
Deep Learning-Powered Insight 

from Dark Resources

Manil Maskey, Rahul Ramachandran
Ritesh Pradhan, and JJ Miller

NASA/MSFC - Data Science Informatics Group
University of Alabama in Huntsville

AGU Fall Meeting
December 16, 2016



Outline
• Motivation

• Why Deep Learning?

• Applications

• Analysis



Motivation
• Earth Science Images

~70+ million browse images

-basic metadata

• Under-exploited

• Can we use browse imagery 
-to enable discovery of possible new case studies?

-to perform exploratory analytics?

• Image Analytics

• Component of “Dark Data” – NASA AIST Project



Image-based Analytics
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• Goal: Earth science image based tasks:

 Image Retrieval

 Image Classification

 Object Recognition

 Exploration

• Challenge: “semantic gap”

Low-level image pixels and high-level semantic 

concepts perceived by human



Traditional Image Recognition Approach

• Image features: Color, Texture, Edge 

histogram, …

• “Shallow” architecture

• User defines the feature

• Preliminary study

Hand-crafted

Feature Extractor

“Simple”

Trainable Classifier

(static) (learns)



“Deep” Architecture 

• Features are key to recognition

• What about learning the features?

• Deep Learning

– Hierarchical Learning

– Mimics the human brain that is organized in a deep 

architecture 

– Processes information through multiple stages of 

transformation and representation

Trainable

Feature Extractor
Trainable Classifier

(learns) (learns)



Convolutional Neural Network
• Convolutional Neural Network (CNN)

– Deep Learning for supervised image feature learning
• Nearby pixel values are correlated

– Supervised
• Ideal for Image Recognition

– Feed forward

– Convolution
• Weighted moving sum (window)

• Multiple convolutions (Different Filters)

• Detects multiple motifs at each location

• Results in a 3D array – each slice: a feature map

• Translation Invariant

• Local correlation

• Global representation

• Little pre-processing

• No/little expert feedback for feature extraction

• Avoids overfitting

• Highly scalable



CNN Features
• Local receptive fields

– Learns particular local part of the input

• Sparse connectivity
– Local representation (lower layers)

– Larger overview and abstract (higher layers)

– Maintains spatial local correlations

• Shared weights
– Detect exactly same feature at different location

– Reduce the number of parameters to be learned

• Pre-processing
– Input with very little pre-processing



Layers

• Convolutional Layer

• Pooling Layer

• Normalization Layer

• ReLU Layer

• Fully Connected Layer

• Loss Layer



Convolutional layer
• Convolution
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Convolutional Layer

• Depth (d)

– Number of filters

– Different depth slices activates different features

– Stacked feature maps from all filters gives 3D output volume

Convolutional input volume (red) and output volume (green)



Pooling Layer
• Reduces number of parameter through down sampling

• Max-pooling
– Selects maximum activated pixel in pooling region

– Simple

– Computationally Efficient

– Preserves translation invariance



Fully Connected Layer

• Similar to regular neural network

• Transition from series of convolutional and pooling layers

• Produces single output vector (w=h=1 output volume)



Hyperparameters

• Number of convolutional filters

• Size of convolutional filters

• Size of pooling filters

• Stride

• Padding

• Local size for normalization

• Dropout ratio

• Weight decay

• Learning rate

• Momentum



Applications
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• Improving Forecast Operations

• Searching for Events

• Image signature identification for 

Transverse bands

• Enabling New Science
– Dust Climatology



Application:

Improving Forecast Operations
Collaboration with Dan Cecil, NASA/MSFC



Tropical Cyclone Intensity Estimation
• Hurricane Intensity: based on Maximum Sustained Wind (MSW).

• Saffir-Simpson Hurricane Wind Scale (SSHWS)



Intensity Estimation Techniques
• The Dvorak technique

– Vernon Dvorak (1970s)

– Satellite-based method

– Cloud system measurements

– Development patterns corresponds to T-number

• Deviation-angle variation technique (DAVT)

– Piñeros et al. 

– Variance for quantification of cyclones

– Calculates using center (eye) pixel

– Directional gradient statistical analysis of the brightness of images

Source: Dvorak, V. F., 1973: A technique for the analysis and forecastingof tropical cyclone intensities from 

satellite pictures. NOAATech. Memo. NESS 45, Washington, DC, 19 pp.

Source: Elizabeth A. Ritchie, Kimberly M. Wood, Oscar G. Rodriguez-Herrera, Miguel F. Pineros, and J. Scott Tyo. 

Satellite-derived tropical cyclone intensity in the north pacific ocean using the deviation-angle variance technique, 2014.



