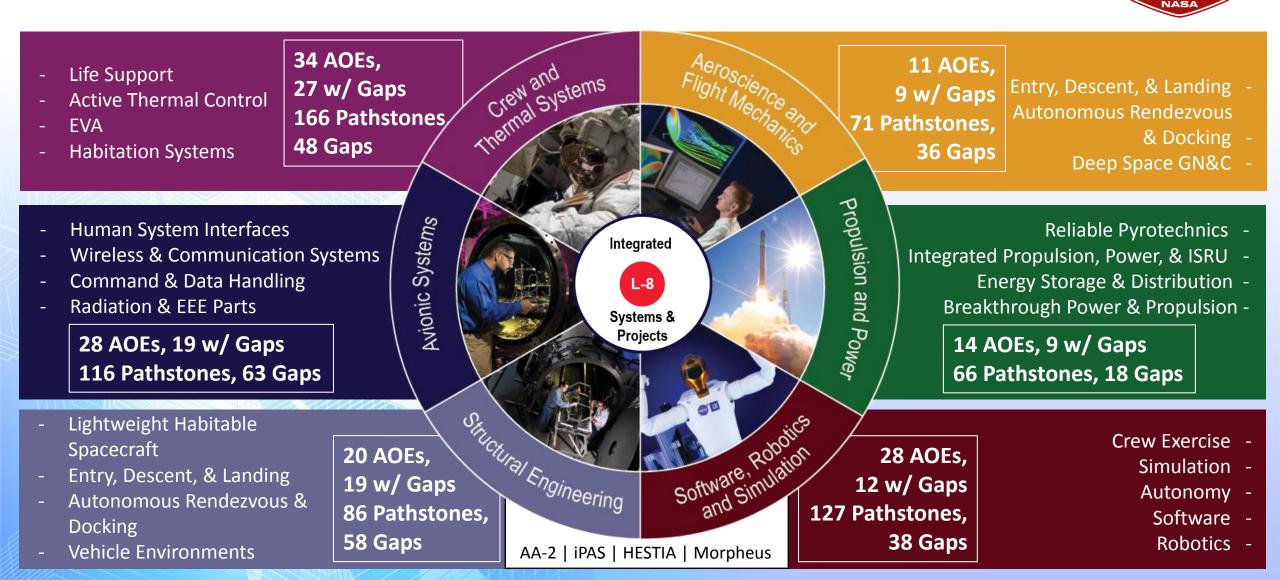
Gap

Gap

Gap

- RF Interrogator development
- Fabric antenna development
- System integration and modularization

Areas of Emphasis (AOEs):


- RFID ALM
- RFID Sensing
- Delay Tolerant Networking (DTN)
- Mesh Networking
- Wireless Development Flight Instrumentation
- Proximity Communications
- Reconfigurable/Software defined radio
- Innovations for C&T testing and validation
- Innovative applications of RF technology
- Proximity antenna technologies
- Optical Communication

A SpaceCom 2016 Collaboration Opportunity "L-8: RFID technology and sensor interrogators for wireless sensing/telemetry "

