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Substantial Disparities Exist in

Global Ocean Evaporation Estimates
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A Hierarchy of Global Ocean LHF Estimates

AGCMs w/ Specified SSTs (AMIPs) GEOS-5, ERA-20CM Ensembles
Incorporate best historical estimates of SST, sea ice, radiative forcing
Atmospheric “weather noise” is inconsistent with specified SST. Instantaneous Sfc
fluxes can be wrong sign (e.g. Indian Ocean Monsoon, high latitude oceans).
Averaging over ensemble members helps isolate SST-forced signal.

Reduced Observational Reanalyses: NOAA 20CR V2C, ERA-20C, JRA-55C
Incorporate observed Sfc Press (20CR), Marine Winds (ERA-20C) and rawinsondes
(JRA-55C) to recover much of true synoptic or weather w/o shock of new sat obs.

Comprehensive Reanalyses (MERRA-2)

Full suite of observational constraints- both conventional and remote sensing.
But... substantial uncertanties owing to evolving satellite observing system.

Multi-source Statistically Blended OAFlux, LargeYeager
Blend reanalysis, satellite, and ocean buoy information. While climatological biases
are removed, non-physical trends or variations in components remain.

< More Observ Constrained

Satellite Retrievals GSSTF3, SeaFlux, HOAPS3...
Global coverage. Retrieved near sfc wind speed, & humidity used with SST to drive
accurate bulk aerodynamic flux estimates. Satellite inter-calibration, spacecraft
pointing variations crucial. Short record ( late 1987-present).

In situ Measurements ICOADS, IVAD, Res Cruises
VOS and buoys offer direct measurements. Sparse data coverage (esp south of
30S. Changes in measurement techniques (e.g. shipboard anemometer height).

“Observations”



Questions we’ll address

=" To what extent do Reduced Observations Reanalyses
(RedObs) using sfc pressure (and wind) provide a realistic
picture of multi-decadal evaporation variability?

=" \What is the range of estimates for evaporation sensitivity
to SST change and can we understand these differences

w / in the bulk aerodynamic framework?

= \What processes govern both trends and signals of
interannual variability (e.g. ENSO)?

= Possible accuracy assessment.



A Taylor Series Expansion of Bulk Aerodynamic
Evaporation Around Monthly Climatology

As in Richter and Xie (2008), Lorenz et al (2010) we write the bulk formula for
evaporation as a function of SST, Relative Humidity, Wind Speed, and Stability:

near-sfc q (T ,.,)
E=C,p,Uq,|q,(SST)
where

S=T_ —SST
By using an analytical (fitted exponential) expression for saturation specific
humidity, a 15t Order Taylor series expansion for evaporation anomalies, oF, is

sE=-2E 5557+ 2L 50+ 2L 5RrE + 2L 55+ 2L 5C . res

~ 9SST oU  ORH oS aC,

where he partial derivatives are “sensitivities” built from monthly resolved
climatology and o( ) denotes a monthly anomaly. The first term involving SST
changes only can be thought of as atmospheric forcing by SST and is equivalent
to the Clausius-Clapeyron rate ( ~ 6% per deg SST change over the globe).
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Data Assimilation Challenges with
Evolving Satellite Observing Systems

* Decomposition of the MERRA-2 ocean surface
evaporation into contributing components of
SST (red), wind (blue), and

. Units are mm day.
12 month smoothing has been applied.

e SSMI wind availability strongly affects Tropics
and So. Hem.

* Assimilated temperature data affects
extratropics stability contribution. Uncertainty
is assimilated T > Osst?

* Convective stabilization controls in tropics
affect stability and relative humidity but
moisture & temperature assimilation



Evaporation Change Mechanisms (AMIP Ensembles)
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| Evap | SST | RH+Stab___| Wind | Residual
6.2

GEOS-5 1.8 -4.4 1.6 -1.6
ERA-20CM 1.8 5.9 -4.3 -0.60 0.8

e Actual evaporation trend lies substantially below C-C Rate due to offsetting
contributions from increased RH, Stability and residual (Exch Coeff).
* Wind-related trends are small (but interannual signals are large).



Evaporation Change Mechanisms (Reduced Obs Assimilation)
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NOAA 20CR -0.6 -0.9
ERA-20C 4.6 5.9 -7.5 8.5 -2.30

*Both NOAA 20CR and ERA-20C have more decadal variability than AMIPs
* ERA-20C wind trend drives 20t Century evaporation trend exceeding C-C rate.



So What About The Strong Interannual Signals?
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What is the Source of Large Evap Trends and
Can we Assess Their Validity?
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Evaporation Consistency Check Using An Alternative
Global Ocean Mean Calculation

. E'OC :P'OC+ (P ET)

area

561 Changes in ocean evaporation anomalies

are balanced by precipitation changes and transports to / from land. (Atmospheric
storage is small on the scales of interest.)

= Use GPCP v2.3 precipitation (ocean, land) and (P-ET)’ from observationally
constrained land surface models LSMs (Robertson et al. 2016, GLEAM 3.0a ET,
Martens et al. [2016, GMDD)]).

» Must account for land / ocean fractional coverage.
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Summary Points:

= Consistent with coupled model results (e.g. Richter and Xie,
2008; Lorenz et al, 2010), ensemble specified SST (AMIP)
experiments exhibit thermodynamic damping by RH and
stability act to keep evaporation trends below C-C rate.

= Reduced Observations Reanalyses (RedObs) assimilating
surface pressure (and wind) modify the SST-forced solution
and appear to provide a more consistent picture of
evaporation variability. Significant issues: uncorrected
assimilated wind speed trends ; dearth of So. Hem. Obs.

= El Nino-related IA evap variations are large regionally.
Equatorial wind speed decreases lead gs-ga maximum —> evap
max tends to lag Eq SST max = coherent global signals.



Challenges:

= Cross-comparisons among “hierarchy” products with varied
data input are useful in ferreting out uncertainties.
Validation requires comparison to other water & energy
balance components from varied sources.

= Significant changes in data availability in the Satellite Era
continue to challenge comprehensive reanalyses. Continued
data scrubbing / refurbishment and analysis of reanalysis
model analysis increments is needed to understand data /
physics bias interplay.

= Future versions of satellite evaporation retrievals will need
better sensor calibration effects on wind speeds & Qs-qa.
Weather “regime” approaches are a way forward.
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Inter-decadal Pacific Oscillation In ERA-20C

* Consistent pattern of evaporation changes (shaded) relate to SST gradient
patterns and altered low-level circulation.

* Twin anticyclonic high pressure anomalies (green contours) develop in the
eastern extra-tropical Pacific resulting from westward diabatic heating shift.

 Off-equatorial wind speeds Eq to 20 N/S (black contours) consistent with
surface pressure gradient changes enhance evaporation.

1999/2009 minus 1990 /1999 Transition to IPO cold phase
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