Problems

• Lack of generalizability

• Inconsistency

• Subjective

• Complexity

• Significant pre-processing



Architecture



Configurations

• 8 layers deep

• 5 convolutional layers

• 3 fully connected layers

• ~37.5 million 

parameters learned



Dataset
• Image data

– US Naval Research Laboratory (http://www.nrlmry.navy.mil/tcdat)

– 1998 to 2014

– 15 minute interval

– 98 cyclones (68 Atlantic and 30 Pacific)

• Wind speed data
– National Hurricane Center (http://www.nhc.noaa.gov) (Best track data: HURDAT and HURDAT2)

– Hurricane Research Division (http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html)

– 6 hour interval



Cyclones



Data Augmentation
• Interpolate to increase even more

• NRL images for every 2 hour – wind speed interpolation

• Image transformation 

– Original

– 90 degree rotation

– 180 degree rotation

– 270 degree rotation

– Other..

Example image difference: 2hr interval, wind speed interpolation 



Training/Test/Validation split
• (Training + Validation) 70% - 30% (Test)

• (Training) 75% - 25% (Validation)



Training
• Preprocessing

– Resize to 232 x 232 for input

– Subtract image mean from training images

• GRID K520 4GB GPU

• Stopped at 90% validation accuracy

• 65 epochs in 8 hours

• Caffe framework 



Visualization

Feature maps from second convolution



Performance

• Model with around 90% of validation accuracy

• 14,345 test images (Atlantic + Pacific)

• Measures

– Confusion Matrix

– Classification Report

– Accuracy

– RMS Intensity Error



Confusion Matrix



Classification Report



RMS Intensity Errors

• Our model

– Across Atlantic and Pacific

– Achieved RMSE of 9.19kt

• North Atlantic

– Piñeros et al. (2011): 14.7kt 

– Ritchie et al. (2012): 12.9kt 

• North Pacific

– Ritchie et al. (2014): 14.3kt 



Correct Predictions



Incorrect Predictions



Application:

Searching for Events



Searching for Events 
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• Labeled Data
– MODIS Rapid Response

• Experts manually labeled ~850 images

• 4 classes: 
– Hurricane, Dust, Smoke/Haze, Other

• Final Dataset
– images transformation 

» (flip, transpose, rotate, random patch)

– Total ~5000 images 

– 70% for training and validation

• Test Data
• 30% of Labeled data

• Unseen by CNN trained model

– Global Browse Image Service (GIBS)
• MODIS_Aqua_CorrectedReflectance_TrueColor tiles for 2012 - classified against 

trained model



Searching for Events - Results
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Confusion Matrix

Overall Accuracy = 87.88% 

Hurricane – True Positive Dust – True Positive Smoke– True Positive



Hurricane – True Positive

Hurricane – False Negative

Dust – True Positive

Dust – False Positive

Smoke– True Positive

Smoke– False Positive

Searching for Events - Results



Application:
Image signature identification for 

Transverse bands 



Image signature identification for Transverse 

bands
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• Found in association with  multiple types of 

phenomena.
• Hurricanes, Jet-Streaks, Mesoscale Convective Systems 

(MCS)

• Associated with differing levels of aviation 

turbulence

• Problem:
• Identify transverse cirrus bands in MODIS True 

Color imagery.

• Relatively small scale features (1-10 km wide). 

•



Methodology

• Data
– 5440 images (1 km MODIS RGB)

• 1741 with transverse bands

• 3699 without transverse bands

– 20% for validation 

– 600 separate images for testing

• Architecture
– VGG16 architecture

– Replaced fully connected layers with global average pooling layer

– First seven layers frozen (not trained)
– Keras (Python)

– NVIDIA GTX 960 GPU

• Classify 2013 GIBS tiles

• Geolocate transverse cirrus bands



Training Results
• Model trained for 52 epochs (6 hrs)

• Highest validation accuracy 

occurred at epoch 41 (0.937)

• Testing on the test set:

– Accuracy: 94.67%

• Class activation maps show that 

the network is able to identify the 

regions of the image that contain 

transverse bands.



Classifying 2013 GIBS tiles

• Some interesting areas stand out
– Eastern coast of India

– Western coast of Mexico/California

– Southeastern coast of South America

• Jet stream appears to play a 

large role

• Eastern and Central US more 

than likely due to MCSs



Application:
Enabling New Science
Dust Climatology

Collaboration with Sundar Christopher, UAH 



Enabling new science

• Dust Climatology

• Dataset

– Manually created truthset

• Dust/No Dust classification on GIBS tiles



Enabling new science
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Validation 

Accuracy = 91% 

Confusion Matrix



Analysis

• Accuracy outperformed traditional approaches

• Training data

• Automatic validation of images

• Hyperparameters
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