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Abstract 

The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the 

flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. 

A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter 

suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is 

improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. 

It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor 

failures automatically. These sensor failures include locations with high leverage (or importance). To 

reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. 

A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion 

estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation 

is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate 

estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during 

the failure scenario, the concentrated modal estimator keeps the system stable. 

Nomenclature 

𝐴  = maximum desired strain variation on sensors upstream of the fiber break 

𝑏  = current M-step 

𝑏𝑓  = number of M-steps 

𝐵𝑘
𝑛𝑓

  = bias on 𝑘𝑡ℎ sensor near the fiber break 

𝑐  = current concentration step  

𝑐𝑓  = number of concentration steps 

𝑑(𝜏)  = deformations defined at time 𝜏 
𝑑𝑟𝑒𝑓  = reference deformations 

𝐷2  = squared Mahalanobis distance 

𝐷2(∙)  = squared Mahalanobis distance of the argument 

𝐷𝑢𝑏
2   = upper bound of 𝐷2 

𝑒  = finite residuals of all sensors 

𝑒𝑘  = finite residual of the 𝑘𝑡ℎ sensor 

𝐺  = plant 

ℎ𝑂  = tuning constant for weight function of M-estimator 

𝑘  = sensor station 

𝐾  = controller 

𝑙  = index of SFOS used for sensor feedback 

𝑙𝑟  = row index vector of Φ for reference deformations 

𝑚  = number of mode shapes retained in the model 

𝑚𝑟  = column index vector of Φ for reference modal displacements 

𝑀𝐸𝐷(∙) = median of the argument 

𝑛𝐴𝐹 = airframe sensor noise 

𝑛𝑓  = bias induced by simulated FOS failure on sensors 

𝑛𝑠 = simulated fiber optic sensor noise 

𝑁  = number of nodes in finite element model 

𝑁(∙,∙)  = normal distribution with argument parameters 

𝑃𝑐  = tuning constant 

𝑃𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)  = position of fiber break  

𝑃𝑛𝑓
𝑠 (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)  = positions of sensors in a radius 𝑟𝑛𝑓 upstream of the fiber break 
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𝑞(𝑡) = vector of modal displacements at time 𝑡 
𝑞𝑖(𝑡)  = 𝑖𝑡ℎ modal displacement at time 𝑡 
�̂�  = estimated modal displacements 

�̂�(𝜏)  = estimated modal displacements at time step 𝜏 
𝑞𝑟𝑒𝑓(𝜏)  = modal displacement references 

𝑟𝑛𝑓  = radius of sensors affected near the fiber break 

�̂�𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏)  = SFOS strain measurements 

𝑠𝑘
𝑎𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏)  = measured strain of 𝑘𝑡ℎ sensor after the fiber break 

𝑠𝑘
𝑛𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏)  = measured strain of 𝑘𝑡ℎ sensor in a radius 𝑟𝑛𝑓 upstream of the fiber break 

𝑆  = set of all sensors 

𝑆𝑔
𝑐  = set of good sensors in concentration step 𝑐 

𝑆𝑛𝑓  = set of sensors upstream and near the fiber break 

𝑆𝑔
0  = set of all available working sensors 

𝑇  = location vector 

(∙)𝑇  = transpose of argument 

𝑡 = time 

𝑢  = control states 

𝑉  = sample estimate of population variance-covariance 

𝑤  = sensor noise 

𝑤𝑘  = sensor weight 

𝑥𝐴𝐹  = simulated airframe states 

𝑥𝐶  = Cartesian coordinate in the x-direction 

𝑥𝑒  = simulated modal displacement states 

𝑥𝑘  = sensor data vector 

𝑥𝐴𝐹
𝑟𝑒𝑓

  = reference airframe states 

𝑥𝑒  = estimated modal displacement states 

𝑋 = explanatory or data matrix 

𝑦𝐶   = Cartesian coordinate in the y-direction 

𝑧𝐶 = Cartesian coordinate in the z-direction 

𝛿𝑉  = change in aircraft velocity 

𝛿𝛼  = change in angle of attack 

𝛿𝜃  = change in pitch angle  

휀𝑘  = 𝑘𝑡ℎ measurement normal error distribution 

Σ𝑚  = population variance-covariance matrix 

𝜃  = rigid body pitch angle, deg 

𝜗(∙) = arbitrary increase in distribution of squared Mahalanobis distance as a function of argument  

