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Abstract 

The effective-medium approximation (EMA) is based on the assumption that a heterogeneous 

particle can have a homogeneous counterpart possessing similar scattering and absorption 

properties. We analyze the numerical accuracy of the EMA by comparing superposition T-

matrix computations for spherical aerosol particles filled with numerous randomly distributed 

small inclusions and Lorenz–Mie computations based on the Maxwell-Garnett mixing rule. 

We verify numerically that the EMA can indeed be realized for inclusion size parameters 

smaller than a threshold value. The threshold size parameter depends on the refractive-index 

contrast between the host and inclusion materials and quite often does not exceed several 

tenths, especially in calculations of the scattering matrix and the absorption cross section. As 

the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the 

EMA start to grow with increasing the host size parameter and/or the number of inclusions. 

We confirm, in particular, the existence of the effective-medium regime in the important case 

of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index 

contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the 

highly restricted conditions of applicability of the EMA, our results provide further evidence 

that the effective-medium regime must be a direct corollary of the macroscopic Maxwell 

equations under specific assumptions.  
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1.  Introduction 

Owing to its unparalleled simplicity, the effective-medium approximation (EMA) has 

been widely used to model complex heterogeneous substances as being homogeneous and 

having a refractive index computed with one of the phenomenological mixing rules such as 

the Lorentz–Lorenz, Bruggeman, and Maxwell-Garnett formulas [1,2]. Applications of 

various mixing rules in remote sensing, atmospheric radiation, and climate modeling research 

have been so ubiquitous that it would hardly be possible to assemble a representative list of 

relevant publications as it would contain hundreds of entries.  

The use of the EMA appears to be unavoidable in many cases given the extreme 

morphological complexity of the vast majority of aerosol particles (e.g., [3–12]). The main 

cause of this situation is the limited applicability of direct computer solvers of the Maxwell 

equations to representative ensembles of heterogeneous particles. It should be kept in mind 

however that, in the words of Chýlek et al. [2], mixing rules have always been heuristic 

shortcuts not derived explicitly from the Maxwell equations. As a consequence, the accuracy 

of such ad hoc effective refractive indices (ERIs) and the precise conditions for their 

permissible use have often been difficult to assess. 

Despite the obvious shortcomings of the EMA, its applications in remote sensing and 

climate research can be expected to be as widespread in the future as they have been in the 

past. For example, the use of the concept of an ERI has been and is expected to remain 

implicit in virtually all computations of electromagnetic scattering by dust-like aerosols since 

it has become the norm to ignore the internal heterogeneity of such particles. Therefore, the 

failure of this concept in application to dust-like aerosols may create an extremely 

problematic situation. This makes it imperative to perform an in-depth analysis of the range 

and conditions of practical applicability of the EMA. 
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This analysis has been initiated in several recent publications [13–18] by taking 

advantage of the latest improvements in first-principle modeling methodologies [19]. The 

overall outcome of these studies can hardly be characterized as optimistic. It should be 

recognized however that some of these initial results are based on a few rather artificial 

models of heterogeneous aerosols that do not necessarily offer the EMA a “fair chance”. 

Indeed, it is well known that the concept of bulk refractive index is a byproduct of deriving 

the macroscopic Maxwell equations from the microscopic Maxwell–Lorentz equations 

dealing with discrete elementary charges [20–30]. The main assumption in this derivation is 

that the microscopic electromagnetic field can be meaningfully homogenized over “physically 

infinitesimal” volume elements that are much smaller than the wavelength and yet contain 

vast numbers of molecules. It is obvious that the extrapolation of this approach to the case of 

a macroscopically heterogeneous material must also be based on the assumption that 

inclusions are quasi-uniformly distributed throughout the host medium, are sufficiently small, 

and are present in large numbers. Only then can one hope that the concept of the ERI might 

work. 

We have already mentioned that a direct analytical derivation of the EMA from the 

Maxwell equations is still absent. However, the actual existence of the effective-medium 

regime has been demonstrated numerically by comparing Lorenz–Mie results for a 

homogeneous spherical particle with those obtained by applying the superposition T-matrix 

solver of the Maxwell equations to a spherical particle filled randomly with a large number of 

very small spherical inclusions [31]. The refractive indices of the host and of the inclusions 

were 1.33 and 1.55, respectively. The possibility to identify an ERI enabling the Lorenz–Mie 

theory to reproduce even the finest details of the angular profile of the scattering matrix 

demonstrated convincingly that the effective-medium concept must have physical validity. Yet 

the practical range of this validity may not necessarily be wide and may exclude many actual 

types of heterogeneous atmospheric particulates. 

