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Background @

 Developing a spectral-element DG capability for separated
flows over the past few years

* Led by mnvestment from TTT/RCA
» Diosady & Murman AIAA 2013-2870, 2014-2784, 2015-0294

- Effort has grown recently w/ collaboration from other projects
» Desired synergy between R&D and engineering

» Opportunity to share broader vision of effort & fill in technical
gaps for AIAA audience
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Context

* No single optimal algorithm/method/solver

» Pareto front of optimal choices
» Different groups prioritize differently

» Our priorities are derived from the needs of numerous projects
within NASA - ARMD, HEOMD, STMD - and industrial
partners

» Current NASA technology based primarily on RANS/DES

» Works well for many engineering tasks

» Supplement existing capability w/ scale-resolving methods
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Target Applications @

» Complex geometry - unstructured mesh

» Complex physics - scale-resolving methods

» High-Re, combustion, chemistry - fully implicit methods
- Computational intensive - high-order, adaptive methods

» Multi-disciplinary, multi-physics - robust, extensible methods
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Approach @

» DG spectral-element formulation

» Unstructured arbitrary order

» Variational Multiscale Method (VMM) for scale-resolving
» Fully implicit space-time

» Entropy-stable, consistent all-speed scheme

» h-p adaptation 1n space and time
» Galerkin formulation

» Demonstrated success for relevant applications
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Approach

» Three main thrusts
» New algorithms and methods
- Optimized for next-gen exascale hardware

 Novel physical models
» Informally known as the eddy solver

» Currently lower TRL than production methods
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Turbomachinery Benchmarks

 Developed PML approach for non-reflective BC
* Garai et al. AIAA 2016-1338

 Developed physics-based approach for freestream turbulence
e Garai et al., ASME GT2015-42773, GT2016-56700
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» We want to approach spectral limit in space and time

» Leads to efficiency gains and improved physical models

« Better match for current/tfuture hardware

» Less data movement, more flops for the same level of accuracy
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Hardware-optimized Kernels @

» Current algorithms achieve < 5% of machine peak

» Spectral elements a good match for current & future hardware
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Hardware-optimized Kernels

el

» Tensor-product sum-factorization linear algebra kernels

* Benchmark represents ~20% of code
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Time-parallel

 Exploit multiple levels of parallelism
» Parallel 1n space across nodes (MPI)
- Parallel in time within node (OpenMP)

- Parallel within loops on chip (SIMD vectorization)
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» 500 Gflops per Haswell node for 8th-order
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Scale-resolving Models @

» Improved numerics changes how we do CFD

» Efficiency, automation, error estimates

» Consistent predictive models would change how we use CFD
» Certification through simulation

* Need to prioritize new modeling approaches
» Tighter coupling of numerics and modeling

» Current work 1s not a DG solver development 1t 1s a framework
for examining scale-resolving models and methods

S. Murman 5-jan-16 12



Variational Multiscale Method [Vro1
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 Explicit separation of scales (Hughes et al., 1998, Collis, 2001)
- Filtering 1s variational projection operator
 Assume unresolved scales only interact w/ finest resolved scales

» Extended VMM to dynamic procedure, varying coefficient in
space & time
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Dynamic Modeling @

- Dynamic (parameter-free) models are a necessity for complex
flows

- Automatically adjust to physics, numerics

* Cs = 0.18 for HIT, Cs = 0.065 for shear flow - 10x change 1n eddy
V1SCOSsity

» Successful approaches have been built upon strong physical
understanding

» Scale similarity, homogeneity, local 1sotropy, near-wall asymptotics

» New approaches need to leverage these lessons learned
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Dynamic VMM Model @

(@) =~ =2 ((C1A)° 181,155, )
 Variational Leonard stresses

* Requires high-order (N > 4)

(ahal — aflall, ofh) = =2 ((C1a)? IS8, 1180, wff) +2 (Cra)* 1S5 1181, ol

- Using state as test function gives variational analogue to
Germano procedure

» Can also provide analogue to Lilly’s least-square

 Entropy-stable compressible formulation in full paper
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Channel Flow
\ APS 2014
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| ——--- Dynamic VMM
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» Previous work demonstrates .
dynamic model converges to DNS .
w/ sufficient resolution
(consistency) ;

0

» Practical simulations never have sufticient resolution

» Examine behavior on realistic coarse mesh
° Re’[ — 544
* 4th-order 1n time, 8th-order 1n space

*At" =1, Ax" =100, Ay" =1, Az" = 50
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Channel Flow

« VMM w/ fixed coefficient degrades performance

Mean Velocity Reynolds Stress
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[dealized Behavior [Vro1

 ILES always resolves lower Re

» Dynamic approach resolves inertial range uses model for
dissipation scales

» Requires non-dissipative scheme (e.g. skew symmetry)
» Entropy-stable schemes inherently dissipative

« Completely remove numerical dissipation as first test
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Channel Flow [Vrs1

» Dynamic procedure least sensitive to current mesh resolution

- Examine trends w/ changing resolution through higher Re

Mean Velocity Reynolds Stress
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Dynamic VMM Model @

» Expected value 1n log layer
» Approach zero towards wall
 Decays towards centerline
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Summary @

» Working prototype to experiment w/ scale-resolving methods
for complex flows

» Existence proof that spectral-elements can take advantage of
modern hardware

» [nitial experiments w/ VMM encouraging

» Current work 1s extending to relevant flight geometry and
conditions

« Wall-modeled LES/ VMM

» Complex geometry (A14A4 2015-0294)
- Relative motion/FSI capability
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Backup
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Space-time Adjoint

Adjoint-driven
Variable-order

TUniform 4th-order Order Distribution

» Variable-order produces lower error at same cost
*Cezeetal AIAA 2016-0833

» Currently extending to space-time /4-p adaptation and error
estimates
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Current Status

» Laslo Diosady - moving body, shock capturing
» Anirban Garai - turbomachinery, LES - ATIAA 2016-XXXX

» Marco Ceze - adjoint, mesh adaptation - AIAA 2016-XXXX
» Corentin Carton de Wiart - wall modeling, hybrid-RANS
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Hardware-optimized Kernels @

- Optimization counterbalances increase 1n cost for high order

AIAA 2013-2870 ATAA 2016-XXXX
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