𝜇𝑛  = mean of normal error distribution 

𝜇𝑚  = coordinate-wise population location 

𝜌(∙)  = objective function of the arguments 

𝜎𝑛  = standard deviation of a normal error distribution 

𝜎𝑘  = median absolute deviation (MAD) 

𝜏 = discrete time step 

𝜙  = rigid body bank angle, deg 

Φ = deformation modal matrix, a collection of mode shapes, 𝜙𝑚 

𝜓𝑖  = 𝑖𝑡ℎ strain mode 

Ψ𝐹𝑂𝑆  = strain matrix defined at SFOS measurement locations 

Ψ𝑘  = 𝑘𝑡ℎ row of strain mode matrix 

Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)  = 𝑘𝑡ℎ row of strain modal matrix 
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𝜑(∙)  = derivative of 𝜌(∙) 
(∙)(𝑏,𝑐)  = argument in the 𝑏𝑡ℎ M-step and concentration step 𝑐 

(∙)𝑟𝑒𝑓  = reference command of the argument 

(∙)†  = Moore-Penrose Generalized Inverse 

List of Acronyms 

AFS = active flutter suppression 

ASC = active shape control 

AW1B = asymmetric wing first bending 

AW1T = asymmetric wing first torsion 

CME = concentrated modal estimator 

CPU = central processing unit 

FOS = fiber optic sensors 

IRLS = iterative recursive least squares 

LTS = least trimmed squares 

LWLE = left-wing leading edge 

LWTE = left-wing trailing edge 

M = Maximum Likelihood Estimator 

MAD = median absolute deviation 

MCS = Monte Carlo simulation 

MM = Modified Maximum Likelihood Estimator 

NASA = National Aeronautics and Space Administration 

OLS = ordinary least squares 

RWLE = right-wing leading edge 

RWTE = right-wing trailing edge 

SFOS = simulated fiber optic sensors 

SW1B = symmetric wing first bending 

SW1T = symmetric wing first torsion 

Introduction 

The primary objective of the X-56A (Lockheed Martin, Bethesda, Maryland) program is to demonstrate 

active flutter suppression (AFS) (ref. 1). The experimental flight controllers must suppress flutter modes 

that have been designed into the flight envelope. The long-term goal of the X-56A program is to support 

extremely lightweight flexible structure designs for fuel-burn-efficient aircraft. Lightweight flexible 

structures may require active control to mitigate unfavorable aero-structural coupling (ref. 2).  

Part of the X-56A program includes experimental applications of fiber optic sensors (FOS) with fiber 

Bragg gratings in the control system. The FOS measure high-density strain measurements along the entire 

wing span. It has been shown that simulated fiber optic sensors (SFOS) enable both AFS and active shape 

control (ASC) for a simulated wing model (ref. 3) and the X-56A model (ref. 2).  

At a certain flight speed, the X-56A models are subject to flutter in the flight envelope. The control 

system must therefore consistently function to ensure the safety of the vehicle. The FOS is part of a sensor 

suite supporting the structural estimation component for the control system, thus, the control system must 

be tolerant to failures in the FOS.  

Sensor failures must always be expected and prepared for. As such, safety measures will be taken before 

experimental testing of the FOS past flutter speed. For example, if a break in the fiber occurs, the control 

system must continue to function, otherwise flutter could escalate and the aircraft could be damaged or 

destroyed.  
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 Researchers at the National Aeronautics and Space Administration (NASA) Langley Research 

Center (LaRC) demonstrated that a break in a fiber (ref. 4) can produce large biases in all downstream 

sensor measurements. They showed that downstream sensors continue to feed back strain, albeit strongly 

biased strain data. Without proper precautions, the control system will continue to utilize the biased data.  

