Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center

J. Douglas Kiser\(^1\), Joseph E. Grady\(^1\), Ramakrishna T. Bhatt\(^2\), Valerie L. Wiesner\(^1\)

Ceramic & Polymer Composites Branch

and

Dongming Zhu\(^1\)

Environmental Effects and Coatings Branch

\(^1\) NASA (National Aeronautics and Space Administration) Glenn Research Center

\(^2\) Ohio Aerospace Institute (at NASA GRC)
• John H. Glenn Research Center (GRC) at Lewis Field is one of nine National Aeronautics and Space Administration (NASA) Centers

• Originally: NACA (National Advisory Committee on Aeronautics) Engine Research Laboratory (Refr. 1)
NASA Glenn Core Competencies

- Air-Breathing Propulsion
- In-Space Propulsion and Cryogenic Fluids Management
- Physical Sciences and Biomedical Technologies in Space
- Communications Technology and Development
- Power, Energy Storage and Conversion
- Materials and Structures for Extreme Environments
Overview

- SiC/SiC CMCs and EBCs (environmental barrier coatings)
- Background information / Applications
- Current and Future NASA GRC CMC/EBC Research

Acknowledgment
The GRC CMC R&D described in this presentation was performed or is being performed primarily by Materials and Structures researchers and technologists
SiC/SiC CMCs: Applications and Need for Coatings

- SiC/SiC (SiC fiber reinforced SiC matrix) CMCs are being developed for / utilized in aircraft gas turbine engine hot section component applications (T ≥ 2200°F (1204°C)) (Refr. 2, 3).
- These CMC components will have an environmental barrier coating (EBC), which is a protective, multilayer oxide surface coating to prevent environmental degradation.
SiC/SiC Components for Gas Turbine Engines: Benefits

- Reduced component weight (1/3 density of superalloys)
- Higher temperature capability/increased thermal margin
- Reduced cooling requirements
- Improved fuel efficiency
- Reduced emissions (NO$_x$ and CO)

Refr. 2, 4
NASA Glenn—
Fiber / CMC / EBC R&D, Leadership, and Teaming

• We have been leaders in the assessment and development of SiC fibers, SiC/SiC CMCs, and EBCs for application in advanced, efficient gas turbine engines for decades.

• We have collaborated with Industry, Academia, and DOD (Department of Defense) Labs for over 25 years.
Early 1990s: The NASA Enabling Propulsion Materials (EPM) Program allowed NASA to work closely with Industry to tackle a broad range of CMC technologies (including EBCs) required to reduce NO\textsubscript{x} emissions and airport noise through advancements in enabling materials (Refr. 5, 6).

Development of MI (Melt Infiltrated) SiC/SiC for Combustor Liner Application

* CVI—Chemical Vapor Infiltration
CVI and MI SiC/SiC CMC Manufacturing Processes

SiC Fiber

Weave into 2D Fabric or 3D Preform

CVI Interphase (Fiber Coating) Deposition [BN]

Place in Tooling

Stacked 2D Fabric or 3D Preform

CVI SiC Matrix Deposition

Reactor

Dense Slurry Cast Melt Infiltrated (MI) SiC/SiC

Furnace

Slurry Cast SiC Particles Into Porous “Preform”

CVI Preform

CVI Preform

no free silicon in matrix

CVI*—Chemical Vapor Infiltration

CVI—Chemical Vapor Infiltration
Example of the Microstructure of a 2D SiC/SiC CMC*

As-Fabricated Slurry Cast Melt Infiltrated (MI) SiC/SiC Material
Polished Section—Examined With FESEM

90° SiC Fiber Tow

0° SiC Fiber Tow

MI SiC Matrix

* Fabricated by GE Power Systems Composites
Example of the Microstructure of a 2D SiC/SiC CMC*

As-Fabricated Slurry Cast Melt Infiltrated (MI) SiC/SiC Material
Polished Section—Examined With FESEM

- MI SiC Matrix
- Si
- SiC
- BN Fiber Coating
- CVI SiC
- Surrounding BN Interphase
- Sylramic™ SiC Fibers

* Fabricated by GE Power Systems Composites
The NASA Ultra-Efficient Engine Technology (UEET) Program continued the advancement of Melt Infiltrated (MI) SiC/SiC CMC and EBC technology for commercial aircraft engines (Refr. 7 - 10).

