

Jet-Surface Interaction – High Aspect Ratio Nozzle Test Test Summary

Cliff Brown *

NASA Glenn Research Center April 20, 2016

*

Jet-Surface Interaction Noise Test Programs

Motivation: Turbo-electric Distributed Propulsion Concept (TeDP)

- Divided into 2:1 at exit
- Electric fan has low pressure ratio, low temperature ratio
- Aft deck extends (estimated) 1-4 slot heights downstream

Goals for JSI-HAR

- 1. Extend current database to larger aspect ratio nozzles
- 2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
- 3. Acquire data suitable for creating / validating empirical jetsurface interaction noise models
- 4. Investigate the effect of nozzle septa on the jet-mixing and jetsurface interaction noise sources

1. <u>Design</u> and test 3 nozzles (listed by priority):

- 1. 16:1 aspect ratio extend current database to higher aspect ratios
- 2. 8:1 aspect ratio verify/connect small-scale database to larger-scale
- 3. 12:1 aspect ratio midpoint to allow a second-order modeling

- 1. <u>Design</u> and test 3 nozzles (listed by priority):
 - 1. 16:1 aspect ratio extend current database to higher aspect ratios
 - 2. 8:1 aspect ratio verify/connect small-scale database to larger-scale
 - 3. 12:1 aspect ratio midpoint to allow a second-order modeling

- 1. Design and test 16:1, 8:1, 12:1 aspect ratio nozzles
- 2. Add aft decks / surfaces onto nozzles
 - 1. Acquire data for modeling JSI source and shielding effect

- 1. Design and test 16:1, 8:1, 12:1 aspect ratio nozzles
- 2. Add aft decks / surfaces onto nozzles
- 3. Design and test nozzle septa inserts
 - 1. "Open" no septa insert effect of aspect ratio on jet mixing noise
 - 2. 2:1 / 7 septa inserts similar to the TeDP concept
 - 3. 1:1 / 15 septa insert effect of varying number of septa
 - 4. Other variations

2:1 / 7 septa

1:1 / 15 septa

NASA

16:1 Nozzle Design

- Significant vorticity near corners
- Attached flow along outboard edge of major axis (BL thickness still significant)
- No normal shocks at nozzle exit
- Continuous area contraction helps
 Significant wake from center vane (added for structural support)
- Brown & Dippold, TWG Fall 2015
- Dippold, V., "Design and Analyses of High Aspect Ratio Nozzle for Distributed Propulsion Acoustics Measurements", AIAA Aviation 2016 Conference

9

Flow Profile at Nozzle Exit

- 2:1 / 7 septa insert installed for JSI-HAR but not in WIND-US
- Total pressure measured 0.25" downstream of nozzle exit
- No indication of vortex in JSI-HAR
 - 1 Hz averaged pressure data would not likely pick this up even if present
- Flat profile between septa
- Losses slightly higher in JSI-HAR data

Goals for JSI-HAR

- 1. Extend current database to larger aspect ratio nozzles
- 2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
- 3. Acquire data suitable for creating / validating empirical jetsurface interaction noise models
- 4. Investigate the effect of nozzle septa on the jet-mixing and jetsurface interaction noise sources

Extend to Higher Aspect Ratios

- Compare spectra to:
 - Show effect of nozzle aspect ratio
 - Connect to existing database via trends
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Nozzles with different sizes
 - $-2:1, 4:1, 8:1 -> Area = 3.57 in^2$
 - 16:1 -> Area = 33.7 in²
- Scale:
 - Frequency as Strouhal number based on nozzle height
 - Distance to 100 equivalent jet diameter
- Trends follow from small to large scale across test programs

Goals for JSI-HAR

- 1. Extend current database to larger aspect ratio nozzles
- 2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
- Acquire data suitable for creating / validating empirical jetsurface interaction noise models
- 4. Investigate the effect of nozzle septa on the jet-mixing and jetsurface interaction noise sources