 If the control system responds to strongly biased strain, control-induced instability can result. Worse, 

the control system could contribute to the growth of flutter. Therefore, any estimation system that relies on 

the FOS system must be robust to sensor failures through either passive or active means. 

The X-56A simulation model utilizes modal estimates in a previously-developed AFS and ASC 

controller (ref. 2), relying on a modal filter to predict the modal displacement states of the vehicle. The 

modal displacement states are fed directly to the controller. The modal filter calculates modal coordinates 

at every discrete time step by performing an ordinary least squares (OLS) on the measured strain, where 

the column space is the strain mode matrix. The OLS has a breakdown point of 0, meaning that even one 

biased measurement can bias the OLS estimates or modal displacements.  

The failure in the FOS (see ref. 4) could lead to substantially large gross outliers in the sensor data. The 

OLS modal filter thus must be replaced by a practical robust modal filter. This report presents this solution 

by introducing a new estimator which meets the requirements for a multivariate on-line robust estimation. 

This estimator supports a practical distributed-sensing-based control system. A brief history is presented to 

provide context for the robust modal filter. 

Background 

The X-56A program is a joint effort between Lockheed Martin and the United States Air Force 

Research Laboratory to design and develop high-altitude, subsonic, long-endurance autonomous aircraft 

(refs. 1 and 5). The aircraft will be delivered to the NASA Armstrong Flight Research Center (AFRC) for 

further experimental research. The finite-element models were delivered to AFRC by Lockheed Martin. 

The models were used to generate plant models with aeroservoelastic interactions using the software tool 

ZAERO (ref. 6). The X-56A in flight using stiff wings is shown in figure 1. 

 

 
 ED15-0241-21 

 

Figure 1. The X-56A aircraft using stiff wings in flight. 
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The aircraft comes with a rigid center body and detachable flexible and stiff wings; the aircraft is 

equipped with ten trailing-edge control surfaces. All surfaces are available for AFS, ASC, and flight control, 

although some partitioning of duties may be assigned. The aircraft is expected to be tested at subsonic 

speeds and at low altitude (ref. 2). 

Fiber Optic Sensor Placement 

Previous computational work demonstrated that shape control was feasible with SFOS feedback in the 

controller (refs. 2 and 3). In one study, the SFOS was laid out and simulated on the left wing and the right 

wing of the X-56A model. The sensors represent six fibers. Each fiber contains hundreds of strain 

measurements. Each measurement is spaced one-half-inch from the next. The sensor configuration is 

presented in figure 2. 

 

 
 

Figure 2. The fiber optic sensor layout on the X-56A model. 

The sensor locations shown in figure 2 are used to form the SFOS strain mode matrix, Ψ𝐹𝑂𝑆, as 

described in reference 2. The points selected for deformation control are located at the right-wing trailing 

edge (RWTE), right-wing leading edge (RWLE), left-wing trailing edge (LWTE), and left-wing leading 

edge (LWLE). These points were selected to maximize modal information for the first symmetric bending 

and torsion modes (ref. 3). The virtual deformation controller tracks modally transformed references, 

thereby indirectly tracking deformations at these points (ref. 2).  

Strain Mode Matrix Development and Use for Shape Control 

To simulate strain measurements (or SFOS) measurements, the strain mode shapes computed at the 

sensor locations are given in figure 3.  
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Figure 3. Sensor strain mode shapes: a) symmetric wing first bending; b) asymmetric wing first bending; 

c) symmetric wing first torsion; and d) asymmetric wing first torsion. 

The strain mode shapes are originally derived from an MSC Nastran (MSC Software Corporation, Santa 

Ana, California) modal analysis and an elemental strain conversion algorithm presented in reference 2. The 

relationship of the measured strains and the strain mode matrix is used to estimate the strain information 

for SFOS as shown in equation (1): 

�̂�𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) = ΨFOS𝑞(𝜏) + 𝑤 (1) 

where 𝑤 is sampled from a noise distribution, 𝑞(𝜏) are modal displacement states. The modal displacement 

states can be estimated by a typical OLS modal filter at discrete time 𝜏 as shown in equation (2): 

�̂�(𝜏) = ΨFOS
† �̂�𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) (2) 

where † is the Moore-Penrose Generalized Inverse7 and �̂�𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) is the SFOS strain measurements. 

