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• John H. Glenn Research Center (GRC) at Lewis Field is one of nine

National Aeronautics and Space Administration (NASA) Centers

• Originally:  NACA (National Advisory Committee on Aeronautics)      

Engine Research Laboratory (Refr. 1) 
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NASA Glenn Core Competencies 
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• SiC/SiC CMCs and EBCs (environmental barrier coatings)

• Background information / Applications

• Current and Future NASA GRC CMC/EBC Research

Acknowledgment 

The GRC CMC R&D described in this presentation was performed 

or is being performed primarily by Materials and Structures 

researchers and technologists

Overview
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• SiC/SiC (SiC fiber reinforced SiC matrix) CMCs are being 

developed for / utilized in aircraft gas turbine engine hot 

section component applications (T ≥ 2200°F (1204°C)) (Refr. 2, 3).

• These CMC components will have an environmental barrier 

coating (EBC), which is a protective, multilayer oxide surface 

coating to prevent environmental degradation.

SiC/SiC CMCs:  Applications and Need for Coatings

SiC/SiC

w/ EBC Oxide/Oxide CMC Aircraft Gas Turbine Engine
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• Reduced component weight (1/3 density of superalloys)

• Higher temperature capability/increased thermal margin

• Reduced cooling requirements

• Improved fuel efficiency

• Reduced emissions (NOx and CO)

SiC/SiC Components for Gas Turbine Engines:  Benefits

Refr. 2, 4 
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• We have been leaders in the assessment and development      

of SiC fibers, SiC/SiC CMCs, and EBCs for application in 

advanced, efficient gas turbine engines for decades. 

• We have collaborated with Industry, Academia, and DOD 

(Department of Defense) Labs for over 25 years.

NASA Glenn—

Fiber / CMC / EBC R&D, Leadership, and Teaming
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• Early 1990s: The NASA Enabling Propulsion Materials (EPM) 

Program allowed NASA to work closely with Industry to 

tackle a broad range of CMC technologies (including EBCs) 

required to reduce NOx emissions and airport noise through 

advancements in enabling materials (Refr. 5, 6). 

NASA Glenn—MI and CVI* SiC/SiC Development

8

* CVI— Chemical Vapor Infiltration

Development of MI (Melt Infiltrated) SiC/SiC for Combustor Liner Application
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SiC Fiber

Stacked 2D Fabric

or 3D Preform

Dense Slurry 

Cast Melt 

Infiltrated (MI)  

SiC/SiC

CVI* SiC/SiC

Weave into 2D Fabric

or 3D Preform

Place in

Tooling

Reactor

Reactor Silicon Melt

Infiltration

Furnace
Slurry Cast SiC Particles

Into Porous “Preform”

CVI and MI SiC/SiC CMC Manufacturing Processes

Or
CVI Preform

9

CVI Interphase

(Fiber Coating) 

Deposition

[BN]CVI SiC Matrix

Deposition

no free silicon in matrix (Refr. 5) 

* CVI— Chemical Vapor Infiltration
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A

As-Fabricated Slurry Cast Melt Infiltrated (MI) SiC/SiC Material  
Polished Section—Examined With FESEM

Example of the Microstructure of a 2D SiC/SiC CMC* 

MI SiC Matrix

90° SiC Fiber Tow

0º SiC Fiber Tow

*  Fabricated by GE Power Systems Composites
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MI SiC Matrix

CVI SiC 

Surrounding BN

Interphase
BN Fiber Coating

A

Sylramic 

SiC Fibers

TM

As-Fabricated Slurry Cast Melt Infiltrated (MI) SiC/SiC Material  
Polished Section—Examined With FESEM

Si
SiC

*  Fabricated by GE Power Systems Composites

Example of the Microstructure of a 2D SiC/SiC CMC* 

10 μm

ave. 



