Towards a Framework for Reliability and Safety Analysis of Complex Space Missions

John W. Evans ${ }^{1}$ and Frank Groen ${ }^{2}$
NASA, Washington, DC, 20546
Lui Wang ${ }^{3}$
NASA Johnson Space Center, Houston, TX, 77058
Rebekah Austin ${ }^{4}$, Art Witulski ${ }^{5}$ and Nagabhushan Mahadevan ${ }^{6}$ Vanderbilt University, Nashville, TN, 37240
Steven L. Cornford ${ }^{7}$ and Martin S. Feather ${ }^{8}$
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109
and
Nancy Lindsey ${ }^{9}$
Goddard Space Flight Center, Greenbelt, MD, 20771

Long duration and complex mission scenarios are characteristics of NASA's human exploration of Mars, and will provide unprecedented challenges. Systems reliability and safety will become increasingly demanding and management of uncertainty will be increasingly important. NASA's current pioneering strategy recognizes and relies upon assurance of crew and asset safety. In this regard, flexibility to develop and innovate in the emergence of new design environments and methodologies, encompassing modeling of complex systems, is essential to meet the challenges.

Nomenclature

$B N$	$=$ Bayesian Net
$C D S$	$=$ Cascade Distillation Systems
$E C C L S$	$=$ Environmental Control and Life Support System
$F M E A$	$=$ Failure Modes and Effects Analysis
$F T A$	$=$ Fault Tree Analysis
$G S N$	$=$ Goal Structuring Notation
$M B M A$	$=$ Model Based Mission Assurance
$M B S E$	$=$ Model Based Systems Engineering
$O S M A$	$=$ Office of Safety and Mission Assurance
$R \& M$	$=$ Reliability and Maintainability
$S E$	$=$ Systems Engineering

[^0]
I. Introduction

NASA's Office of Safety and Mission Assurance (OSMA) is supporting and working to develop several key strategies and approaches to address the complex assurance challenges of NASA's upcoming missions. Together these will comprise an advanced framework for complex systems assurance, compatible with Model Based Systems Engineering (MBSE) approaches. The concept of this framework is illustrated in Figure 1. Adopting an objectives-based approach to systems safety and reliability is the first step ${ }^{1}$. This transitions from prescriptive assurance processes to instead requiring demonstration, through a Safety/Assurance Case, that the key objectives needed to assure mission success are identified and fulfilled. The Safety/Assurance Case will provide the critical information and integration of mission data sources for gauging the acceptance of the mission risk. Embodying this approach in standards will allow for innovative engineering processes and products.
Contemporaneously, MBSE is increasingly used in design and development of complex systems. NASA has long recognized the importance of modeling and simulation in designing and evaluating missions, and growing NASA interest in MBSE is evident. As NASA develops systems using MBSE, NASA OSMA will need to employ complementary assurance strategies, tools and methods that are more compatible with such MBSE practices. These will facilitate better

Figure 1. A conceptual framework for assurance in a model driven environment ${ }^{2}$. integration into the design process, improved insight, and the rapid assessment of alternatives from the assurance viewpoint ${ }^{2}$. Further, direct implementation of models that address uncertainty in a meaningful and comprehensive fashion are needed to improve the understanding of risks and to improve design decisions about the systems and missions ${ }^{3}$.
The sections that follow expand upon these themes:
Section II: the challenges that stem from the increasing complexities of NASA's future explorations, and the changes these are driving.
Section III: the emergence of Safety/Assurance Cases as the underpinning of NASA's transition to an objectivesbased approach to systems safety and reliability.
Section IV: NASA's development of Objective Based Standards, to provide assurance the flexibility to accommodate emerging approaches to systems engineering (notably MBSE).
Section V: the beneficial interplay between MBSE and assurance, with illustrations from a NASA/JSC project.
Section VI: opportunities for further synergy between MBSE and assurance via incorporation of more advanced modeling and analysis techniques.
Section VII: illustration of using the NASA Reliability and Maintainability Objective Hierarchy as the starting point for development of an assurance case, further assisted by integration with MBSE models.

II. Complex Systems: Driving Change

NASA's plans for human endeavor to the surface of Mars presents significant challenges. Mission times will eventually approach 1100 days and an overall manned Mars campaign may extend for decades. The distances covered will create need for greater autonomy due to communications intermittency and delays. The requirements for transport, habitat and operations will need to include resiliency, reliability and sustainability, while supporting crew safety and health. These demands will ultimately drive increasingly complex systems consisting of software intensive, robotic and human operated hardware elements interacting as shown in Figure 2.