The states can then be tracked in the controller. To determine what modal displacement states must be 

tracked, a modal reference is formed from desired displacements on the wing. To accomplish this, the 

displacement modal matrix from MSC Nastran was corrected to be pure elastic and was then used to convert 

deformation references 𝑑𝑟𝑒𝑓(𝜏) at 𝑙𝑟 indices to modal displacement references 𝑞𝑟𝑒𝑓(𝜏) in the manner shown 

in equation (3) (ref. 2): 

𝑞𝑟𝑒𝑓(𝜏) = Φ
𝑇(𝑙𝑟 , 𝑚𝑟)𝑑𝑟𝑒𝑓(𝜏) (3) 

where 𝑚𝑟 is the index of tracked modal displacements in the flight controller corresponding to the 

symmetric first wing bending (SW1B) and symmetric first wing torsion (SW1T)  modal displacements. 

The controller is designed to minimize 𝑞𝑟𝑒𝑓(𝜏) − �̂�(𝜏), which in turn minimizes 𝑑𝑟𝑒𝑓(𝜏) − 𝑑(𝜏), if modes 

dominating the response are included in �̂�(𝜏). This process is also referred to as virtual deformation control. 

The next section presents an overview of some statistical characteristics of the strain mode matrix, which 

make robust estimation of modal displacements difficult. 
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Statistical Characteristics of the Sensor Strain Modal Matrix 

 As previously stated, the purpose of this report is to robustly estimate modal displacements 𝑞(𝜏) in order 

to accurately track 𝑞𝑟𝑒𝑓(𝜏) even during sensor failures. The problem is multivariate for the X-56A model, 

because 14 modes are modeled in the state space model and in the sensor strain modal matrix. Since most 

theory-based methods for robust multivariate estimation assume that unbiased data assume a nominal 

multivariate normal distribution, the test for normality of the sensor strain modal matrix is required.  

 The Q-Q plot is a tool that is used to verify if one distribution is similar to another. Here, it is used to 

verify if a sensor strain matrix distribution matches a multivariate normal distribution. If the distributions 

are similar, then the Q-Q plot will result in a line. If the distributions are dissimilar, then the Q-Q line will 

exhibit unusual behavior in a particular direction. The squared Mahalanobis distance is a scale-invariant 

distance used for one axis of the Q-Q test and is given in equation (4): 

𝐷2 = (𝑋 − 𝜇𝑚)Σ𝑚 
−1(𝑋 − 𝜇𝑚)

𝑇 (4) 

where 𝑋 is the data matrix, 𝜇𝑚 is the coordinate-wise population location, Σ𝑚 is the population variance-

covariance. It has been shown that the distribution of squared Mahalanobis distance of multivariate normal 

data assumes a chi-square distribution (ref. 8). A plot of squared Mahalanobis distance for the strain modal 

matrix discussed above against the quantiles of a chi-square distribution is shown in figure 4. 

 

 

Figure 4. Squared Mahalanobis distance versus chi-square quantile for sensor strain modal matrix. 

 The plot of squared Mahalanobis distance in figure 4 skews to the right and then curves strongly upward. 

The skew of the squared Mahalanobis distance is an indicator that the sensor strain data matrix is not 

multivariate-normal. Mardia’s skew and kurtosis estimates9 indicate that the distribution is subject to large 

multivariate skew and kurtosis, which is non-normal. This is also true when analyzing the multivariate skew 

and kurtosis corrected for small samples. Therefore, it can be expected that some sensors will be much 

more important than others, indicating the presence of leverage sensors or sensors with high importance. 