Jet-Surface Interaction (JSI) Noise Sources and Effects

- Measured far-field noise includes:
 - Jet-surface interaction noise sources
 - Jet mixing noise (isolated)
 - Shielding/Reflecting effect
- Types of JSI noise sources
 - Surface loading ("scrubbing") noise
 - Trailing edge ("scattering") noise
 - Surface vibration noise
- Data acquired for surface lengths
 x_E/h = 0.83, 2, 4, 6, 8, zero standoff

Extend to Larger Scale

- Compare spectra to:
 - Effect surface at increase aspect ratios
 - Connect to existing database via trends
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Surface length, x_E/h = 6
- Scale:
 - Frequency as Strouhal number based on nozzle height
 - Distance to 100 equivalent jet diameter
- Trends follow from small to large scale across test programs

Noise Impact of Surface

- Compare spectra to:
 - Show effect of adding surface
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Aspect ratio 16:1
- Surface length, x_E = 8h
- JSI source maybe large relative to shielding
- Model to full-scale factor matters

Noise Impact of Surface Length

- Compare spectra to:
 - Show effect of surface length
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Aspect ratio 16:1
- Shorter surface may give high frequency shielding with smaller low frequency penalty at 90°
- All surfaces produce more high frequency noise than isolated <u>at</u> 150°

Noise Impact of Observer Azimuthal Angle

- Compare spectra to:
 - Show effect sideline
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- 16:1, $x_F/h = 4$
- Significant changes at downstream observer angles as azimuthal angle changes

Noise Impact of Nozzle Septa

- Compare spectra to:
 - Show effect nozzle septa
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- 16:1, no surface
- Septa create tone to major axis observer that grows with number of septa

Summary of JSI-HAR

- 1. Extend current database to larger aspect ratio nozzles
 - Acquired data with 16:1 nozzle
- 2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
 - Trends with and without surfaces appear to follow from previous work
- 3. Acquire data suitable for creating / validating empirical jetsurface interaction noise models
 - Acquired data over a range of surface lengths
- 4. Investigate the effect of nozzle septa on the jet-mixing and jetsurface interaction noise sources
 - Data acquired with 3 septa configurations
 - What's next?

Goals for JSI-HAR

- 1. Extend current database to larger aspect ratio nozzles
- 2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
- Acquire data suitable for <u>creating</u> / validating empirical jetsurface interaction noise models
- 4. Investigate the effect of nozzle septa on the jet-mixing and jetsurface interaction noise sources

JSI Source and Effect Modeling

- Empirical models have been developed for round nozzles near surfaces
- First-order modeling for rectangular nozzles based on these round nozzle models suggest:
 - Scaling distances and frequency on nozzle height
 - Adjusting potential core length
- Jet potential core length is nondimensionalizing parameter
 - Data were acquired with 16:1 nozzle to estimate potential core length

Jet Potential Core Length

- JSI source and shielding effect models both depend on jet potential core length (x_C)
- Surface length in model is x_F/x_C
- Jet potential core length is approximately 7.75" for Ma=0.7, unheated jet
- Model for round jet would give $x_C/D_e \approx 5.13$
- If rectangular nozzle scales by h instead of D_e, $x_{\rm C}/h \approx 5.13 -> x_{\rm C} \approx 7.7$ "

Jet Potential Core Length

- Modeled prediction with adjusted scaling parameters for rectangular nozzles
- Peak frequency shift
- Approximate right peak amplitude (JSI source driven)
- Spectral shape off at high frequencies
- More development needed!

Questions?

Summary

- A round-to-rectangular convergent nozzle with aspect ratio 16:1 was designed for acoustic measurements
 - Minimized potential noise sources from: (1) internal flow separation and
 (2) shock cells
- 16:1 aspect ratio nozzle fabricated for testing
 - Inserts to simulate TeDP concept details (septa) rapid prototyped
- Pressure traverse at nozzle exit shows expected flow profile
- Preliminary analysis of noise data consistent with previous experiments
 - JSI noise source prominent at low frequencies
 - Shielding at only the highest frequencies
- Test on-going through October
 - Baseline (no septa), 2:1 / 7 Septa inserts planned

* Clifford.A.Brown@NASA.gov