The habitat, as shown in the International Space Station based concept in Figure 3, from ${ }^{4}$, is an example of a complex system needed to fulfill deep space requirements. Its usage in long duration flights far from Earth will
necessitate the crew interacting with many software driven subsystems, including communications, guidance and navigation, propulsion, and life support. One such subsystem, the Environmental Control and Life Support System (ECCLS), is a major element of the habitat. It provides for clean air and water as well as waste management. It is a semi-autonomous system that must operate with high reliability to ensure crew safety, yet must be repairable and maintainable. The water management or Cascade Distillation Systems (CDS) portion of the ECCLS is discussed further in sections below in the context of addressing system complexity in the model based framework and in bringing forth evidence for building a Safety or Assurance case as discussed in the introduction.

The importance of the model based framework discussed in this paper emerges with increasing complexity in designs like the transport habitat. The nature of complexity in systems is defined by large numbers of interacting components to serve system functions, as well as the interfaces across functions. Ultimately to manage this complexity, modeling at

Figure 2. Interactions typical of complex systems of future NASA missions. Human, hardware and software elements share functionality. different levels of abstraction becomes essential for design teams to understand design trade-offs, as well as supporting safety and reliability analysis.

Early in the formulation of the architecture of systems, Model Based Systems Engineering (MBSE) tools and strategies are at the front of the design process creating a single set of descriptive models, rather than documents, to represent the design. This provides the design teams with a single source of information about the design as it evolves. These models form a common basis to understand the system in support of assurance analysis. MBSE has also created new opportunities, for the analysis of reliability and safety early in the design, giving rise to frameworks for Model Based Safety Analysis ${ }^{5}$, or in more general terms Model Based Mission Assurance (MBMA) ${ }^{2}$. As discussed in this paper this supports the implementation of safety requirements, the execution of reliability analysis and the characterization and management of uncertainty, as the design develops.

Greater uncertainties also emerge with increasing complexity, creating more need for implementation of models that directly address uncertainties. There are several sources of such uncertainties emerging from different elements of the system. The accumulation of uncertainties gives rise to increasing unreliability, and therefore it is essential to

Figure 3. Transport module design based on International Space Station derived design concept. The design supports a 500 -day mission for a crew of $\mathbf{4}$. The habitat mission depends on the integrity of the structure but also on systems such as the Environmental Control and Life Support System (ECCLS) which provides for clean air and potable water. (Courtesy of David Smitherman, NASA Marshall Space Flight Center)
characterize and manage uncertainty early in design. Given the perspective of a complete system as introduced Figure 3 , it is obvious that contributing factors arise from human, software and hardware origins. Human performance characteristics, source lines of code, electronic part content and materials property variations are examples of sources of uncertainty that can be characterized in a modeling framework. As mentioned, models are created as abstractions of the emerging design. Models will facilitate design decisions and most represent the system sufficiently for this purpose. The extent models may differ from the reality is another type of uncertainty that should be characterized in the modeling process; this type of uncertainty is epistemic uncertainty.

The characterization of uncertainties is managed by the mathematics of probabilities. Whether aleatory or epistemic, the mathematics of Bayesian probability theory provides for a "consistent foundation" for advancing treatment of uncertainties in modeling and simulation ${ }^{6}$. The use of SysML based frameworks is providing for opportunities for developing this approach by providing for rapid synthesis of logic constructs including fault trees, reliability block diagrams and eventually Bayesian Nets, which can provide the basis for Bayesian probability modeling in support of reliability analysis, safety assessment and risk analysis. The ability to synthesize these constructs in SysML tools and move them to other modeling will offset complexities and provide for more timely and accurate analysis of systems in development.