 Since the measured strain is approximately a linear combination of the sensor strain data matrix, the 

amplitudes of the measured strain will also be predictably asymmetrically distributed. Loading will vary 

with aerodynamic condition, thus, the underlying strain distribution will be also difficult to predict. Without 
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a known nominal distribution, the application of most computationally efficient robust outlier detection 

methods is challenging. The sensor strain data matrix provides a rough prediction of the nature of strain 

variation, and may aid in the detection of outliers, since the strain is not expected to vary strongly away 

from a linear combination of the mode shapes. The next section overviews the challenges that are associated 

with designing a robust modal estimator. 

Challenges for On-line Robust Modal Displacement Estimation 

 The challenges are many for the robust modal displacement estimator. The estimator must be robust to 

small, medium, and gross outliers. Any estimator which, from a pool of measurements, can resist up to 50% 

of the measurements known to be outliers is known as a high breakdown estimator (ref. 10). The breakdown 

point is typically defined as the percentage of outliers which an estimator can handle before its estimate is 

biased. A high breakdown point is certainly a goal for a robust modal filter.  

 The estimator must be robust to at least a single fiber break, which could occur at any time during 

operations. A failure could potentially introduce hundreds of biased sensor measurements simultaneously, 

which the estimator must reject. Depending on how many fibers are used and where the break occurs, the 

effect of the loss of a fiber on the percent of sensors failed will change. 

 The controller and estimator must operate at high sample rates. Therefore, the estimator must be 

computationally efficient and capably process thousands of sensors at high sampling rates, assuming that 

all of the sensors along the fiber are utilized for feedback. Since more sensors leads to more efficient 

estimates, computational efficiency is a key feature of a robust modal filter. 

 The estimator must not be influenced strongly by sensors located at leverage points. Leverage points are 

sensor locations which strongly influence feature estimates. These points are found on most structures and 

can be used to determine optimal sensor placements (ref. 11). Leverage can be thought of as a moment arm. 

An outlier at a place having a large moment arm can drag OLS estimates significantly away from the 

majority of the data. 

 The variation of the estimates between each discrete time step must be small, or the controller and system 

may become unstable. The selection of estimators is thus limited, as many estimators rely on random 

sub-sampling (refs. 12 and 13). Approximate or stochastic algorithms may lead to inconsistent estimates in 

a non-convex optimization problem (ref. 14). 

 Another significant challenge is that in the literature, there may not be a dedicated robust estimator to 

meet all of these requirements. A plethora of robust estimators exist for static analysis. A few are the Least 

Trimmed Squares (LTS) (ref. 12), Fast-S (ref. 13), and Repeated Median (RM) (ref. 15). Robust estimators 

are often not required to be real-time estimators, as they find many uses in processing complex data analysis. 

Most robust estimators are computed over a period of a few seconds, minutes, or hours. Computation time 

often depends on the size of the data population. Most robust estimators assume initial unbiased population 

distributions, such as the normal distribution.  

 In order to utilize robust regression methods, the estimator will have to perform near the controller 

sampling rate, which may be on the order of a few milliseconds. The majority of multivariate robust 

estimators are not real-time estimators (ref. 14).  

 Some estimators smooth data over short time windows, where random outliers may occur (refs. 16 and 

17), but the bias induced by a fiber failure affects the modal estimates permanently after the failure. Thus, 

time window operations will not be sufficient, as the biased data become the majority of the data within the 

time window.  

 The most promising estimators utilize two stages. The first stage produces a high breakdown estimate, 

and that estimate is refined in a Gaussian-efficient estimation stage. Modified Maximum Likelihood 

estimators (MM-estimators) initialize a Maximum Likelihood Type estimator (M-estimator) (ref. 18) with 

a feature estimate from a high breakdown estimator (ref. 19). The M-estimate inherits the breakdown point 

from the original estimator and is as efficient as the final estimator. Relationships between M and S 
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estimators have been formed (ref. 20) for MM estimators. Generalized M-estimation (GM) (ref. 21) has 

been developed, which down-weights leverage points. Down-weighting sensors due to high leverage leads 

to loss of efficiency, and is not pursued. Unfortunately, a major challenge is that two-stage estimators are 

impractical to compute because the initial estimate is still computationally intensive (ref. 14). The next 

section presents an overview of the approach taken to overcome all of the aforementioned challenges. 