Given the great importance of mineral-dust aerosols in atmospheric radiative-transfer 

modeling and remote sensing, the main objective of this paper is to extend the analysis of [31] 

and demonstrate numerically the fundamental existence of the effective-medium regime in the 

case of two types of inclusions representing the largest refractive-index contrast with the 

mineral host, i.e., air bubbles and absorbing hematite grains. Furthermore, we trace and 

analyze the accumulation of errors of the EMA as the ideal conditions of the ERI regime are 
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increasingly violated. A useful intermediate aspect of our study is a general analysis of the 

accuracy of the EMA as a function of the inclusion size parameter and of the refractive-index 

contrast between the host particle and the inclusions.               

 

2.  Modeling methodology 

The gist of the EMA is illustrated in Fig. 1 wherein a particle randomly filled with 

numerous, quasi-uniformly distributed small inclusions is replaced by a homogeneous object 

of the same overall shape but with an artificial (effective) refractive index coinciding neither 

with that of the host nor with that of the inclusions. Given its artificial nature, the ERI carries 

no independent physical content and is useful only to the extent to which it can simplify the 

computation of relevant optical observables. In the case of atmospheric radiative-transfer and 

remote-sensing research, all such observables can, in the final analysis, be expressed in terms 

of the elements of the real-valued 44   so-called phase and extinction matrices )ˆ,ˆ( incsca
nnZ  

and )ˆ( inc
nK  [32,33]. These matrices provide a self-contained description of electromagtnetic 

scattering in the far zone of a finite object illuminated by a plane electromagnetic wave 

incident in the direction of the unit vector ,ˆ inc
n  the unit vector sca

n̂  specifying the scattering 

direction. The computation of these matrices and/or appropriate derivative quantities using 

various mixing rules and a direct computer solver of the Maxwell equations thus serves as a 

suitable means of evaluating the accuracy of the EMA.    

In many cases aerosol particles have nonspherical outer boundaries in addition to 

being internally heterogeneous. In principle, realistic computations of electromagnetic 

scattering by such aerosols should be based on particle models incorporating both 

morphological features. It should be kept in mind however that the effects of nonsphericity 

and internal heterogeneity on the phase and extinction matrices can be similar, thereby 

making it problematic to evaluate unequivocally the actual performance of a mixing rule 

intended to simulate only the effects of internal heterogeneity. To circumvent this problem, 

we will model atmospheric aerosols as particles with spherical overall shapes (see the upper 

panel of Fig. 1). An added benefit of this approach is the possibility to use the highly efficient 

and accurate superposition T-matrix method (STMM) with its quasi-analytical orientation-

averaging procedure [34,35].  

By its very nature, the EMA is intended to reproduce the scattering and absorption 
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properties of particles with heterogeneous yet statistically uniform interiors [1,2]. We 

simulate the statistical randomness and quasi-uniformity of a heterogeneous particle’s interior 

in two steps. First, we use a random-number generator to create a fixed yet quasi-random 

configuration of a large number N of inclusions, while making sure that the volumes of the 

inclusions do not overlap and do not cross the particle’s outer boundary. Second, we average 

the relevant far-field optical observables over the equiprobable orientation distribution of the 

resulting discretely heterogeneous object using the STMM code described by Mackowski 

[35]. In principle, this procedure should be repeated a number of times for different randomly 

generated configurations of the N inclusions, and the resulting optical observables should be 

configuration-averaged. However, several control tests have shown that averaging over 

different configurations of inclusions is not essential since the final result is virtually 

indistinguishable from that obtained by using only one randomly generated configuration.   

