Applying new seismic analysis techniques to the lunar seismic dataset

Presenting → Dr. Jesse-Lee Dimech* Dr. Renee C. Weber*1 Dr. Brigitte Knapmeyer-Endrun** Prof. Martha Savage*** A. Prof. Richard Arnold***

* Marshall Space Flight Center (NASA Postdoc)
*¹ Marshall Space Flight Center
** Max Planck Institute for Solar System Research
*** Victoria University of Wellington

Apollo 17 astronaut returning to rover, source: NASA

Apollo lunar seismic datasets

- 1. A network of **4 passive seismic stations** operated on the Moon (1969-1977)
- 2. Continuous geophone and gravimeter data available at station Apollo 17.
- Objective is to apply new seismic analysis techniques to this dataset to learn more about the Moon's internal structure.
- Work is partially motivated by the InSight mission to Mars, as new techniques which work on Moon might also work on Mars.

1. Introduction \rightarrow 2. Preliminary results (HMM) \rightarrow 3. Preliminary results (SWS) \rightarrow 4. Summary + Conclusions

New seismic analysis techniques being applied in this project

- 1. Moonquake detecting/classification based on a pattern recognition tool based on "Hidden Markov Models"
- 2. Anisotropy measurements of the lunar mantle/crust using "shear-wave splitting"
- 3. Focal mechanism information using a probabilistic (Bayesian) technique to quantify uncertainty.

Only have time to properly discuss one of these

Following sections will go into (1) in more detail + preliminary results

Image sources: Wikimedia group (Creative Commons)

Event detection using Hidden Markov Models on Apollo 17 dataset

- 1. To our knowledge an event catalog does not exist for the Apollo 17 "listening mode" geophone data recorded between 1976/1977.
- 2. Good reason for this, this is 6 hours of filtered listening mode data:

- 3. Ideal target for "Hidden Markov Models". This technique allows us to automatically build an earthquake catalog without human effort being required, and does classification automatically.
- 4. Has been recently and successfully applied to Apollo 16 by Knapmeyer-Endrun et al. 2016

How HMM's work

- A continuous data stream can be represented as a set of features (A)
- 2. Features for a given event (**B**) change over time with respect to one another
- 3. Their evolution traces unique path in ndimensional feature space (**C**)
- The path is then modelled as a sequence of multidimentional PDF's (D)
- This sequence can be searched for to detect and classify other broadly similar events.

Feature 2

Event detection

1. Apollo 17 dataset was scanned for "interesting events" to be event templates:

2. Templates were run against continuous database, which detected and classified events, e.g.

3. There are a lot of missed events and questionable detections, the code requires further optimization.

Histogram of all events

- 1. Total of 14,338 detections in a 2.5 month period
 - 1. 10,004 d1 detections
 - 2. 672 n1 detections
 - 3. 3662 d2 detections
- 2. Looking at histogram peaks are evident at regular intervals

Histogram of all events

1. Cross-checking with historical moon phases reveals peaks are associated with sunrise/sunset

Histogram for d1 events

- 1. Event class d1 shows strong diurnal behavior
- 2. Only around sunset, no peak at Sunrise.
- 3. These are probably small thermal moonquakes in the regolith.

Lunar topsoil and rocks, source: NASA

Histogram for n1 events

 Event class n1 has localised peaks at sunrise from a nearby source (e.g. lunar module).

Apollo 17 geophone and lander, source: NASA

- 1. Event class d2 has peaks associated with both sunrise and sunset.
- 2. Possible we are getting incorrect class detections (n1 and d1 events), further QC required to check.
- 3. Possible that we are seeing something else in the signal, e.g. 3 other peaks in data.
- 4. Currently no preferred interpretation for these events.

Future work

- 1. Continue detecting/classifying Apollo 17 geophone events
 - 1. Refining parameters should result in more detections
 - 2. Will be many times larger than the Apollo seismic catalog when finished
- 2. Detect/classify events using Apollo 17 gravimeter data as well, and compare to recently published results.
- 3. Extend HMM to the full Apollo dataset when SEED data is available. Very interested in talk to group who is involved in the conversin!

BACKUP SLIDES

Shear-wave splitting measurements

1. Continue detecting/classifying Apollo 17 geophone events, and move onto Apollo 17 LSG data....

First shear-wave splitting measurement of Lunar data

Results fast: 93.0 +/- 5.0 (°) $\delta t = 1.453 +/- 0.038$ (s)