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Background

• Developing a spectral-element DG capability for separated 
flows over the past few years 
• Led by investment from TTT/RCA 
• Diosady & Murman AIAA 2013-2870, 2014-2784, 2015-0294 

• Effort has grown recently w/ collaboration from other projects 
• Desired synergy between R&D and engineering 

• Opportunity to share broader vision of effort & fill in technical 
gaps for AIAA audience
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Context

• No single optimal algorithm/method/solver 
• Pareto front of optimal choices 

• Different groups prioritize differently 
• Our priorities are derived from the needs of numerous projects 
within NASA - ARMD, HEOMD, STMD - and industrial 
partners 

• Current NASA technology based primarily on RANS/DES 
• Works well for many engineering tasks 

• Supplement existing capability w/ scale-resolving methods
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Target Applications
• Complex geometry - unstructured mesh 
• Complex physics - scale-resolving methods 
• High-Re, combustion, chemistry - fully implicit methods 
• Computational intensive - high-order, adaptive methods 
• Multi-disciplinary, multi-physics - robust, extensible methods
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Approach
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• DG spectral-element formulation 
• Unstructured arbitrary order 
• Variational Multiscale Method (VMM) for scale-resolving 

• Fully implicit space-time 
• Entropy-stable, consistent all-speed scheme 
• h-p adaptation in space and time 

• Galerkin formulation 
• Demonstrated success for relevant applications
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Approach

• Three main thrusts 
• New algorithms and methods 
• Optimized for next-gen exascale hardware 
• Novel physical models 

• Informally known as the eddy solver 
• Currently lower TRL than production methods
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Turbomachinery Benchmarks

• Developed PML approach for non-reflective BC 
• Garai et al. AIAA 2016-1338 

• Developed physics-based approach for freestream turbulence 
• Garai et al., ASME GT2015-42773, GT2016-56700
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What is high-order?

• We want to approach spectral limit in space and time  
• Leads to efficiency gains and improved physical models 
• Better match for current/future hardware 

• Less data movement, more flops for the same level of accuracy
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• Current algorithms achieve < 5% of machine peak 
• Spectral elements a good match for current & future hardware
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Hardware-optimized Kernels
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• Tensor-product sum-factorization linear algebra kernels 
• Benchmark represents ~20% of code
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Hardware-optimized Kernels
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• Exploit multiple levels of parallelism 
• Parallel in space across nodes (MPI) 
• Parallel in time within node (OpenMP) 
• Parallel within loops on chip (SIMD vectorization)
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Scale-resolving Models

• Improved numerics changes how we do CFD 
• Efficiency, automation, error estimates 

• Consistent predictive models would change how we use CFD 
• Certification through simulation 

• Need to prioritize new modeling approaches 
• Tighter coupling of numerics and modeling 

• Current work is not a DG solver development it is a framework 
for examining scale-resolving models and methods
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Variational Multiscale Method

• Explicit separation of scales (Hughes et al., 1998, Collis, 2001) 
• Filtering is variational projection operator 
• Assume unresolved scales only interact w/ finest resolved scales  
• Extended VMM to dynamic procedure, varying coefficient in 
space & time 
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Dynamic Modeling
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• Dynamic (parameter-free) models are a necessity for complex 
flows 
• Automatically adjust to physics, numerics 
• CS = 0.18 for HIT, CS = 0.065 for shear flow - 10x change in eddy 
viscosity 

• Successful approaches have been built upon strong physical 
understanding 
• Scale similarity, homogeneity, local isotropy, near-wall asymptotics 

• New approaches need to leverage these lessons learned
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• Variational Leonard stresses 
• Requires high-order (N ≥ 4)

Dynamic VMM Model
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• Using state as test function gives variational analogue to 
Germano procedure 

• Can also provide analogue to Lilly’s least-square 
• Entropy-stable compressible formulation in full paper
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• Practical simulations never have sufficient resolution 
• Examine behavior on realistic coarse mesh 

• Re𝜏 = 544 
• 4th-order in time, 8th-order in space 
• ∆t+ = 1, ∆x+ = 100, ∆y+ = 1, ∆z+ = 50

• Previous work demonstrates 
dynamic model converges to DNS 
w/ sufficient resolution 
(consistency)

Channel Flow
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• VMM w/ fixed coefficient degrades performance

Channel Flow
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• ILES always resolves lower Re 
• Dynamic approach resolves inertial range uses model for 
dissipation scales 

• Requires non-dissipative scheme (e.g. skew symmetry) 
• Entropy-stable schemes inherently dissipative 
• Completely remove numerical dissipation as first test

Idealized Behavior
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• Dynamic procedure least sensitive to current mesh resolution 
• Examine trends w/ changing resolution through higher Re

Channel Flow
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• Expected value in log layer 
• Approach zero towards wall 
• Decays towards centerline

Dynamic VMM Model
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• Working prototype to experiment w/ scale-resolving methods 
for complex flows 

• Existence proof that spectral-elements can take advantage of 
modern hardware 

• Initial experiments w/ VMM encouraging 
• Current work is extending to relevant flight geometry and 
conditions 
• Wall-modeled LES/VMM 
• Complex geometry (AIAA 2015-0294) 
• Relative motion/FSI capability

Summary
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Backup
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• Variable-order produces lower error at same cost 
• Ceze et al. AIAA 2016-0833 

• Currently extending to space-time h-p adaptation and error 
estimates
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Current Status

• Laslo Diosady - moving body, shock capturing 
• Anirban Garai - turbomachinery, LES - AIAA 2016-XXXX 
• Marco Ceze - adjoint, mesh adaptation - AIAA 2016-XXXX 
• Corentin Carton de Wiart - wall modeling, hybrid-RANS
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• Optimization counterbalances increase in cost for high order

Overflow

Residual
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Hardware-optimized Kernels

Order of Accuracy

Jacobian

AIAA 2013-2870 AIAA 2016-XXXX