Quite a number of mixing rules have been proposed over the years, as summarized by 

Sihvola [1] and Chýlek et al. [2]. Evaluating all of them one-by-one can be exceedingly 

laborious, but is hardly needed. Indeed, we have verified that in all specific cases considered 

below, the popular Maxwell-Garnett (MG) and Bruggemann mixing rules yield very close (if 

not nearly identical) ERIs. Therefore, all our results and conclusions apply equally to both 

mixing rules. Furthermore, our previous studies [31,36] as well as extensive additional tests 

(not shown) have demonstrated that if the STMM result for a heterogeneous particle can be 

accurately reproduced by a Lorenz–Mie computation then the resulting best-fit ERI is likely 

to be very close to the MG ERI. Based on this evidence, we will narrow the scope of our 

study by evaluating the performance of only the MG mixing rule.     

In this paper we will analyze only light scattering by randomly oriented particles, 

which makes it a convenient simplification to assume that inc
n̂  points in the positive direction 

of the z-axis of the laboratory spherical coordinate system. The scattering geometry can thus 

be summarized by Fig. 2. It is worth reminding that the introduction of the far-field phase and 

extinction matrices is based on the assumption that the Stokes parameters of the incident 

plane wave and the outgoing spherical scattered wave are defined with respect to the 

corresponding meridional planes containing the vectors inc
n̂  and sca

n̂  as well as the z-axis. 

Since inc
n̂  is parallel to the z-axis, there is no implicit meridional plane of the incident light. 

Therefore, this plane must be prescribed explicitly. 

For demonstration purposes, we define the 44   dimensionless scattering matrix 
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where ],0[    is the polar angle of a propagation direction, )2,0[    is the 

corresponding azimuth angle, and   is the scattering angle; the average is taken over the 

equiprobable distribution of orientations   of a heterogeneous particle; and the 

normalization constant scaC  is given by 
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Note that the uniform orientation distribution renders F
~

 independent of ,sca  while scaC  

represents the orientation-averaged scattering cross section for the particular case of 

unpolarized incident light [32,33]. The )1,1(  element of the scattering matrix )(
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(traditionally called the phase function) is normalized according to 

.1)(
~

sind
2

1

0
11 



 F          (3) 

A frequently used far-field scattering characteristic is the so-called asymmetry parameter 

defined as 

.cos)(
~

sind
2

1

0
11



 Fg         (4) 

Owing to the uniform orientation distribution, the dimensionless scattering matrix (1) 

has the following well-known symmetric structure [32,37]: 
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Numerous STMM computations for heterogeneous spherical particles with multiple quasi-

randomly distributed inclusions have demonstrated that the elements populating the upper 

right and lower left 22   blocks of this matrix are negligibly small (in the absolute-value 

sense) compared to the other elements. This is an expected result of averaging over the 
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equiprobable orientation distribution of an inhomogeneous particle coupled with quasi-

randomness of the initial inclusion positions throughout the particle volume. Thus the 

scattering matrix can be considered to have the following typical block-diagonal structure: 
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A fundamental property of the Lorenz–Mie (LM) scattering matrix is the identity [37] 
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11
LM

22  FF            (7) 

This implies that if the boundary of a host particle is perfectly spherical then the EMA yields 

this identity precisely, irrespective of the actual particle interior. Therefore, a deviation of the 

ratio )(
~

)(
~

1122  FF  for a heterogeneous spherical object from 100% serves as the most 

direct and unequivocal indicator of the numerical failure of the EMA [13,31]. 

 The extinction matrix also becomes simpler upon averaging over the equiprobable 

orientation distribution of a heterogeneous particle. Specifically, it becomes independent of 

inc
n̂  and has the following symmetric form [33]: 
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Furthermore, the off-diagonal elements become negligibly small in comparison to the 

diagonal ones, so that the extinction matrix can be considered to be diagonal and given by 
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where extC  is the orientation-averaged extinction cross section. 
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3. Accuracy of the EMA as a function of the inclusion size parameter and relative 

refractive index  

By analogy with the well-known Rayleigh approximation [37], we can expect that the 

accuracy of the EMA must depend strongly on the size parameter of the inclusions and their 

refractive index relative to that of the host particle. To demonstrate the effect of the refractive-

index contrast, in Fig. 3 we depict three errors of the MG mixing rule defined according to 
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These errors were calculated assuming the following fixed values of the heterogeneous-

particle characteristics: the host size parameter ,102  RX  where R is the host-particle 

radius and   is the wavelength of the incident light; the host refractive index mhost = 1.32; the 

inclusion size parameter ,3.02  rx  where r is the inclusion radius; and the number of 

inclusions N = 8000. The resulting volume fraction of the inclusions is 21.6%. The only 

variable characteristic was the inclusion refractive index mincl which ranged from 1.4 to 2 

while remaining real-valued. Table 1 lists the corresponding extinction and asymmetry-

parameter errors defined by 

%,100
MG
ext

STMM
ext

MG
ext

ext 



C

CC
C         (13) 