– Ray Wagner

EA Domain Implementation Plan Overview

JSC Engineering: HSF Exploration Systems Development

FY 2016 IRAD Investments Tied to L-8

JSC Engineering: HSF Exploration Systems Development

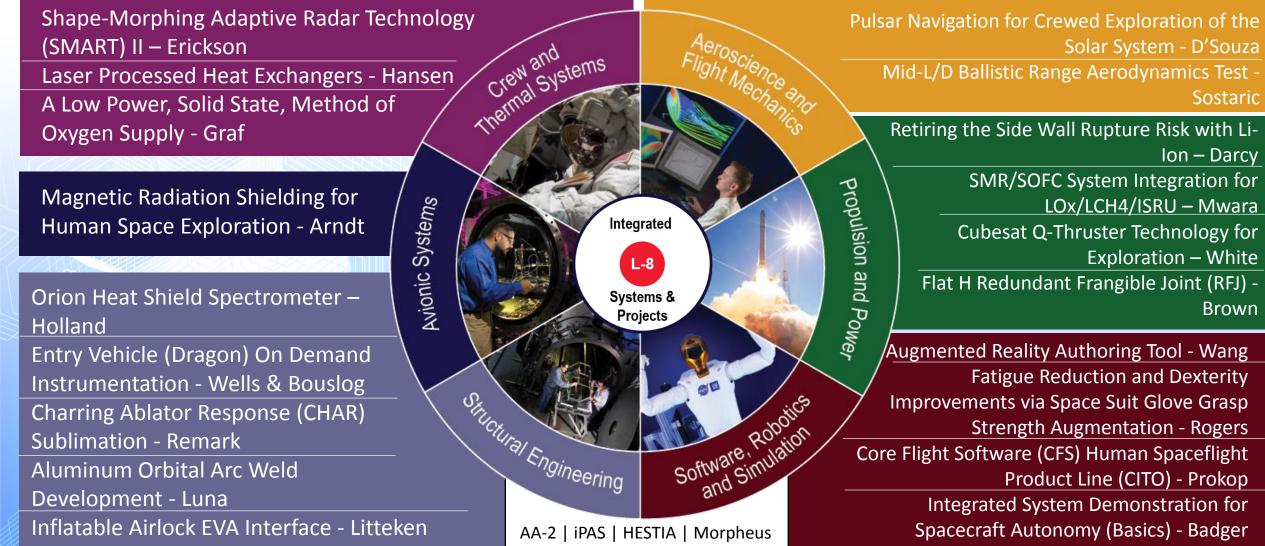
Parachute Canopy Instrumentation Package - Alshahin Orion Avcoat Material Heat Shield Flight Test - Salazar Shape-Morphing Adaptive Radar Technology Thermal Systems Crew and Visual Odometry for Autonomous (SMART) – L. Erickson **Deep-Space Navigation – Robinson** ISS Capillary Development (CapDev) Advanced Analytic Tools & Test Bed - Sargusingh Capabilities for Aerosciences – Kirk Mid L/D Mars EDL Pathfinder – Campbell propulsion and Power Integrated Lox/LCH4: A Unifying Technology for Avionic Systems The Modular Wearable Architecture: Integrated Future Exploration (Phase II Work) – B. Banker Lowering the Human-System Barrier Solid State Thermionics Power – J. George L-8 – Simon **Regenerative Gas Dryer for Integrates ISRU** Software Graphics Processing Unit Systems – A. Paz Systems & LOX/LCH4 Propulsion Test in Space Projects (sGPU): Solving the Visual Display Environment – Morehead Problem for BEO Missions – McCabe **Q-Thruster Work** Structural Engineering Software, Robotics and Simulation Novel Passive Thermal Management

AA-2 | iPAS | HESTIA | Morpheus

Systems for Future Human Exploration

Demonstration – Alvarez-Hernandez

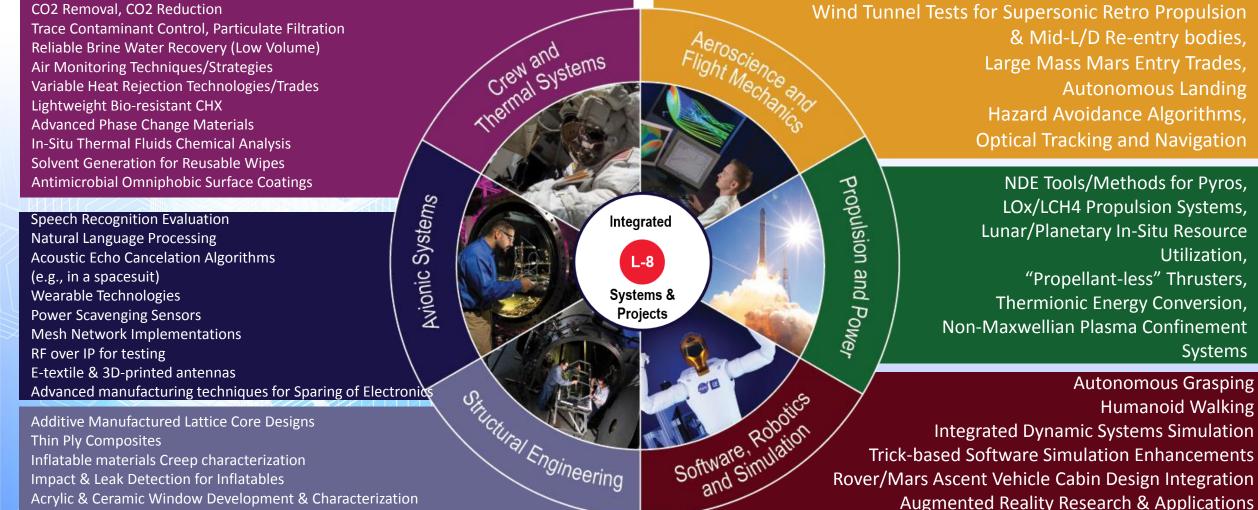
Novel Passive Thermal Technology In-Flight


