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The Problem
The noise level in a modern video-based eye-tracker is usually larger than the size of the smallest
saccades.  Thus, it can be challenging to discriminate small eye movements from system noise.
Various methods have been proposed, but most require hand-tuning of parameters to achieve
good performance.  We would like a method that automatically adapts to the statistics of the
input signal.

The Proposed Solution
We atempt to ft a signal with a piecewise-constant function.  We begin by approximating the
signal with just two constant intervals, linked by a saccade.  We perform exhaustive search over
all possible split points, with the minimum fxation duration a parameter (set to 150 ms.).  We
approximate each interval with the mean of the samples in that interval, and calculate the root-
mean-square (RMS) error.  We choose the split point that produces the lowest RMS error, and
then apply the procedure recursively to subintervals that are longer than twice the minimum
fxation duration.

Statistical testing
After fnding the optimal split point, we apply a statistical test to decide whether or not to accept
the split.  Originally, we used a simple t-test.  We soon discovered however, that we were
obtaining too many false alarms (when testing with a constant signal corrupted by Gaussian
noise).  This can be understood when it is noted that we are not performing the t-test at a
predefned split point, but rather at the split point that best separates the data.  We then tried a
bootstrap method, in which we repeated the procedure with many permuted versions of the
data, and only accepted the split if the t value was larger than that obtained with the permuted
samples sufciently many times (based on the desired level of signifcance).   Because, the
bootstrap method is extremely slow, however, it is desirable to model the distribution of the t-
statistic obtained with the procedure.

The observed noise distribution is well-ft by the distribution of the maximum of samples from a t
distribution, which can be obtained by raising the cumulative t distribution to a power
corresponding to the number of samples.  In practice, we speed computation by tabulating values
of the critical t value as a function of signifcance level, sequence length, and minimum fxation
duration.

We compute ROC curves from Monte Carlo simulations of known signals corrupted by Gaussian
noise with unit variance.  In the example shown above, we see that we can 62% of the small
saccades of an amplitude of half the noise standard deviation if we accept a false alarm rate of
5%.  The hit rate drops to 35% for a false alarm rate of 1%.

Saccade timing errors
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The fgure to the right
shows hit rate as a
function of saccade
amplitude (in noise
units) for two
signifcance levels.

For the smallest saccades, the estimated
amplitude is generally higher than the true
amplitude.  This is because a certain level
diference is required to achieve statistical
signifcance.  But sometimes the noise can add to
the signal and push it to signifcance.  In the
fgure to the right, only the left-most points
include direction errors (leading to the higher
standard deviations, and the downward
infection of the curve).

Sensitivity

Saccade amplitude errors

In the analysis presented here, hits include trials where
the split was placed at a sample other than the saccade
location (according to the ground truth before the addition
of noise).  Even for easily detectable saccades, the time of
occurrence of the inferred saccade can be diferent from
the true time.
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