 %,100
MG

STMMMG





g

gg
g         (14) 

while panels a–g of Fig. 4 depict the corresponding angular profiles of the ratio 

.)(
~

)(
~ STMM

11
STMM

22  FF  Note that since the refractive indices of both the host and the 

inclusions are real-valued, the scattering cross section coincides with the extinction cross 

section: .extsca CC     

 Figure 3 demonstrates that if the refractive index of the host-particle material and that 
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of the inclusions are very close (1.32 and 1.4, respectively) then all three errors are negligibly 

small. As expected, the errors grow with increasing refractive-index contrast between the host 

and the inclusions. This growth is not always monotonous at all scattering angles, yet by the 

time the refractive index of the inclusions reaches the value 2, all three errors exhibit values 

that can be considered unacceptable in many applications. Importantly, this happens despite 

the very small size parameter of the inclusions. The deviation of the ratio 

)(
~

)(
~ STMM

11
STMM

22  FF  from 100% in Figs. 4a–g also increases with increasing refractive-

index contrast and reaches 10% for mincl = 2. Again, this is a qualitatively expected result.   

 The results shown in Table 1 reveal that the extinction and asymmetry-parameter 

errors of the MG mixing rule are substantially smaller than the scattering-matrix errors. They 

do seem to increase with mincl, but remain sufficiently small for most typical applications. 

 Panels h–l of Fig. 4 reveal other interesting traits of the ratio )(
~

)(
~ STMM

11
STMM

22  FF  

which suggest that the errors of the MG mixing rule can depend in a rather convoluted way on 

the inclusion number, size parameter, and refractive-index contrast. First, Fig. 4h pertains to 

the case of N = 8000 air-bubble inclusions with mincl = 1 and x = 0.3. The corresponding 

refractive-index contrast is similar to that in the case of mincl = 1.75. However, comparison of 

Fig. 4h with Figs. 4d,e shows significantly smaller deviations of the ratio 

)(
~

)(
~ STMM

11
STMM

22  FF  from 100% in the former case. The cause of this disparity is not 

immediately obvious to us. 

 Second, comparison of panels g, i, and j of Fig. 4 shows that in the high-contrast case 

of mincl = 2, the performance of the MG mixing rule deteriorates rather strongly as the number 

of inclusions increases. Interestingly, this deterioration is virtually absent in the low-contrast 

case of mincl = 1.4 (not shown).  

 Third, comparison of Figs. 4a and 4k as well as of Figs. 4j and 4l shows that 

decreasing the inclusion size parameter while keeping their volume fraction fixed can result in 

a significant (if not dramatic) reduction of errors of the MG mixing rule. The same conclusion 

follows from comparing the first and last entries of Table 1.            

        

4. Dust-like aerosols with hematite and air-bubble inclusions 

Following Kahnert [16], we use mhost = 1.6 as the generic refractive index of the dust-
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particle host material. According to Table 1 of Lindqvist et al. [38], the refractive indices of 

the majority of materials encountered in dust aerosols are within several hundredths of the 

generic value and thus represent the case of low refractive-index contrast. Major exceptions 

are the cases of hematite (mincl = 3.102 + i0.0925) and air-bubble (mincl = 1) inclusions which 

require a special consideration.  