III. The Safety/Assurance Case

Safety Cases are used to manage and regulate major hazard industries (e.g., nuclear power, railroads, aviation, and offshore oil platforms) in Europe and elsewhere. Their origin traces back to the nuclear industry in the UK in the 1960s. The following definition of a Safety Case is taken from the UK's Defence Standard 00-567:

The Safety Case shall consist of a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is safe for a given application in a given operating environment.
Observe from this definition that a safety case is an argument, i.e., it is intended for human understanding. The argument rests on evidence - both "direct" evidence (e.g., the results of tests, analyses, inspections) coupled with "backing" evidence to convey the trustworthiness of the direct evidence (e.g., that inspections were performed by trained personnel following accepted practices). The structured nature of the argument refers to its organization, necessary for presenting the case for the safety of a large and/or complex system. Overall, the argument must be compelling - it must convince people that a system is safe, comprehensible - understandable by people (the structured nature of the argument is important in this regard, so that humans can navigate and understand the safety case for a large and complex system), and valid - the argument must be consistent and complete, so that the safety claims of the system indeed follow from the structure of the argument and the evidence on which it based. The phrase safe for a given application in a given operating environment draws attention to the need to establish the context within which the safety case establishes that a system is safe. When the safety case concept is applied to properties other than safety, it is referred to in more general terms (e.g., "assurance case" or "dependability case").

In the aerospace domain, a retrospectively constructed dependability case for NASA Goddard's User Spacecraft Clock Calibration System was reported ${ }^{8}$. NASA's Constellation program recommended a dependability case as the means to document the properties required of flight software ${ }^{9}$, contemporaneously with a National Research Council study ${ }^{10}$ recommending them for critical software systems in general. Experience developing assurance cases for spacecraft safing were described in ${ }^{11}$. Particularly for aviation, assurance cases have received growing attention - see a recent summary ${ }^{12}$. For NASA System Safety, the closely related concept of a "Risk Informed Safety Case" (RISC) is described in ${ }^{13}$.

As reported in ${ }^{13}$, the now-prominent role of argumentation in safety cases traces back to ${ }^{14}$. The methodical construction of a safety case was a key theme of ${ }^{15}$, along with use of a graphical notation for presenting a case's argument. The "Goal Structuring Notation" (GSN) has emerged as a widely used such notation, and has been standardized by the GSN working group ${ }^{16}$. Software tools for creating, editing and viewing assurance cases (e.g., Adelard's ASCE ${ }^{\text {TM }}$, Astah's GSN editor, NASA Ames' AdvoCATE) generally support GSN. The use of these tools promotes the potential for linking evidence from the modeling environment to the safety or assurance case.

In addition to constructing assurance cases, there is the need to evaluate them. A case's argument may be invalid due to fallacies - see ${ }^{17}$ for a taxonomy of such. More subtly, it may be logically consistent, but provide inadequate or even incorrect evidence in support of one or more of the claims at its basis - a tragic example of such is the flawed safety case for the Nimrod aircraft, the construction of which is excoriated in ${ }^{18}$. Approaches to assessing the confidence to be had from an assurance case are discussed in ${ }^{19}$. Key to developing more effective safety cases is address uncertainties in the models and simulations that support the evidence in the case which in turn supports the claims that are the basis of assurance.

IV. Objectives Based Standards

The need for a new and flexible approach to assurance is clear as system engineering shifts gears toward modelbased systems engineering and as the assurance fields began to embrace the safety case approach ${ }^{1}$. The objectivesbased approach provides for this flexibility and increases the effectiveness of assurance activities by focusing on what is specifically important to mission success, rather than codifying a rigid set of processes. NASA announced this approach in 2014: https://sma.nasa.gov/news/articles/newsitem/2014/12/04/osma-introduces-new-objectives-basedstrategies. As stated there:
...The team (of Reliability and Maintainability (R\&M) subject matter experts) developed an objectives hierarchy for the R\&M discipline to systematically decompose technical considerations that form the basis for the discipline.
The resulting hierarchy is formed by a system of strategies and objectives that build upon each other to support the top objective, which states that "system performs as required over the lifecycle to satisfy mission objectives." The top objective is flanked by the program or project's requirements and contexts, which provide the framework for thinking about the objective.
The R\&M Hierarchy has four sub-objectives pertaining to the design conformance, longevity, tolerance to faults and failures, and maintainability. The sub-objectives are subsequently deconstructed into increasingly specific objectives and related design and assurance strategies, implicitly capturing the rationale for those lower-level strategies.
The concept utilizes elements of the Goal Structured Notation (GSN). GSN, developed at York University, defines logicbased structures and symbols to document safety or assurance cases. For the R\&M hierarchy, a modified version of GSN was used to specify the technical considerations that spaceflight projects are expected to address to support claims about the reliability and maintainability of a system.
Elements at the lowest levels of the hierarchy are sufficiently concrete to allow programs to select relevant R\&M tools and approaches to establish confidence that the considerations documented in the hierarchy are sufficiently addressed. This flexibility will support the emerging use of MBSE and MBMA in NASA. In addition, as shown in later sections of this paper, an objectives based strategy supports the development of effective safety and assurance cases by providing the starting point for their development. The top level of the Reliability and Maintainability objectives hierarchy developed by NASA is shown in Figure 4.

