

# Trade-space Analysis Tool for Constellations (TAT-C)

Jacqueline Le Moigne, Philip Dabney, Olivier de Weck, Veronica Foreman, Paul Grogan, Matthew Holland, Steven Hughes, Sreeja Nag NASA Goddard Space Flight Center, MIT, Stevens Inst. of Tech, BAER Institute



**Goddard Space** Flight Center

# DEFINITIONS

A Distributed Spacecraft Mission (DSM) is a mission that involves multiple spacecraft to achieve one or more common goals

A Constellation is a space mission that, beginning with its inception, is composed of two or more spacecraft that are placed into specific orbit(s) for the purpose of serving a common objective (e.g., Iridium)

# **OBJECTIVES**

- Provide a framework to perform pre-Phase A mission analysis of Distributed Spacecraft Missions (DSM)
- Handle multiple spacecraft sharing mission objectives
- Include sets of smallsats up through flagships
- Explore trade-space of variables for pre-defined science, cost and risk goals, and metrics 0
- **Optimize cost and performance across multiple** instruments and platforms vs. one at a time



Graphical User Interface

- Create an open access toolset which handles specific science objectives and architectures
- Increase the variability of orbit characteristics, constellation configurations, and architecture types
- Remove STK licensing restrictions

# **SCIENCE REQUIREMENTS - INPUTS**

| Mission Concept      |                       |                                                                                                                |  |  |  |
|----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| Attribute            | Characteristics       | Description                                                                                                    |  |  |  |
| Start Epoch          | UTC time              | Date when the satellites will initialize. Default is current time.                                             |  |  |  |
| Area of Interest     | exact Earth locations | Lat/Lon/Alt list or Lat/Lon bounds. Global is default.                                                         |  |  |  |
| Ground Stn options   | Select and/or file    | If the user has existing satellites to complement. Row=GS num, columns=GS lat, lon, alt, band. Default is NEN. |  |  |  |
| Launch preferences   | Select and/or file    | If the user has existing satellites to complement. Row=LV num, columns=LV specs. Default is all.               |  |  |  |
| Propagation fidelity | low, med, high        | Three levels of propagators to be selected against (time and description provided). Default is low.            |  |  |  |
| Output options       | Select                | Which of the output veriables is the user interested in. Default is all but angles.                            |  |  |  |
| Output bounds        | min, max              | Min and Max for any of the variables in the Outputs sheet. Default is in the output sheet.                     |  |  |  |

| Attribute                     | Characteristics    | Description                                                                                                                     |
|-------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Existing Sat options          | Select and/or file | User has a sat/constellation in mind. Options: Name, KB file, csv (Row=sat num, columns=Initial Kepl. Elems). Default is none.  |
| Number of new Sats            | min, max           | Number of new sats allowed in the DSM in addition to existing. One and ten is default respectively.                             |
| Number of satellite types     | exact              | Enter 1 if const. is homogeneous or number, if heterogeneous. If hetero, all subsequent specs to be provided for each instance. |
| Altitude Range of Interest    | min, max           | Ranges of altitudes the user is interested in, LEO (300-1000 km) is default.                                                    |
| Inclination Range of Interest | min, max           | Ranges of inclinations the user is interested in, 50-90 deg is default.                                                         |
| Special Orbits only           | Select             | Select between only SSO with LT option, frozen, critically inclined, ISS                                                        |
| Angular Rate                  | min, max           | Rotation matrix of the satellite in LVLH. Payload is assumed fixed and rotates at the same rate.                                |
| Maximum pointing              | exact              | Maximum nadir pointing that a sat is capable of, to determine field of regard or FOR. Default is upto Earth Limb.               |
| Comm band                     | exact bands        | For downlinking data to ground stations. Default is Ka-band.                                                                    |
|                               |                    |                                                                                                                                 |

|                                |                     | · -/···································                                                                             |
|--------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
| Attribute                      | Characteristics     | Description                                                                                                         |
| Number of payloads/sat         | Exact               | For multi-instrument sats. Default is one. If more than one, all subsequent specs to be provided for each instance. |
| Occulation or Imaging or Pairs | Select              | Determines payload's measurement conops. Imaging is default.                                                        |
| Payload Mass                   | Approximate         | Default is 40 kg. Payload will be 40% of satellite mass, by default [Tentative]                                     |
| Payload Volume                 | Approximate         | Default is 150 W. Payload will be 60% of satellite power, by default [Tentative]                                    |
| Payload Power                  | Approximate         | Default is 0.03 m^3. Payload will be 50% of satellite volume, by default [Tentative]                                |
| Radiometric resolution         | min                 | Number of bits per pixel. 12 bits is default.                                                                       |
| Occultation or Pairs coupling  | Exact               | Mark observer or occulter/pair, for every occulting or pairs mission.                                               |
| Nadir swath or FOV             | min, max OR exact   | Conical or rectangular dimensions of the full spot size. Default is 15 deg in AT and CT.                            |
| Nadir GSD or iFOV              | min, max OR exact   | Conical or rectangular dimensions of a single pixel. Default is 30 m in AT and CT.                                  |
| Object/s of interest           | Select then specify | Select between celestial body or 'satellite' if an occultation mission. Fill row 33 if latter. Default is Sun.      |
| Occultation Altitude           | max, min            | Tangent altitudes between which occultation measurements will be made. Default is 10-50 km.                         |
| Measurement time               | min, max            | Sum of exposure and integration time per image or measurement. Default is half-pixel travel time.                   |
| Solar conditions               | Select              | Determines if the sat is sunlit or eclipsed or agnostic when measuring. Default is agnostic.                        |
| Sun Glint preference           | Select              | Select if sun glint (<5 deg relative AZ) to be included, avoided or no preference. Default is no preference.        |
| Spectral or other Channels     | Exact wavelengths   | Central wavelength for multi-spectral imaging. 300:100:1000 nm is default.                                          |
| Spectral resolution            | exact binwidths     | Band or bin width of each central wavelength in the spectral range. 50 nm is default.                               |