As before, we assume that a spherical dust particle is filled with identical spherical 

inclusions. The size parameter of the spherical host is fixed at either X = 4 or 8, while the 

number N of inclusions varies with the inclusion size parameter x such that the cumulative 

volume fraction of the inclusions remains fixed at 2%. According to Lindqvist et al. [38], the 

2% volume fraction is typical of the hematite content in dust aerosols. Table 2 along with 

Figs. 5 and 6 summarize the results of computations for dust particles with hematite 

inclusions, while Table 3 along with Figs. 7 and 8 summarize those for dust particles with air-

bubble inclusions. The corresponding MG refractive indices are 1.6231 + i0.977910
–3 

and 

1.5878. Note that the errors ,scaC  ,absC  and   are defined by analogy with Eqs. (13) and 

(14): 

%,100
MG
sca

STMM
sca

MG
sca

sca 
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CC
C         (15) 
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STMM
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MG
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         (17) 

where 

 0scaextabs  CCC          (18) 

is the (non-negative) absorption cross section and 

 1
ext

sca


C

C
           (19) 

is the single-scattering albedo. Obviously, it is the presence of absorbing hematite inclusions 

that causes the inequalities 0abs C  and .1  

The most profound outcome of these computations is the quantitative demonstration 
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of the existence of the effective-medium regime for dust aerosols filled with hematite or air-

bubble inclusions. Indeed, the red curves in Figs. 5–8 essentially occult the black curves 

depicting the corresponding MG results and thereby reproduce even the finest angular 

features of the MG scattering matrix. This implies that the inclusion size parameters x = 0.1 

for hematite and 0.15 for air bubbles are definitely within the EMA domain.  

However, the inclusion size parameter x = 0.5 is already outside the EMA domain. 

Indeed, the phase-function errors of the MG mixing rule can now exceed a factor of three, 

while the ratio )(
~

)(
~ STMM

11
STMM

22  FF  can be as low as 70%. Furthermore, the errors of the 

MG mixing rule now strongly depend on the host size parameter and can thus be expected to 

be significantly larger for dust particles with size parameters greater than 8. It appears that 

increasing x (while keeping the volume fraction of the inclusions constant) serves to decrease 

the extreme oscillations in the ratios )(
~

)(
~ STMM

11
STMM  FFij  other than 

)(
~

)(
~ STMM

11
STMM

22  FF  and to enhance the phase function at scattering angles between 80° 

and 160°. Furthermore, such effects of increasing heterogeneity as the side-scattering 

enhancement of the phase function and the growing deviation of the ratio 

)(
~

)(
~ STMM

11
STMM

22  FF  from 100% appear to be sufficiently general to survive averaging 

over a polydispersion of aerosol sizes.    

Table 2 also reveals a significant growth of errors of the MG mixing rules by the time 

the inclusion size parameter reaches the value x = 0.5 (the only exception is the error g  

which remains small in the case of X = 8). Especially dramatic is the escalation of the error in 

the absorption cross section, .absC  Interestingly, the MG mixing rule predicts absorption 

cross sections smaller than the exact STMM values. This trend is opposite to that observed for 

X = 40 water droplets contaminated by x = 1 soot inclusions [14].       

    

5. Conclusions 

Our analysis of the EMA differs from that by Liu et al. [15], Kahnert [16], and Videen 

et al. [27] who evaluated the numerical accuracy of mixing rules in cases selected on an ad 

hoc basis. Indeed, we first looked for the very existence of the effective medium regime under 

suitable conditions and then analyzed the result of an increasing violation of these conditions. 

In this way we have been able to confirm numerically that the EMA can indeed be realized in 
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the limit of a very small inclusion size parameter and a very low refractive-index contrast 

between the host and the inclusions. As these ideal conditions are increasingly violated, the 

accuracy of the EMA progressively deteriorates and eventually becomes inadequate.  

In particular, we have been able to establish the existence of the effective-medium 

regime in the practically important cases of dust particles with hematite and air-bubble 

inclusions. The large refractive-index contrast between the host and inclusion materials in 

these cases necessitates extremely small inclusion size parameters for the EMA to work. We 

have not discussed specifically whether such small inclusions are indeed typical of real dust 

aerosols, but this issue should urgently be studied using modern laboratory instrumentation 

(cf. [12]). Obviously, finding that the actual size parameters of hematite and air-bubble 

inclusions in the near-UV, visible, and near-IR spectral ranges are substantially greater than a 

few tenths would cause a major modeling problem. 