Figure 4. Top level of the reliability and maintainability objectives hierarchy.

V. Model Based Practices for Complex System Analysis

Model Based Systems Engineering (MBSE), embracing the Systems Modeling Language (SysML $\left.{ }^{\text {TM }}\right)^{20}$, is rapidly emerging in the aerospace industry as the predominant way to practice the synthesis and architecture development for
complex systems. MBSE offers significant opportunities across the life cycle of a project to enhance system development for complex architectures for both crewed and robotic systems. It provides for a consistent way to communicate information about the system requirements and the emerging system architecture to meet the requirements. The models, built in the SysML standard framework, become the central basis or "single truth" about the design, for the design team to interact with across disciplines.

Several types of models emerge from the SysML in practice. A requirements hierarchy describes the requirements of the system and structural models or functional block diagrams relate the functions of the system. Behavioral models such as use case diagrams and activity diagrams show how the system is used. Parametric models can incorporate mathematical relationships and constraints that can be extended in to the probabilistic realm.

SysML models also provide for significant advantages to the safety and assurance domain, providing opportunities for innovation, effectiveness and cost savings ${ }^{21,2}$. The basic SysML models provide an excellent approach to effectively incorporate safety requirements and analysis into complex systems as the architecture begins to emerge. Further the basic models emerging from SysML have been shown to be effective in identifying hazards and in formulating failure modes and effects analysis early in the development ${ }^{21,22}$. As an example, Mhenni et. al ${ }^{15}$ have shown for a pilot commanded electro mechanical actuator, which failure modes predominate, through structural and behavioral models. Work within NASA has shown that basic reliability models, including Reliability Block Diagrams, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA), can be synthesized from the SysML representations of structural and behavioral models in a highly-automated fashion, early in the development. This was shown be effective for a safety critical system for water purification essential to manned flight in space ${ }^{23}$ and is further discussed below.

By following the systems engineering (SE) processes and relying on the SysML as a standard way of capturing the multiple views required to understand the high level as well as the details of the spacecraft design, system design knowledge can be effectively communicated among all the stakeholders ${ }^{24}$. As part of the effort to develop a method to

Figure 5. SysML to: FMECA (top), FTA (bottom) Extraction Tools.
integrate Reliability and Maintainability (R\&M) activities into the SE process, a Fault Management (FM) meta-model was developed to describe the relationships between model elements. This meta-model includes the structural and behavioral elements of a system using the block definition diagram (BDD), internal block diagrams (IBD), and State Machine models. Along with the meta-model, a set of plugins was developed within the selected modeling tool (MagicDraw) to extract the information captured within the models and generate the different analysis tools supporting the R\&M activities. The plugins are able to automatically generate the Failure Modes, Effects, and Criticalities Assessment (FMECA) and Fault Tree outputs by traversing the models, as seen in Figure 5.

The FM modeling approach and tools were used on the Cascade Distillation System (CDS), a NASA/JSC project aimed at developing the next generation of Environmental Control and Life Support (ECLSS) support future human exploration missions beyond low earth orbit. CDS was a project that chose to use model based systems engineering tools and techniques for implementing system design and technical management processes. The CDS 2.0 system model used SysML representation and tools to extract design artifacts including FMECA and FTAs. By using the model based fault management engineering method, the CDS project has taken some early steps in embedding the R\&M activities from the early phases of the project. This has allowed the system engineer to identify the potential critical failures modes by the Preliminary Design Review, and proactively mitigate the risks associated with these failure modes ${ }^{25}$.

As projects advance, additional R\&M products will need to be generated from the SysML models in order to support the future Project Lifecycle Phases Reviews. The current focus is aimed at extending the meta-model to include information that will allow the generation of additional R\&M products such as PRA and RBDs. An initial PRA plug-in has been developed, using the FTA logic to traverse the model to assess probability attributes and determine contribution of all components. Extensions such as these will help to analyze and mature the design of systems and enable NASA to apply the method and tools to other spaceflight systems. Indeed, similar approaches are being pursued in JPL's application of MBSE to robotic missions, where methodology and tooling has been developed for leveraging fault and failure information in the system model to conduct PRA ${ }^{26,27}$. The next steps are to perform more complex analysis that included the application of Bayesian probability theory.