Overview of Approach 

 In order to address the many challenges of an on-line robust distributed-sensor system, a new estimator 

called the concentrated modal estimator (CME) is derived. The CME is best described as a symbiotic 

estimator merging ideas from Tukey’s redescending M-estimator and concentration principles. Robust 

estimators based on concentration operators (CO) are used in the robust regression community (refs. 14 and 

22) and have been shown to be computationally simple, consistent, and high breakdown. The M-type 

estimators are widely used and useful for many data distributions, because they can be tuned to be 

asymptotically normal and robust to most outliers.  

 The redescending M-estimator is solvable through computationally efficient iterative recursive least 

squares (IRLS). The M-estimate uses weights which are tuned over IRLS iterations. The weights are a 

function of the scaled residuals, where proper scaling can lead to estimates which are 95% 

Gaussian-efficient (ref. 18). But the M-estimator has a 0 breakdown point in the presence of biased sensor 

data at leverage points. Just as OLS, even one outlying sensor on a leverage point can drag the estimates 

away from a good solution. This fact is significant because the FOS system on a typical structure is full of 

leverage sensors.  

 Concentration algorithms are only applicable to nominally multivariate normal data. The algorithms 

achieve high breakdown estimators by relying on iterative application to a smart selection of sensors with 

low breakdown estimators such as OLS. This method will not work in the presence of nominally 

asymmetric data. 

 To shore up the limitations of both estimators, two approaches are taken. The M-estimator is initialized 

with a robust start (or initial feature estimate) (ref. 23) based on the previous time step estimates. This start 

is not susceptible to outliers. A robust trimming criterion in the concentration operator is also introduced. 

The criterion accounts for known asymmetric outliers and is derived from the Mahalanobis distance of the 

strain modal matrix data. Together with the M-estimates of location (mean) and dispersion (covariance), 

the trim criterion is applied to iteratively trim out bad sensor data. 

 It is shown with Monte Carlo simulation (MCS) that the CME estimates converge for the 

aeroservoelastic trim case and for wing bending and torsional perturbations thereof. By comparing the CME 

to the state-of-the-art M-estimator with Huber or Tukey bisquare weightings, it is shown that the CME gives 

estimates with less bias for similar computational speed. Finally, the CME is demonstrated in dynamic ASC 

simulations on the X-56A model in the presence of 230 simultaneously failed sensors. For this scenario the 

robust modal filter and shape controller achieve ASC, but with expected tracking errors due to residual 

modes. The next section introduces the robust modal filter methodology which includes the derivation of 

the CME. 

Methodology 

 The previous sections show the need for a modal filter to address the problem of outlying sensors on 

leverage points and that of computational efficiency. The following methodology is developed to directly 

handle this challenge. The CME is derived to robustly estimate the modal displacements of the X-56A 

aircraft (see fig. 1) during a fiber optic sensor failure. The CME is a real-time concentration algorithm using 

robust starts, M-estimates in the concentration steps, and a fixed robustness trim criterion. The functional 

architecture of the CME is presented in figure 5. 
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Figure 5. The functional architecture of the concentrated modal estimator. 

 From figure 5, it is evident that there are two feedback loops. An inner loop represents the iteration of 

steps (called M-steps) of the M-estimator. The outer loop represents the trimming of gross outliers; each 

time through the loop is referred to as a concentration step. The sensor data flow into the system, and a first 

estimate of the weights and modal coordinates is initially computed. Outlier-sensitive information such as 

previous modal coordinates and weights are used to trim data in the concentration step. A new “good” 

sensor set is formed from the concentration step. This information is then passed to the M-estimator, where 

weights and modal displacement estimates are recomputed with iterative M-steps. The output of the M-

estimator moves to the input of the concentration procedures; this process continues until convergence. This 

figure should be referred to as a guide for understanding the following sections. First, the strain-based 

M-estimator portion of the CME is derived.  