The results of Liu et al. [15] imply, qualitatively, that only in extremely well-mixed 

cases down to an inhomogeneity scale of 4.0x  can the EMA be reliable, whereas the 

applicability of the EMA to cases of stratified or weak mixing is very limited (if not, in fact, 

fortuitous). Our results show that depending on the refractive-index contrast, the maximal 

allowable size parameter of the inclusions can be even smaller, especially in calculations of 

the scattering matrix and the absorption cross section. Furthermore, as the inclusion size 

parameter increases and approaches the threshold value, the scattering-matrix errors of the 

EMA start to grow with increasing the host size parameter and/or the number of the 

inclusions. This is another factor that must be taken into account in deciding whether to even 

attempt the use of a mixing rule. 

Irrespective of the highly restricted conditions of applicability of the EMA, our 

numerically exact computer results provide further evidence that the effective-medium regime 

does exist, and this existence must follow from the fundamental laws of classical 

electromagnetics under quite specific assumptions. We hope that this additional evidence will 

stimulate attempts to derive the EMA as a direct corollary of the macroscopic Maxwell 

equations. This derivation can be expected to clarify the physical nature of the EMA as well 

as explain why its range of applicability appears to be so limited. 
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Table 1. Percent errors of the Maxwell-Garnett mixing rule. 

mincl x N Cext (%) g (%) 

1.4 0.3 8000 0.33 0.29 

1.5 0.3 8000 0.67 0.40 

1.6 0.3 8000 0.84 0.05 

1.7 0.3 8000 0.57 –0.91 

1.8 0.3 8000 –0.58 –1.63 

1.9 0.3 8000 –2.34 –0.39 

2 0.3 8000 –3.20 –0.91 

1.4 0.6 1000 –5.96 –2.73 

 

 

Table 2. Percent errors of the Maxwell-Garnett mixing rule in the case of dust aerosols with 

hematite inclusions. 

X x N Cext (%) Csca (%) Cabs (%) ϖ ϖ (%) g (%) 

4 0.1 1280 0.45 0.49 –5.14 0.9933 0.036 0.441 

4 0.2 160 0.49 0.58 –14.49 0.9927 0.097 0.521 

4 0.3 47 1.45 1.63 –25.33 0.9919 0.175 1.787 

4 0.5 10 5.71 6.21 –72.15 0.9883 0.531 6.052 

8 0.1 10240 0.05 0.12 –4.15 0.9842 0.065 –0.302 

8 0.2 1280 0.09 0.30 –13.43 0.9827 0.209 –0.680 

8 0.3 379 –0.19 0.22 –26.85 0.9808 0.411 –0.469 

8 0.5 82 0.53 1.64 –71.62 0.9738 1.120 0.092 
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Table 3. Percent errors of the Maxwell-Garnett mixing  

rule in the case of dust aerosols with air-bubble inclusions. 

X x N Cext (%) g (%) 

4 0.15 380 –0.10 –0.06 

4 0.2 160 –0.53 –0.29 

4 0.3 47 –0.42 –0.09 

4 0.5 10 –0.24 0.52 

4 1.09 1 0.34 1.11 

8 0.15 3035 0.08 0.05 

8 0.2 1280 –0.08 0.00 

8 0.3 380 0.16 0.43 

8 0.5 82 –0.52 0.54 

8 1 11 –0.28 1.34 
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Figure 1. The essence of the effective-medium approximation. 
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Figure 2. Scattering geometry. 
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Figure 3. Percent errors of the Maxwell-Garnett mixing rule. 
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Figure 4. The ratio )(
~

)(
~

1122  FF  (in percent) for different models of a heterogeneous 

spherical particle.  
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Figure 5. Elements of the dimensionless scattering matrix for X = 4 spherical dust particles 

filled with identical spherical hematite inclusions. 
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Figure 6. Elements of the dimensionless scattering matrix for X = 8 spherical dust particles 

filled with identical spherical hematite inclusions. 
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Figure 7. Elements of the dimensionless scattering matrix for X = 4 spherical dust particles 

filled with identical air-bubble inclusions. 
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Figure 8. Elements of the dimensionless scattering matrix for X = 8 spherical dust particles 

filled with identical air-bubble inclusions. 
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Highlights 

 

 Effective-medium regime can be realized for small inclusion size parameters. 

 Threshold inclusion size parameter depends on the host and inclusion refractive 

indices. 

 Effective-medium regime is confirmed for dust aerosols with hematite or air-

bubble inclusions. 

 Effective-medium regime must follow from the Maxwell equations under 

specific assumptions. 

 