VI. Incorporating Advanced Models

The emergence of MBSE and MBMA creates many opportunities for enabling reliability and safety engineering for complex missions. Advanced models and simulations can be incorporated into the SysML environment, taking advantage of a semantically rigorous and complete representation of the architecture on which to perform analysis early on in the development. As shown in the previous discussion this includes traversing these system models to automatically generate fault trees, given the appropriate meta-model, from which an understanding of failure scenarios can be derived. Calculation of the probability of the top-level event follows from conventional treatment of this type of logic structure and is a straightforward analysis.

For more advanced analysis, the logic structure of the fault tree can be passed from the SysML framework to a more rigorous analysis environment. For example, SysML diagrams can be translated into executable models for use by MatLab

Figure 6. A notional diagram for SysML driven analyses. BNs will take on a greater role enabled by SysML constructs and compatible analytical environments for simulation.

Simulink \circledR^{28}. It follows that the SysML generated fault trees can also be translated in a similar manner. In the simulation environment, the fault tree can be operated on with more complex probability analysis. For example, an auto generated fault tree may be passed to MatLab Simulink, and with manipulation by analyst, and complexities in the system may be better addressed by dynamic analysis ${ }^{29}$. Fault trees also provide a logic structure consistent with Bayesian probability theory ${ }^{30}$.

Complexities in real systems can best be handled with Bayesian Nets (BN) which can extend the ability to understand the system reliability, incorporate multiple sources of data and manage both aleatory and epistemic uncertainties in a single consistent framework. The utility of Bayesian Nets has been demonstrated with many types of systems including human operated systems used for spaceflight communications at GSFC; they are readily adaptable to include many system complexities and are promoted for safety analysis by NASA. They are widely used to make inferences about Human-In-The-Loop systems to better understand human -system interactions, including for automotive operation for assisted driving ${ }^{31}$.

The authors contend that meta-models and plug-ins can be extended to develop BNs. As discussed, RBDs and FTs are readily extracted from traversing the SysML models given the correct SysML framework and meta-model. These logic structures can be converted to $\mathrm{BNs}^{32,}{ }^{33}$. Given a synthesized BN , it can be passed to a more rigorous analytical environment as described previously. Clearly, the integration of SysML with analytical languages (e.g., AltaRica), with scripting languages (e.g., Python) and with environments that support both design and analysis (e.g., Simulink®) are extending the capabilities of SysML to enhance safety and to perform analysis on highly complex systems. A framework reflecting this is proposed in Figure 6.

VII. Integrated Modeling Frameworks

The Reliability and Maintainability (R\&M) objectives hierarchy described earlier has been applied to create an assurance case for the radiation reliability of an experiment board with a science objective to count the number of upsets in a 28 nm commercial SRAM while on-orbit as part of a university CubeSat experiment. In Figure 7, a simplified diagram of the CubeSat experiment board is presented. The input power from the spacecraft is a regulated 3 V rail (blue boxes in Figure 9). This 3V primary power is divided to the different power domains by load switches to create a rail that supplies the parts in green and a rail that supplies the part in orange. There are three regulators on the board to provide the three voltage domains for the SRAM and are the red boxes parts in Figure 7. The load switches provide current limiting to protect against singleevent latch-ups on the board. These load switches also prevent high current conditions from propagating to the rest of the satellite. Load Switch A has an auto restart capability after a high current event and

Figure 7. Simplified Block Diagram of CubeSat Experiment Board modified from ${ }^{35}$. Load Switch B toggles a flag signal after a high current event. The load switches result in 5 isolated power domains on the experiment board. The microcontroller handles reading and writing to the SRAM, counting the number of upsets, and reporting the science data and health of the board on an I2C bus. The watchdog timer (WDT) is tasked to recover the microcontroller from single-event functional interrupts.

The assurance case for the radiation reliability of the experiment board was created using the Goal Structuring Notation (GSN) and SysML models implemented in WebGME, a web-based modeling tool that allows for the creation of domain-specific modeling languages ${ }^{34}$. SysML models supported in this platform include architectural models that are built from library of component/sub-system block diagram models. Internal block diagram models capture the faults and their propagation. Additionally, functional requirement models capture the high-level functional requirements and their decomposition into more specific and concrete functions.