Strain M-estimator Derivation 

 The asymmetric nature of the distribution (see fig. 4) demands a more robust estimator within the 

concentration procedure, such as the computationally efficient M-estimator. M-estimators are 

characteristically gradient descent algorithms (ref. 2). They are computationally efficient, affine 

equivariant, robust to masking effects, and tend to outperform OLS when applied to many data sets  

(ref. 25). Maronna’s Robust M-estimator (ref. 26) and a concentration algorithm (ref. 27) have performed 

similarly well for contaminated data sets used in principal component analysis (ref. 28). Merging the two 

concepts is attempted here. Indeed, Olive suggests that robust estimators can be used in place of the classical 

estimator for a concentration algorithm in some cases (ref. 23). 

 The low theoretical maximum breakdown point of 1/(𝑚 + 1) of the M-estimator (ref. 29) is 

inconsequential for two reasons. First, this breakdown point is computed assuming that outliers can occur 

in all features of the data matrix. For the FOS system, outliers can only occur in one feature of the data 

matrix - the time-varying sensor measurement vector. Any outliers in the fixed portion of the data matrix 

will be accounted for with a trim criterion. The second reason is that a concentration operator does not 

require a high breakdown estimator within the concentration steps to lead to a high breakdown estimator. 

In fact, the concentration algorithms which employ OLS have been shown to be high breakdown for 

nominally multivariate normal distributions. 

 The strain at measurement locations may be expanded as a summation of an infinite number of 

orthogonal strain mode shapes30 as in equation (5). 
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𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝑡) = ∑𝑞𝑖(𝑡)𝜓𝑖(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)

∞

𝑖=1

 (5) 

To reduce model complexity, only a subset 𝑚 of mode shapes which dominate the response are generally 

included in the modal matrix (ref. 3). It is assumed that the subset of modes captures the main dynamics 

and the sensors are subject to random errors. This error can be modeled as a normal distribution 

휀𝑘 ∈ 𝑁(𝜇𝑛, 𝜎𝑛). At any discrete time step, 𝑡 = 𝜏, the quasi-static approximate reading of any sensor can be 

given by equation (6): 

𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) = ∑𝑞𝑖(𝜏)𝜓𝑖(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) + 휀𝑘

𝑚

𝑖=1

 (6) 

where 𝑚 is the number of mode shapes retained in the model. Consider the linear model for the 𝑘𝑡ℎ sensor 

measurement to be described by equation (7): 

𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) =∑�̂�𝑖(𝜏)𝜓𝑖(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) + 𝑒𝑘 = Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)�̂�(𝜏) + 𝑒𝑘

𝑚

𝑖=1

 (7) 

where 𝑒𝑘 is a finite residual (that is, measurement error), Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) ∈ ℝ
1×𝑘 is the 𝑘𝑡ℎ row of the strain 

matrix, and �̂�(𝜏) ∈ ℝ𝑘×1 is a vector of estimated modal displacements. From the sensors readings, the 

objective is to estimate �̂�(𝜏). This equation can be solved as a maximum likelihood estimation (MLE) 

problem (see ref. 18) which is posed as minimization of an equally weighted summation of a function of 

the residuals as in equation (8): 

∑𝜌(𝑒𝑘) =

𝑆

𝑘=1

∑𝜌(𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) − Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)�̂�(𝜏))

𝑆

𝑘=1

 (8) 

where 𝑆 is the set of strain sensors and 𝜌(𝑥) is an objective function with special properties. A reasonable 

𝜌(𝑥) must be even, zero when evaluated at zero, increasing for increasing arguments, and differentiable. 

Define the influence function 𝜑(𝑥) = 𝜌′(𝑥) as the differential of the objective function 𝜌(𝑥). The influence 

function characterizes the proportional impact of the residuals on the estimate. The impact of an OLS 

residual on the estimate is directly proportional to the size of the residual, which is why OLS is not robust. 

To find �̂�(𝜏) the summation given in equation (8) is differentiated by �̂�(𝜏) and is set equal to zero. By 

completing this operation, the equality shown in equation (9) is achieved. 