– Alvarez-Hernandez

MED-2 Exercise Device Operations – Zumbado CFS: Human Spaceflight Product Line – Prokop HESTIA Sim Support – Bielski

FY 2017 IRAD Investments Tied to L-8

JSC Engineering: HSF Exploration Systems Development



Potential Collaborations with Academia

JSC Engineering: HSF Exploration Systems Development

Acrylic & Ceramic Window Development & Characterization Integrated Thermoelastic Design/Analysis Methods for Heatshields

Autonomy Tools (Robotics Planning, Flight Director In a Box)

Augmented Reality Research & Applications

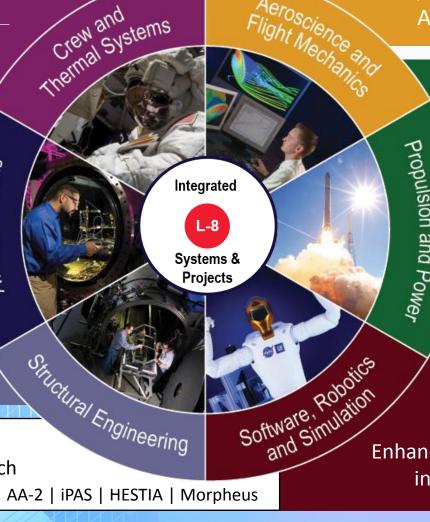
SpaceCom 2016: NASA Challenges & Solutions Pavilion

JSC Engineering: HSF Exploration Systems Development

propulsion

n and Power

Advanced Concepts for O2 Concentration and storage – Graf Space Environments Test Capability / James Webb Space Telescope (JWST) – Holman


Non-Venting Thermal Control Systems/ for Space Vehicles – Smith & Massina/ Systems

RFID technology and sensor interrogators to develop low cost sensor suites - Wagner

Docking Systems and other Attachment/Release mechanisms and related technologies – Lewis

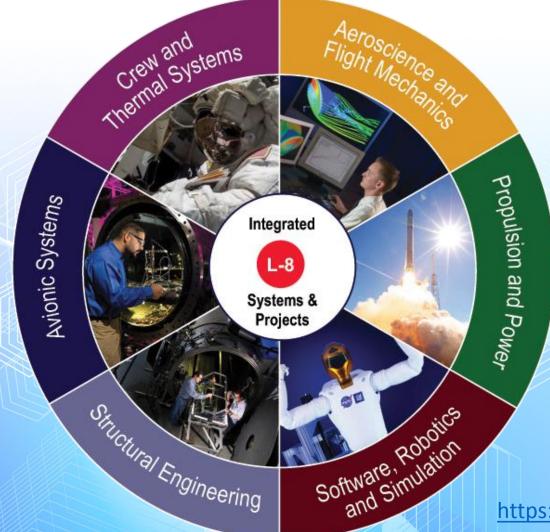
Modeling the integration of hardware and software systems of spacecraft using tools such as SysML - Carrejo

Avionic

Entry Descent and Landing at Mars - Sostaric Autonomous Mission Planning – Condon

> In Situ Resource Utilization (ISRU) Capabilities – Sanders NDE Methods for Ultimately Reliable Pyrotechnics – Scott & Hinkel Safe Li-Ion batteries – Darcy & Scott

Spacecraft Autonomy – Badger Advanced Vehicle Mobility – Junkin **Optimizing Virtual Reality and Tracking** Systems for Zero-G Space Environments -Paddock


Using Human-Machine Interactions to Enhance Astronaut Performance and Adaptation in Reduced Gravity Environments - Burkhart

- Our L-8 efforts have identified a lot of problems to be solved before we can go to Mars, and we need partnerships to help solve them.
- Partnerships with NASA JSC can take many forms:
 - Similar Problems, Different Capabilities → Technology Collaboration → Solution
 - Partner Technology → NASA Evaluation/Test → Increased Knowledge
 - Partner Need → NASA-unique technology/capability/facility → Desired Results
 - NASA Technology \rightarrow Partner adapts to terrestrial need \rightarrow NASA harvests improvements
 - Partner Technology → NASA Adapts to Spaceflight Needs → Partner harvests improvements

JSC Engineering: HSF Exploration Systems Development

- We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030s.
- Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025
- We have a number of specific partnership opportunities we're discussing at SpaceCom 2016.
- If you're interested in one of these, or you have other ideas, let us know at:

