

Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAIO₃ Phosphor Thermography

Jeffrey I. Eldridge, Vikram Shyam, Adam C. Wroblewski, and Dongming Zhu NASA Glenn Research Center, Cleveland, OH

> Michael D. Cuy Vantage Partners, Cleveland, OH

Douglas E. Wolfe Penn State University, University Park, PA

40th International Conference on Advanced Ceramics & Composites Daytona Beach, FL January 25, 2016

Motivation for Evaluating Combined TBC + Air-Film Cooling

- TBC and air film cooling effectiveness usually studied separately.
- TBC and air film cooling contributions to cooling effectiveness are interdependent and are not simply additive.
- Combined cooling effectiveness must be measured to achieve optimum balance between TBC thermal protection and air film cooling.

Heat flux across TBC:
$$q = -k_{TBC} \frac{dT}{dx} = \frac{k_{TBC}}{d_{TBC}} |\Delta T_{TBC}|$$
 Fixed q drives heat transport.

Thermal protection: $T_{mainstream} - T_{metal} = q \left[\frac{1}{h_{conv}} + \frac{d_{TBC}}{k_{TBC}} \right]$

For $d_{TBC}/k_{TBC} >> 1/h_{conv}$, thermal protection linearly increases with d_{TBC}/k_{TBC}

TBC & Air-Film Contributions to Cooling Effectiveness

TBC contribution:

- Air film cooling greatly reduces effective h_{conv} and therefore greatly reduces Φ_{TBC}
- Air film cooling greatly reduces q and therefore ΔT_{TBC}
- TBC does not carry significant penalty for engine efficiency.

Air film cooling contribution:

- TBC reduces $\Phi_{airfilm}$
- Putting insulator between air film and metal decreases effectiveness of air film cooling.
- Air film cooling carries significant penalty for engine efficiency.
- $\Phi_{overall} > \Phi_{TBC}$, $\Phi_{airfilm}$ (TBC, air film cooling always beneficial)
 - But returns can be diminishing.
- TBC is better for reducing air film cooling requirements (increasing engine efficiency) than increasing temperature capability of air film cooled component.
- Experimental measurements of combined TBC + air film cooling effectiveness are needed to evaluate TBC/air-film-cooling tradeoffs.

Objectives

- Experimentally map (2D) cooling effectiveness of air film cooling of TBC-coated surfaces.
 - Cooling effectiveness at the TBC surface (to be presented today)
 - Cooling effectiveness at the metal surface (future)
- Examine changes in cooling effectiveness as a function of:
 - Mainstream hot gas temperature
 - Blowing ratio (cooling air flow)
- Examine interplay between air film cooling, backside impingement cooling, and through-hole convective cooling for TBC-coated substrate.

Approach

- Perform measurements in NASA GRC Mach 0.3 burner rig.
 - Vary flame temperature and blowing ratio.
- Perform measurements on TBC-coated superalloy plate.
 - 200 µm EB-PVD YSZ on Hastelloy X plate with MCrAIY bond coat
- Use scaled-up cooling hole geometry.
- Perform 2D temperature mapping using Cr-doped GdAlO₃ (Cr:GAP) phosphor thermometry.
 - GdAIO₃ exhibits orthorhombic perovskite crystal structure: gadolinium aluminum perovskite (GAP).
 - Ultrabright Cr:GAP luminescence emission enable surface temperature mapping using luminescence lifetime imaging by simply broadening the excitation laser beam to cover the region of interest.
 - − Unbiased by emissivity changes and reflected radiation. ✓
 - − Can be utilized for subsurface temperature mapping (future). ✓
 - Only applicable to steady state temperatures. *
- Convert temperature maps into cooling effectiveness maps.

Cooling Effectiveness Measurements

Conventional Air Film Cooling Effectiveness

Test

Ū

Ducted uniform mainstream flow

Cooling Effectiveness Test

Burner Rig Air Film

Diverted unducted divergent mainstream flow

- Uniform mainstream flow (velocity & temperature)
- Typical surface temperatures: < 100°C
- Pure air film cooling
 - No heat flux (insulating substrate)
 - No backside impingement cooling
- Measure adiabatic air film cooling effectiveness, η

$$\eta = \frac{T_{mainstream} - T_{surface}^{adiabatic}}{T_{mainstream} - T_{coolant\ exit}}$$

- η is a fundamental characterization of air film cooling effectiveness
- Measure η as a function of blowing ratio, M $M = \frac{\rho_{coolant} v_{coolant}}{\rho_{mainstream} v_{mainstream}}$

• Divergent mainstream flow

- Typical temperatures: 600-1100°C
- Air film + backside impingement + thru-hole convection
- Measure overall surface cooling effectiveness, η'

$$\eta' = \frac{T_{uncooled} - T_{cooled}}{T_{uncooled} - T_{coolant enter}}$$

37°

- η' is a nonfundamental but realistic characterization of combined surface cooling effects
- Measure η as a function of M $M' = \frac{\rho_{coolant} v_{coolant}}{M'}$

$$r = \frac{\rho_{mainstream}}{\rho_{mainstream}} v_{mainstream}^{max}$$

Demonstrating Temperature Measurement Capability

Time-Averaged Luminescence Emission from Cr(0.2%):GAP Puck Temperature Dependence

Luminescence Decay Curves Obtained by Time-Gated Imaging

2D Temperature Mapping by Luminescence Lifetime Imaging

- Image stack collection
- Background subtraction
- Data filtering
- Pixel by pixel lifetime analysis
 - Fitting window selection
 - Fit to exponential decay
 - Removing flame burst outliers
 - Use calibration curve to convert decay time to temperature
 - Convert temperature to cooling effectiveness

Luminescence Lifetime Image Stack

2D Temperature Maps from Luminescence Lifetime Imaging

- Multi-step procedure:
 - Step 1: Remove thermal radiation background from each image collected.

Luminescence before background subtraction

Luminescence after background subtraction

- Step 2: Collect sequence of background-corrected time-gated images over sequence of delay times.

2D Temperature Maps from Luminescence Lifetime Imaging

- Step 3: Fit luminescence decay curve at each pixel to produce decay time map (Matlab routine).

Background Radiation Sources

- Thermal (blackbody) radiation emitted by plate
- Reflected thermal and chemiluminescence radiation emitted from combustor.
- Luminous flame particles moving through field of view

Background Radiation Sources Surface Thermal & Reflected Combustor Radiation

30% air, 8.5% fuel

Pre-Fit Data Filtering

Pre-Fit Data Filtering Pixel Removal Criteria

Minimum static threshold I_{ij} (frame 1) < 3200

Insufficient signal

Minimum dynamic threshold $I_{ij}(last frame) > 10\%*I_{ij}(first frame)$

Too cold to capture sufficient percentage of decay

 $\begin{array}{l} \mbox{Minimum number of frames in fitting interval} \\ 10\%^* I_{ij} (\mbox{first frame}) < I_{ij} (\mbox{frame n}) < 90\%^* I_{ij} (\mbox{first frame}) \\ \mbox{Number of frames} < 10 \end{array}$

Too hot to capture sufficient number of frames in fitting window

Number of frames in fitting window

64 56

48

40

32

24

16

8 0 **Fitting Window Selection**

Calibration

Calibration of Decay Time vs. Temperature for GAP:Cr Coating 60 to 10% Initial Intensity Fitting Window

Removing Flame Burst Outliers

Effect of Luminous Flame Bursts

Image Stack $0\,\mu s$

 $I_{ij}(t_n)$ is intensity of pixel ij in frame n of stack, $t_n = (n-1)\Delta t + t_0$ where Δt is frame interval and t_0 is 1st frame time; $I_{ij}(t_n)$ is an outlier when $|I_{ij}(t_n) - I_{ij}^{fit}(t_n)| > 1.5\sigma [I_{ij}(t_n) - I_{ij}^{fit}(t_n)]$

Air Film Cooling of TBC-Coated Surface Results

- Examine changes in cooling effectiveness as a function of:
 - Mainstream hot gas temperatures: 1424, 1552, and 1696°C
 - Blowing ratio: M' = 0 to 0.9

Burner Rig 2D Temperature Maps

Vortex-induced hot streaks outlast air film cooling

Burner Rig 2D Temperature Maps

 $T_{mainstream} = 1552^{\circ}C$

Burner Rig 2D Cooling Effectiveness Maps

 $T_{mainstream} = 1552^{\circ}C$

Slowly decreasing air film cooling effectiveness

Weaker vortexinduced hot spot

Burner Rig 2D Temperature Maps $T_{mainstream} = 1696^{\circ}C$ Compromised by surface fouling and plenum leak Decay time temperature maps M' = 0.314 M' = 0.654 M' = 0M' = 0.209M' = 0.7851100°C 1050 1000 950 900 850 800 750 700 **\1 cm** 95% confidence interval **30°**℃ 25 20 15 10 5 0 photos

Effect of Surface Deposition/Fouling

Pre-fouling

Decay time temperature maps

M' = 0

M' = 0.483

95% confidence interval

Deposition/fouling does not bias temperature measurement but does reduce measurement precision.

1 cm

Combined Cooling Effects Summary

- Air film cooling
 - Effectiveness initially increases with increasing M, then diminishes with jet lift-off.
 - Effectiveness retained better at high flame temperature.
 - Vortex-induced hot streaks appear near cooling holes. Hot streaks remain prominent even when air film cooling is lost. May be worse on TBC-coated surface.
- Through-hole convective cooling
 - Effectiveness increases rapidly at high M.
 - Not observed in conventional air film cooling measurements.
- Backside impingement cooling
 - Slowly increases with increasing M.
- Effect of TBC
 - Will decrease air film cooling effectiveness.
 - Will increase through hole convective cooling effectiveness may be useful for showerhead cooling.

alumina silicate (all ceramic) plate

950°C

900

850

800 750

700

650

600

No through-hole convection

Conclusions

- Successfully demonstrated 2D temperature mapping by Cr:GAP phosphor thermometry with high resolution (temperature, spatial, but not temporal) in presence of strong background radiation associated with combustor burner flame.
 - Robust, operator independent, automated analysis
- Can be used as new tool for studying/optimizing non-additive interplay of cooling mechanisms for TBC-coated components.
 - TBC
 - Air film
 - Through-hole convection
 - Backside impingement
- TBC affects other cooling mechanisms
 - Degrades air film cooling effectiveness
 - Enhances through-hole convection cooling
- Improved TBCs will reduce air film cooling requirements for higher engine efficiency, but combined TBC + air film cooling will not be effective substitute for CMC + EBC development.