GRC has further developed “High Temperature” SiC/SiC (no free silicon in matrix) and EBCs for use above 2600°F (1427°C) in subsequent NASA Programs/Projects including:

- Next Generation Launch Technology (NGLT) Project
- Hypersonics Project
- Supersonics Project
- Aeronautical Sciences (AS) Project
- Environmentally Responsible Aviation (ERA) Project
- Transformational Tools and Technology (TTT) Project
SiC/SiC Components for Gas Turbine Engines: Benefits

- Reduced component weight (1/3 density of superalloys)
- Higher temperature capability/increased thermal margin
- Reduced cooling requirements
- Improved fuel efficiency → further increase with 2700°F CMC components
- Reduced emissions (NO\textsubscript{x} and CO)

Incentive to Increase Engine Operating Temperatures
Current / Future CMC/EBC System Research at NASA GRC

• 2700°F SiC/SiC Development & Characterization

• Durable, High Temperature (3000°F) EBC

• High Temperature (2700°F Capable) SiC Fiber

• SiC/SiC CMC / EBC Durability Modeling & Validation

Goal:
- Overall, ICME (Integrated Computational Materials Engineering) Culture
- All CMC/EBC Research Involving / Influenced by Modeling

Refr. 12
Hybrid (CVI + PIP) SiC/SiC CMC Manufacturing Process

- **SiC Fiber**
 - Weave into 2D Fabric or **Designed** 3D Preform
 - CVI Interphase (Fiber Coating) Deposition [BN]
 - Place in Tooling
- **CVI SiC Matrix Deposition**
 - Reactor
- **PIP – Polymer Infiltration and Pyrolysis SiC Matrix**
 - Refr. 12
 - Furnace
 - Dense Hybrid SiC/SiC For 2700°F Application
 - no free silicon in matrix

Stacked 2D Fabric or 3D Preform
High Temperature CMC Testing: Tensile Creep and Fatigue

Testing used to validate models for CMC and CMC / EBC samples

Instron Test Rig
- Testing in Air
- Temperatures up to 2800°F (1538°C)
- Creep and Fatigue
- Frequencies up to 1 Hz
- Electromechanical, 50 kN Load Cell
- MoSi₂ Element Furnace
- 1 in. Gage Length, Water-Cooled Extensometer

Example of Rig Used to Test SiC/SiC CMCs

Typically Test 6 in. Long Tensile Specimens
Importance of Environmental Barrier Coating (EBC)

• Reaction with water vapor from combustion environment causes rapid **surface recession** of Si-based ceramics, seriously limiting component life

\[
\text{SiO}_2 (s) + 2\text{H}_2\text{O} (g) = \text{Si(OH)}_4 (g)
\]

• An Environmental Barrier Coating (EBC) provides protection from water vapor and enables long life.
Durable, High Temperature EBC for Use With 2700°F SiC/SiC

Issue: - Need for EBC systems with *up to* 3000°F (1650°C) capability that exhibit *low thermal conductivity* and *high temperature durability.*
- EBC design (thickness/composition/etc.) is *component dependent.*

Addressed By: **EBC** *(environmental barrier coating)* systems designed with:
- High melting point / oxidation resistant systems capable of up to 3000°F
- Advanced environmental barrier and 2700°F+ capable bond coats
- Controlled surface emittance and radiative properties
- High strength and self-healing capabilities, CMAS-resistant
- Low thermal conductivity 0.5-1.2 W/m-K at 2700-3000°F (1482-1650°C)