The GSN model for the board is a graphical assurance case that decision makers will access to accept risk. It also documents how risk has been mitigated. This case is part of what is presented in reviews from early on to the Critical Design Review. The overall goal, or claim, of this assurance case is that "Systems remains functional for intended radiation environment in order to complete the science mission requirement." In order to complete this goal, understanding the radiation mechanisms and environment is required which is the overall strategy. Through understanding the radiation mechanisms, 2 sub-goals for the system emerge one, that the individual parts of the system can withstand the radiation stresses for the life of the missions, and two, that the system is tolerant to radiation faults and failure. This top-level case is presented in Figure 8.

Goal 2 is further argued in Figure 9 which presents a section of the part-level radiation tolerance assurance case. One way to show that the parts are tolerant to radiation is to perform radiation tests and present the results which is seen in Strategy 3, Goal 5, Goal 9 and Solution 2. If the part cannot be shown to be radiation tolerant, then a system-level mitigation scheme is implemented as seen in Strategy 5 and Goal 7.

Figure 10 makes the argument for the system-

Figure 8. Top-level Radiation Assurance Case level mitigation scheme of single-event effects. This includes detection (Goal 8), isolation (Goal 6), and recovery (Goal 10). The solution nodes can contain references to artifacts that serve as evidence such as test reports.

Figure 11 shows a functional decomposition model of the system. The lowest level functions are linked to components (references from architectural model) that provide the functionality. The GSN assurance case model can be linked to elements in other SysML models. The goals and strategy nodes in the GSN model can contain references (or links) to specific nodes in the functional model, architectural models and fault models. This allows for GSN models to interact with other models in an MBSE paradigm. Linking nodes in the GSN models to elements in other models helps establish the system-level context for the specific portions of the assurance argument. This context could be useful to track the functions, faults, components, and subsystems that are covered as part of the assurance and reliability argument and identify any gaps or inconsistencies particularly when system models evolve.

By organizing the assurance case into goals and child-goals, the logic of the argument for radiation reliability is made explicit in the graphical model. In addition, the model allows for the mission assurance objectives to fit into the larger MBSE paradigm for system design which provides the ability to manage greater complexity. Assumptions that are hidden within text arguments surface through the assumption nodes leading to rapid upfront consideration of reliability and safety. These arguments are eventually evaluated

Figure 9. Section of part-level radiation tolerance assurance case.
through system tests summarized in solution nodes. The end result of the GSN argument construction is an easy-to-follow graphical representation of factors affecting the radiation reliability of the CubeSat experiment that makes mitigation decisions and remaining risks transparent to a reliability review team which should improve the productivity of reliability reviews.

VIII. Conclusion

The forward looking pivot to Objectives based approaches from OSMA and the emergence of MBSE and other model-based thinking has provided significant opportunities for the Assurance community. The ability to directly and quickly access "authoritative sources of truth", the context in which they are found and the ability to use machines to mine, identify and correlate nearly any piece of information has the potential to revolutionize the way the various assurance disciplines are performed. While the integrated Model-Based Mission Assurance approach is still nascent, the various elements required to develop and implement this approach are moving forward rapidly.

Figure 10. Section of system-level radiation tolerance assurance case.

Figure 11. Function decomposition with references to system model.

Acknowledgements

This research was carried out at NASA HQ, NASA Johnson Space Center, Vanderbilt University, Jet Propulsion Laboratory, California Institute of Technology (under a contract with the National Aeronautics and Space Administration, sponsored by the NASA Office of Safety and Mission Assurance) and Goddard Space Flight Center. We thank Director Ken Vorndran for his useful insights and comments.

References

${ }^{1}$ Groen, F.J., Evans, J.W. and Hall, A.J., "A Vision for Spaceflight Reliability: NASA's Objectives Based Strategy," 2015 Annual Reliability and Maintainability Symposium (RAMS), pp. 1-6. IEEE, 2015.
${ }^{2}$ Evans, J., Cornford, S., and Feather, M.S., "Model Based Mission Assurance: NASA's Assurance Future" 2016 Reliability and Maintainability Symposium (RAMS), pp. 1-7. IEEE, 2016.
${ }^{3}$ NASA "NASA's Journey to Mars - Pioneering Next Steps in Space Exploration," NP-2015-08-2018-HQ, 2015.
${ }^{4}$ Smitheran, D., and Griffin, B.N., "Habitat Concepts for Deep Space Exploration," AIAA Space 2014 Conference and Exposition, AIAA, vol. 4477, 2014.
${ }^{5}$ Mhenni, F., Choley, J-Y., Riviere, A., Nguyen, N., and Kadima, H., "SysML and Safety Analysis for Mechatronic Systems," Mechatronics (MECATRONICS), 2012 9th France-Japan \& 7th Europe-Asia Congress on and Research and Education in Mechatronics (REM), 2012 13th Int'l Workshop on, pp. 417-424. IEEE, 2012.
${ }^{6 " R e s e a r c h ~ C h a l l e n g e s ~ i n ~ M o d e l i n g ~ \& ~ S i m u l a t i o n ~ f o r ~ E n g i n e e r i n g ~ C o m p l e x ~ S y s t e m s, " ~ N S F / N A S A / A F O S R / N T S A / N M S C ~}$ Workshop Report, September 2016, Arlington, VA. (available at http://trainingsystems.org/publications/Research-Challenges-in-Modeling-and-Simulation-for-Engineering-Complex-Systems.pdf).
${ }^{7}$ U.K. Ministry of Defence, "Safety Management Requirements for Defence Systems." Defence Standard 00-56, Issue 4, June 2007.
${ }^{8}$ Weinstock, C.B., Goodenough, J.B., and Hudak, J.J., "Dependability Cases." CMU/SEI-2004-TN-016, Software Engineering Institute, 2004.
${ }^{9}$ NASA, "Constellation Program Computing System Requirements," CxP 70065, 2007.
${ }^{10}$ Jackson, D., Thomas, M., and Millett, L.I., (eds), Software for Dependable Systems: Sufficient Evidence? National Academies Press, 2007.
${ }^{11}$ Nguyen, E.A. and Alex G. Ellis. A.G., "Experiences with assurance cases for spacecraft safing," 22nd International Symposium on Software Reliability Engineering (ISSRE), pp. 50-59. IEEE, 2011.
${ }^{12}$ Rinehart, D.J., Knight, J.C., and Rowanhill, J., Current Practices in Constructing and Evaluating Assurance Cases With Applications to Aviation, NASA/CR2015-218678.
${ }^{13}$ NASA, "NASA System Safety Handbook," NASA/SP-2010-580, 2010.
${ }^{14}$ McDermid, J.A., "Support for Safety Cases and Safety Arguments using SAM," Reliability Engineering and System Safety, 43, pp. 111-127, 1994.
${ }^{15}$ Kelly, T.P., "Arguing Safety - A Systematic Approach to Managing Safety Cases," Ph.D. Dissertation, University of York. http://www-users.cs.york.ac.uk/tpk/tpkthesis.
${ }^{16}$ Origin Consulting (York) Limited, "GSN Community Standard Version 1," November 2011, http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
${ }^{17}$ Greenwell, W.S., Knight, J.C., Holloway, C.M., and Pease, J.J., "A Taxonomy of Fallacies in System Safety Arguments," NASA NTRS, 2006 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060027794.pdf
${ }^{18}$ Haddon-Cave, C., The Nimrod Review: an independent review into the broader issues surrounding the loss of the RAF Nimrod MR2 aircraft XV230 in Afghanistan in 2006 HC 1025, The Stationery Office, London, 2009.
${ }^{19}$ Duan, L., Rayadurgam, S., Heimdahl, M., Ayoub, A., Sokolsky, O., and Lee, I., "Reasoning About Confidence and Uncertainty in Assurance Cases; A Survey," Software Engineering in Health Care, 2014.

