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Motivation for Evaluating Combined TBC + Air-Film Cooling

• TBC and air film cooling effectiveness usually studied separately.
• TBC and air film cooling contributions to cooling effectiveness are 

interdependent and are not simply additive.
• Combined cooling effectiveness must be measured to achieve optimum 

balance between TBC thermal protection and air film cooling.
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Mainstream Gas Flow

Heat Transfer Through Turbine Blade/Vane
overall heat transfer view
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Increasing dTBC & 
decreasing kTBC will 

have diminishing 
returns, especially with 

air film cooling. 
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TBC & Air-Film Contributions to Cooling Effectiveness
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TBC contribution: Air film cooling contribution:
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• TBC reduces airfilm
• Putting insulator between air 

film and metal decreases 
effectiveness of air film cooling.

• Air film cooling carries 
significant penalty for engine 
efficiency.

• Air film cooling greatly 
reduces effective hconv and 
therefore greatly reduces TBC

• Air film cooling greatly 
reduces q and therefore TTBC

• TBC does not carry significant 
penalty for engine efficiency.

• overall > TBC , airfilm (TBC, air film cooling always beneficial)
• But returns can be diminishing.

• TBC is better for reducing air film cooling requirements (increasing engine 
efficiency) than increasing temperature capability of air film cooled component.

• Experimental measurements of combined TBC + air film cooling effectiveness 
are needed to evaluate TBC/air-film-cooling tradeoffs.



• Experimentally map (2D) cooling effectiveness of air film cooling of 
TBC-coated surfaces.

– Cooling effectiveness at the TBC surface (to be presented today)
– Cooling effectiveness at the metal surface (future)

• Examine changes in cooling effectiveness as a function of:
– Mainstream hot gas temperature
– Blowing ratio (cooling air flow)

• Examine interplay between air film cooling, backside impingement 
cooling, and through-hole convective cooling for TBC-coated substrate.

Objectives



Approach
• Perform measurements in NASA GRC Mach 0.3 burner rig.

– Vary flame temperature and blowing ratio.

• Perform measurements on TBC-coated superalloy plate.
– 200 µm EB-PVD YSZ on Hastelloy X plate with MCrAlY bond coat

• Use scaled-up cooling hole geometry. 
• Perform 2D temperature mapping using Cr-doped GdAlO3 (Cr:GAP) 

phosphor thermometry. 
– GdAlO3 exhibits orthorhombic perovskite crystal structure: gadolinium aluminum perovskite 

(GAP).
– Ultrabright Cr:GAP luminescence emission enable surface temperature mapping using 

luminescence lifetime imaging by simply broadening the excitation laser beam to cover the 
region of interest.

– Unbiased by emissivity changes and reflected radiation. 

– Can be utilized for subsurface temperature mapping (future).

– Only applicable to steady state temperatures. 

• Convert temperature maps into cooling effectiveness maps.
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Cooling Effectiveness Measurements
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Cooling Effectiveness 
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Test

• Uniform mainstream flow (velocity & 
temperature)

• Typical surface temperatures: < 100°C
• Pure air film cooling

• No heat flux (insulating substrate)
• No backside impingement cooling

• Measure adiabatic air film cooling 
effectiveness, 

•  is a fundamental characterization of 
air film cooling effectiveness

• Measure  as a function of blowing 
ratio, M
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• Divergent mainstream flow
• Typical temperatures: 600-1100°C
• Air film + backside impingement + 

thru-hole convection
• Measure overall surface cooling 

effectiveness, ’

• ’ is a nonfundamental but realistic 
characterization of combined surface 
cooling effects

• Measure  as a function of M
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Demonstrating Temperature Measurement Capability
Time-Averaged Luminescence Emission  from Cr(0.2%):GAP Puck

Temperature Dependence
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Luminescence Decay Curves Obtained by Time-Gated Imaging
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• Image stack collection
• Background subtraction
• Data filtering
• Pixel by pixel lifetime analysis

– Fitting window selection
– Fit to exponential decay
– Removing flame burst outliers
– Use calibration curve to convert decay time to temperature
– Convert temperature to cooling effectiveness

2D Temperature Mapping by Luminescence Lifetime Imaging



Luminescence Lifetime Image Stack
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2D Temperature Maps from Luminescence Lifetime Imaging

• Multi-step procedure:
– Step 1: Remove thermal radiation background from each image collected. 

– Step 2: Collect sequence of background-corrected time-gated images over sequence of delay times.

Background (no laser)Luminescence before background subtraction Luminescence after background subtraction
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– Step 3: Fit luminescence decay curve at each pixel to produce decay time map (Matlab routine).

– Step 4: Use calibration data to convert decay time map to temperature map (Matlab routine).
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Background Radiation Sources

• Thermal (blackbody) radiation emitted by plate
• Reflected thermal and chemiluminescence radiation  emitted 

from combustor.
• Luminous flame particles moving through field of view
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Pre-Fit Data Filtering



Pre-Fit Data Filtering
Pixel Removal Criteria

Minimum static threshold
Iij(frame 1) < 3200
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Fitting Window Selection
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Calibration
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Two distinct regions
200ºC<T<750ºC: less temperature sensitive
T>750ºC: more temperature sensitive

Model from Zhang, Z., Grattan, K.T.V., and Palmer, A.W., Phys. Rev. B 48, 7772 (1993).



Removing Flame Burst Outliers
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Air Film Cooling of TBC-Coated Surface
Results

• Examine changes in cooling effectiveness as a function of:
– Mainstream hot gas temperatures: 1424, 1552, and 1696°C
– Blowing ratio: M' = 0 to 0.9
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Burner Rig 2D Cooling Effectiveness Maps
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Burner Rig 2D Cooling Effectiveness Maps
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Burner Rig 2D Temperature Maps
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Effect of Surface Deposition/Fouling
Pre-fouling Post-fouling
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Combined Cooling Effects Summary
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• Air film cooling
– Effectiveness initially increases with increasing M, then diminishes 

with jet lift-off.
– Effectiveness retained better at high flame temperature.
– Vortex-induced hot streaks appear near cooling holes. Hot streaks 

remain prominent even when air film cooling is lost. May be worse on 
TBC-coated surface. 

• Through-hole convective cooling
– Effectiveness increases rapidly at high M.
– Not observed in conventional air film cooling measurements.

• Backside impingement cooling
– Slowly increases with increasing M.

• Effect of TBC
– Will decrease air film cooling effectiveness.
– Will increase through hole convective cooling effectiveness – may be 

useful for showerhead cooling.
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• Successfully demonstrated 2D temperature mapping by Cr:GAP
phosphor thermometry with high resolution (temperature, spatial, but 
not temporal) in presence of strong background radiation associated 
with combustor burner flame.

– Robust, operator independent, automated analysis

• Can be used as new tool for studying/optimizing non-additive interplay 
of cooling mechanisms for TBC-coated components.

– TBC
– Air film
– Through-hole convection
– Backside impingement

• TBC affects other cooling mechanisms
– Degrades air film cooling effectiveness
– Enhances through-hole convection cooling

• Improved TBCs will reduce air film cooling requirements for higher 
engine efficiency, but combined TBC + air film cooling will not be 
effective substitute for CMC + EBC development.

Conclusions