National Aeronautics and Space Administration

www.nasa.gov

• The NASA Ultra-Efficient Engine Technology (UEET) Program 

continued the advancement of Melt Infiltrated (MI) SiC/SiC CMC 

and EBC technology for commercial aircraft engines (Refr. 7 - 10).                                                                        

NASA Glenn—SiC/SiC and EBC Development

12

• GRC has further developed “High Temperature” SiC/SiC (no free 

silicon in matrix) and EBCs for use above 2600°F (1427°C) in 

subsequent NASA Programs/Projects including:                              

- Next Generation Launch Technology (NGLT) Project   - Hypersonics Project 

- Supersonics Project - Aeronautical Sciences (AS) Project 

- Environmentally Responsible Aviation (ERA) Project                                                                

- Transformational Tools and Technology (TTT) Project

MI CMC Vane w/EBC: 

NASA UEET Program

Refr. 7, 8 

CVI SiC/SiC Vane     

Test Articles w/EBC:

NASA ERA Project

Refr. 11 
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• Reduced component weight (1/3 density of superalloys)

• Higher temperature capability/increased thermal margin

• Reduced cooling requirements

• Improved fuel efficiency further increase with

• Reduced emissions (NOx and CO)

SiC/SiC Components for Gas Turbine Engines:  Benefits

2700°F CMC components

Incentive to Increase Engine Operating Temperatures
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Current / Future CMC/EBC System Research at NASA GRC

• 2700°F SiC/SiC Development & Characterization

• Durable, High Temperature (3000°F) EBC 

• High Temperature (2700°F Capable) SiC Fiber

• SiC/SiC CMC / EBC Durability Modeling & Validation

Goal:

Refr. 12

- Overall, ICME (Integrated Computational 

Materials Engineering) Culture 

- All CMC/EBC Research Involving / 

Influenced by Modeling CMC

EBC
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SiC Fiber

Stacked 2D Fabric

or 3D Preform

Dense Hybrid SiC/SiC

For 2700°F Application

no free silicon in matrix

Weave into 2D Fabric

or Designed 3D Preform

Place in

Tooling

Reactor

Reactor

Furnace

Hybrid (CVI + PIP) SiC/SiC CMC Manufacturing Process

15

CVI Interphase

(Fiber Coating) 

Deposition

[BN]
CVI SiC Matrix

Deposition

PIP –

Polymer 

Infiltration and 

Pyrolysis SiC 

Matrix Porous “Preform”
Refr. 12
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(HO)

(H2O)

High Temperature CMC Testing: Tensile Creep and Fatigue 

Typically Test 6 in. Long 

Tensile Specimens 

Instron Test Rig 

• Testing in Air

• Temperatures up to 2800°F (1538°C) 

• Creep and Fatigue                                

• Frequencies up to 1 Hz 

• Electromechanical, 50 kN Load Cell

• MoSi2 Element Furnace                         

• 1 in. Gage Length, Water-Cooled 

Extensometer 

Example of Rig Used to Test SiC/SiC CMCs

Testing used to validate models 

for CMC and CMC / EBC samples
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• Reaction with water vapor from combustion environment 

causes rapid surface recession of Si-based ceramics, 

seriously limiting component life 

SiO2 (s) + 2H2O (g) = Si(OH)4 (g)

• An Environmental Barrier Coating (EBC) provides protection 

from water vapor and enables long life. 

Importance of Environmental Barrier Coating (EBC) 

Refr.  1, 10, 13 - 15

Volatilization         Surface Recession                  Durable System
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Durable, High Temperature EBC for Use With 2700°F SiC/SiC

Addressed By:  EBC (environmental barrier coating) systems designed with:

– High melting point / oxidation resistant systems capable of up to 3000°F

– Advanced environmental barrier and 2700°F+ capable bond coats

– Controlled surface emittance and radiative properties

– High strength and self-healing capabilities, CMAS-resistant 

– Low thermal conductivity 0.5-1.2 W/m-K at 2700-3000°F (1482-1650°C)

Issue:  - Need for EBC systems with up to 3000°F (1650°C) capability that 

exhibit low thermal conductivity and high temperature durability.