# **SCIENCE REQUIREMENTS - OUTPUTS**

s and along track extent of one full image. Default is 100 km, 50 patial positions where occultation measurements are made per sat per arch within I/P "Area of Interest". Default is none

# **TRADESPACE SEARCH ITERATOR (TSI)**

- TSI reads user inputs given to the GUI to create iterator inputs (JSON files). Uses default values from Landsat 8 (w/ ETM+ payload) if no inputs
- TSI generates DSM architectures for a combination of variable values that satisfy iterator inputs
- A DSM architecture is a unique combination variable values (altitude, inclination, FOV, number of satellites, etc.)
- For each arch, TSI creates files and send commands to module 'Reduction &

# **ORBIT & COVERAGE MODULE**

#### **Purpose of Module**

- Model orbits balancing accuracy and performance
- Compute coverage metrics for constellation/sensor set
- Compute ancillary orbit data for performance, cost, and risk
- **Development Approach**

| Possible positions (w/ FOR) | lat, lon          | Spatial positions where imaging measurements CAN BE made per sat per arch within I/P "Area of Interest". Default is none.                            |
|-----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                   |                                                                                                                                                      |
|                             |                   | Temporal Metrics                                                                                                                                     |
| Attribute                   | Characteristics   | Description                                                                                                                                          |
| Occultation time*           | min, max, average | If an occult mission, time which each occultation lasts for                                                                                          |
| % period time in Sun*       | min, max, average | Fraction of the orbit that the sat spends in the Sun (vs. eclipsed)                                                                                  |
| Time to Coverage*           | min, max, average | Time to cover the "Area of Interest" entirely once                                                                                                   |
| Access Time*                | min, max, average | Time that any ground spot has access to a satellite (within FOR)                                                                                     |
| Latency to downlink*        | min, max, average | Time between observation and downlink to the next ground station                                                                                     |
| Repeat Time*                | min, max, average | Time between repeats (within 1 deg of view angle) of every point in the "Area of Interest". Calc. for virtual and real sats for Stereo/Comm missions |
| Revisit Time*               | min, max, average | Time between revisits of every point in the "Area of Interest"                                                                                       |
|                             |                   |                                                                                                                                                      |
|                             |                   | Angular Metrics                                                                                                                                      |
| Attribute                   | Characteristics   | Description                                                                                                                                          |
| View Zenith Angle           | min, max          | Between the payload-target vector and zenith, if imaging mission. Default is none for all angles.                                                    |
| View Azimith Angle          | min, max          | Between the payload-target vector projection on target normal plane and true north projection on the same plane, , if imaging mission                |
| Solar Zenith Angle          | min, max          | Between the sun-target vector and zenith for day measurements, if imaging mission                                                                    |
| Solar Azimuth Angle         | min, max          | Between the sun-target vector projection on target normal plane and true north projection on the same plane, if imaging mission                      |
| Lunar phase                 | min, max, average | For night measurements.                                                                                                                              |
|                             |                   |                                                                                                                                                      |
|                             |                   | Radiometric Metrics                                                                                                                                  |
| Attribute                   | Characteristics   | Description                                                                                                                                          |
| Signal to Noise Ratio       | min, average      | Expected signal and noise (SNR) of each arch's satellites with respect on a selected one. Default is 10.                                             |
|                             |                   |                                                                                                                                                      |

**GRAPHICAL USER INTERFACE (GUI)** 



Metrics' to compute architecture performance and to module 'Cost and Risk' to compute architecture cost

# **REDUCTION & METRICS** MODULE

Reduction & Metrics is responsible for calling module 'Orbits & Coverage' to propagate the orbit of every sat and compute coverage given payload specs. **Reduction & Metrics' integrates** coverage and computes all performance metrics.

# **KNOWLEDGE BASE**

- Centralized store of structured data readable by humans and machines
- Support TAT-C tasks:
- Analysis: compose new mission concepts from existing model inputs
- Exploration: discover new mission Ο





depending upon future needs

# **COST & RISK MODULE**

### **Motivation**

- Constellations require that traditional cost estimating assumptions be challenged
- Previous work highlighted limitations of existing models w/r to constellations
- No comprehensive cost model for constellations has been developed
- Implementation
- Aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted, publically available models
- Output: Proba density function showing most likely cost for mission lifecycle + selected mission components, including recurring, nonrecurring, spacecraft bus, and payload

# **FUTURE DIRECTIONS**

- Various constellations
- Launch vehicle and manifest framework
- Various sensor models



• Layered client-server architecture over





#### **Comparative risk model**

**Knowledge Base development** 

**Complete GUI/Visualization development**