Multilayer / Multifunctional EBC

- Multicomponent low conductivity, high stability Rare Earth (RE) doped HfO$_2$, ZrO$_2$ and Hf (Zr)-RE silicates
- Strain tolerant oxide-silicate interlayers
- Rare Earth-Silicate and HfO$_2$-Rare Earth-Alumino-Silicate EBC
- HfO$_2$-Si or RE-Si based bond coats
- SiC/SiC Composite

(Caption for diagram: "Multilayer / Multifunctional EBC."
- Multicomponent low conductivity, high stability Rare Earth (RE) doped HfO$_2$, ZrO$_2$ and Hf (Zr)-RE silicates
- Strain tolerant oxide-silicate interlayers
- Rare Earth-Silicate and HfO$_2$-Rare Earth-Alumino-Silicate EBC
- HfO$_2$-Si or RE-Si based bond coats
- SiC/SiC Composite)
High Temperature (2700°F (1482°C)) SiC Fiber Research

Issue: SiC/SiC CMCs that will operate at 2700°F will require strong, creep-resistant SiC fibers.

Addressed By:

- Determination of key mechanical/structural properties of potential 2700°F SiC fibers to:
 - Understand basic mechanisms and correlation with microstructure
 - Develop analytical fiber and CMC models for time-temperature deformation and rupture behavior
 - Identify current limitations and approaches for property improvement

- **GRC fiber processing:** obtain 2700°F SiC fiber with improved microstructure (reduced porosity, specific SiC grain size, etc.) and optimal properties

Example of Increased Amount of Porosity in SiC Fiber Core

Refr. 12
GRC Modeling of CMC/EBC Behavior/Properties/Durability

- **Modeling:** We have a broad perspective and work with everyone

Issue: Need for a wide range of approaches (different scales) for CMC and CMC/EBC system modeling to provide understanding of behavior / performance; enabling life prediction and guiding of CMC and EBC durability enhancement.

Addressed By:

- Large portfolio of internal codes/software
- **Multiscale modeling**
- Computationally-efficient methods/tools
- Account for environmental effect: Air, vacuum, inert, steam, CMAS
- Creep/fatigue interaction with environment
- Unique/creative non-linear modeling capabilities
- Proposed use of a model SiC/SiC material system and mini-composites in some studies
- **Strong collaboration with industry**

- Validation of models (CMC and CMC/EBC system)
- Understand the effects of the constituents/structure
Summary

• NASA’s efforts have helped move SiC/SiC CMC and EBC technology forward to the point where CMC components are being introduced in commercial jet engines.

• Aircraft gas turbine engines will continue to operate at higher temperatures, and there will be a need for higher-temperature (>2500°F/1371°C) SiC/SiC composites and EBCs.

• A 2700°F capable fiber is an enabling constituent for a durable 2700°F CMC/EBC system.

• Analytical modeling of material behavior is needed to help understand CMC/EBC durability issues, and to provide guidance for material development.
References

2) “Ceramic Matrix Composites Improve Engine Efficiency,”

4) “New material for GE Aviation a play for the future,”

References

Appendix—Back-up Slides
Investigation of CMAS Interactions with EBC Materials

- **CMAS**: Calcium magnesium aluminosilicate

Issue: Ingested particulates (e.g., sand) can form CMAS glass deposits on EBCs in the engine hot section, with coating degradation occurring due to reaction and infiltration of the coating.

Addressed By:
- Characterization of thermal and mechanical properties of CMAS glass provides fundamental knowledge that will help to mitigate damage and improve EBC durability
- Evaluation of interactions between heat treated EBC substrates with CMAS glass pellets. EBC materials evaluated include:
 - Yttrium disilicate ($Y_2Si_2O_7$)
 - Hafnium silicate ($HfSiO_4$)
 - Ytterbium disilicate ($Yb_2Si_2O_7$)

Aircraft Engines Ingesting Sand on Runway

Residual CMAS Glass

Interaction Region

~13 µm thick

$Y_2Si_2O_7$ Substrate (EBC)

$Y_2Si_2O_7$ Substrate Exposed to CMAS at 1200°C for 20h