- EBC design (thickness/composition/etc.) is component dependent.  

HfO2-Si or RE-Si based bond coats

Multicomponent low conductivity, high 

stability Rare Earth (RE) doped HfO2, 

ZrO2 and Hf (Zr)-RE silicates

Strain tolerant oxide-silicate interlayers

Rare Earth-Silicate and HfO2-Rare 

Earth-Alumino-Silicate EBC

SiC/SiC Composite
Refr.  10

CMC

EBC

Multilayer / Multifunctional EBC
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High Temperature (2700°F (1482°C)) SiC Fiber Research

- Understand basic mechanisms and 

correlation with microstructure

- Develop analytical fiber and CMC models   

for time-temperature deformation and 

rupture behavior

- Identify current limitations and 

approaches for property improvement

Example of Increased Amount

of Porosity in SiC Fiber Core

Issue:  SiC/SiC CMCs that will operate          

at 2700°F will require strong,         

creep-resistant SiC fibers.

Addressed By:  

• Determination of key mechanical/structural 

properties of potential 2700°F SiC fibers to:

• GRC fiber processing: obtain 2700°F SiC fiber 

with improved microstructure (reduced 

porosity, specific SiC grain size, etc.) and 

optimal properties

CMC or 

fabric 

testing

Testing

Refr. 12
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GRC Modeling of CMC/EBC Behavior/Properties/Durability 

• Modeling: We have a broad perspective and work with everyone

• Large portfolio of internal codes/software

• Multiscale modeling

• Computationally-efficient methods/tools 

• Account for environmental effect:  Air, vacuum, inert, 

steam, CMAS

• Creep/fatigue interaction with environment

• Unique/creative non-linear modeling capabilities 

• Proposed use of a model SiC/SiC material system and 

mini-composites in some studies

• Strong collaboration with industry

• Validation of models (CMC and CMC/EBC system) 

• Understand the effects of the constituents/structure

Issue:  Need for a wide range of approaches (different scales) for CMC and 

CMC/EBC system modeling to provide understanding of behavior / performance;  

- enabling life prediction and guiding of CMC and EBC durability enhancement. 

Addressed By:  
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• NASA’s efforts have helped move SiC/SiC CMC and EBC 

technology forward to the point where CMC components are 

being introduced in commercial jet engines. 

• Aircraft gas turbine engines will continue to operate at higher 

temperatures, and there will be a need for higher-temperature 

(>2500°F/1371°C) SiC/SiC composites and EBCs. 

• A 2700°F capable fiber is an enabling constituent for a 

durable 2700°F CMC/EBC system.

• Analytical modeling of material behavior is needed to help 

understand CMC/EBC durability issues, and to provide 

guidance for material development.

Summary

21
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Investigation of CMAS Interactions with EBC Materials 

Addressed By:  

• Characterization of thermal and 

mechanical properties of CMAS 

glass provides fundamental 

knowledge that will help to mitigate 

damage and improve EBC durability

• Evaluation of interactions between 

heat treated EBC substrates with 

CMAS glass pellets.  EBC materials 

evaluated include:
– Yttrium disilicate (Y2Si2O7)

– Hafnium silicate (HfSiO4)

– Ytterbium disilicate (Yb2Si2O7)

Aircraft Engines Ingesting Sand on Runway

Y2Si2O7 Substrate Exposed 

to CMAS at 1200°C for 20h

Issue:  Ingested particulates (e.g., sand) 

can form CMAS glass deposits on EBCs 

in the engine hot section, with coating 

degradation occurring due to reaction 

and infiltration of the coating.

• CMAS: Calcium magnesium aluminosilicate

Residual CMAS Glass

Interaction 

Region

Y2Si2O7 Substrate (EBC)

~13 µm thick

Refr. 12
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