20"OMG Systems Modeling Language," http://www.omgsysml.org
${ }^{21}$ Cressant, R., David, P., Idiasiak, V., and Kratz, F., "Increasing Reliability of Embedded Systems in a SysML Centered MBSE Process: Application to LEA Project," M-BED 2010, Dresden, Germany, 2010.
${ }^{22}$ Scholz, S., and Thramboulidis, K., "Integration of Model-based Engineering with System Safety Analysis," International Journal of Industrial and Systems Engineering, 15(2), (2013) 193-215.
${ }^{23}$ Izygon, M., Wagner, H., Okon, S., Wang, L., Sargusingh, M.J., and Evans, J., "Facilitating R\&M in Spaceflight Systems with MBSE," 2016 Reliability and Maintainability Symposium (RAMS), pp. 1-6. IEEE, 2016.
${ }^{24}$ Wang, L., Izygon, M., Okon, S., Garner, L., and Wagner, H., "Effort to Accelerate MBSE Adoption and Usage at JSC," AIAA Space 2016, p. 5542, 2016.
${ }^{25}$ Sargusingh, M. J., Okon, S., and Callahan, M. R., "Cascade Distillation System Design for Safety and Mission Assurance," 45th International Conference on Environmental Systems, 2015.
${ }^{26}$ Castet, J.F., Bareh, M., Nunes, J., Jenkins, S., and Lee, G., "Fault Management Ontology and Modeling Patterns," AIAA SPACE 2016, p. 5544, 2016.
${ }^{27}$ Schreiner, S.S., Rozek, M.L., Kurum, A., Everline, C.J., Ingham, M.D., and Nunes, J.A., "Towards a methodology and tooling for Model-Based Probabilistic Risk Assessment PRA," AIAA SPACE 2016, p. 5545, 2016.
${ }^{28}$ Chabibi, B., Douche, A., Anwar, A., and Nassar, M." Integrating SysML with Simulation Environments (Simulink) by Model Transformation Approach," Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2016 IEEE 25th International Conference on, pp. 148-150, IEEE.
${ }^{29}$ Dugan, J.B., Sullivan, K.J., and Coppit, D., "Developing a Low-Cost High-Quality Software Tool for Dynamic Fault-Tree Analysis," IEEE Transactions on Reliability, 49(1), pp. 49-59, 2000.
${ }^{30}$ Kelly, D.L., and Smith, C.L., "Bayesian Inference in probabilistic risk assessment-the current state of the art," Reliability Engineering and Systems Safety, 94(2), pp 628-643, 2009.
${ }^{31}$ Kumagai, T., Sakaguchi, Y., Okuwa, M., and Akamatsu, M., "Prediction of Driving Behavior through Probabilistic Inference," Proc. $8^{\text {th }}$ International Conference on Engineering Applications of Neural Networks, pp. 117-123. September, 2003.
${ }^{32}$ Dorociak, R., "Early Probabilistic Reliability Analysis of Mechatronic Systems," 2012 Reliability and Maintainability Symposium (RAMS), pp. 1-6. IEEE, 2012.
${ }^{33}$ Torres-Toledano, J.G., and Succar, L.E., "Bayesian Networks for Reliability Analysis of Complex Systems," IberoAmerican Conference on Artificial Intelligence. Springer Berlin Heidelberg, 1998.
${ }^{34}$ Maroti, M., Kecskes, T., Kereskenyi, R., Broll, B., Volgyesi, P., Juracz, L., Levendoszky, T., and Ledeczi, A., "Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure," 8th Multi-Paradigm Modeling Workshop, MoDELS, pp. 41-60, 2014.
${ }^{35}$ Witulski, A., Austin, R., Evans, J., Mahadevan, N., Karsai, G., Sierawski, B., LaBel, K., Reed, R., and Schrimpf, R., "Goal Structuring Notation in a Radiation Hardening Assurance Case for COTS-Based Spacecraft," GOMAC Tech 2016 Government Microcircuits Applications \& Critical Technologies Conference, Orlando FL, 2016, available from http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160005315.pdf

[^0]: ${ }^{1}$ Program Manager for Reliability and Maintainability and Program Executive for the NASA Electronic Parts and Packaging Program at NASA HQ Office of Safety and Mission Assurance.
 ${ }^{2}$ Director, NASA Office of Safety and Mission Assurance.
 ${ }^{3}$ Technical Expert domain lead, NASA Johnson Space Center.
 ${ }^{4}$ Graduate Student in Electrical Engineering, Vanderbilt University.
 ${ }^{5}$ Research Associate Professor of Electrical Engineering, Vanderbilt University.
 ${ }^{6}$ Systems Architect, Institute for Software Integrated Systems, Vanderbilt University.
 ${ }^{7}$ Senior Engineer, Strategic Systems Office, JPL.
 ${ }^{8}$ Principal, Software Assurance and Assurance Research, JPL.
 ${ }^{9}$ Engineer, Goddard Space Flight Center.