∑𝜑(𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) − Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)�̂�(𝜏))Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) = 0

𝑆

𝑘=1

 (9) 

 Let 𝑤𝑘(𝑒𝑘) =
𝜑(𝑒𝑘)

𝑒𝑘
⁄  for any 𝜑(𝑒𝑘), then the weighted objective function can be rewritten as in 

equation (10): 

∑𝑤𝑘(𝑒𝑘)(𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) − Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)�̂�(𝜏))Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) = 0

𝑆

𝑘=1

 (10) 

which results in the weighted least-squares problem (ref. 31). For all sensors, equation (10) forms a system 

of equations, which when solved give an efficient estimate of �̂�(𝜏) under normal conditions. The weights 

𝑤𝑘(𝑒𝑘) are affine equivariant and modeled as functions of the residuals, 𝑒𝑘, and the residuals are functions 

of the weights. Therefore, recursion (that is, IRLS) is required. This operation proceeds by solving for an 

initial least-squares estimate �̂�(𝜏) and computing the residuals and weights. Using the weighted 

observations, a new feature estimate �̂�(𝜏) is computed, and the residuals and weights are recalculated. The 

features or modal displacements �̂�(𝜏) of the hyperplane approximately satisfying for all sensors, equation 

(10), usually appear within a few iterations. 
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Weight Computations of Strain M-estimator 

 The solution of equation (10) must be computed after each concentration step, 𝑐, for the proposed 

concentrated estimator (see M-steps in fig. 5). To improve the convergence to the unbiased solution of �̂�(𝜏), 
sensors which are the most outlying are completely removed. For the new group of sensors, M-estimation 

is used to find improved feature estimates. Selection of the influence function is critical to the performance 

of the M-estimator.  

 Two commonly used influence functions in M-estimation are the Huber function (ref. 18) and Tukey’s 

bisquare function (ref. 32). While robust and efficient in many cases, Huber’s influence function increases 

without bound as the residual departs from 0. Therefore, gross outliers still impact the feature estimates and 

in typical cases lead to efficiency losses of 10-20% (ref. 33). 

 Tukey’s bisquare function belongs to a class of redescending functions (ref. 34) which account for gross 

outliers by gradually reducing the influence of the large residuals. Redescending M-estimators use 𝜑(𝑥) 
influence functions which are non-decreasing near the origin, but decrease to 0 far from the origin at some 

minimum rejection point.  

 For this reason, Tukey’s bisquare function is chosen to compute the weights with the residuals of the 

data. The bisquare weighting function 𝑤 =
𝜑(𝑥)

𝑥⁄  is defined for the 𝑘𝑡ℎ sensor as in equation (11), 

𝑤𝑘
(𝑏,𝑐)

(
𝑒𝑘
(𝑏,𝑐)

𝜎𝑘
(𝑏,𝑐)

) =

{
 
 

 
 
(1 − (

𝑒𝑘
(𝑏,𝑐)

𝜎𝑘
(𝑏,𝑐)

)

2

)

2

|
𝑒𝑘
(𝑏,𝑐)

𝜎𝑘
(𝑏,𝑐)

| < ℎ0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

where 𝜎𝑘
(𝑏,𝑐)

 is the median absolute deviation (MAD), ℎ0 is a tuning constant, 𝑐 is a concentration step, and 

𝑏 is an IRLS step of the M-estimator referred to as an M-step. To achieve the maximum 95% asymptotic 

efficiency assuming residuals have a Gaussian distribution, it has been shown that a tuning constant of  

ℎ0 = 4.685 is required (ref. 35). The MAD for the 𝑘𝑡ℎ observation is calculated as in equation (12): 

𝜎𝑘
(𝑏,𝑐)

=
𝑀𝐸𝐷(|𝑒𝑘

(𝑏,𝑐)
−𝑀𝐸𝐷(𝑒(𝑏,𝑐))|)

. 6745
⁄  (12) 

where the constant scaling 0.6745 is required to achieve a 37% Gaussian-efficient consistent estimator of 

the standard absolute deviation (ref. 36). While relatively low-efficiency, the purpose of using MAD instead 

of using the true scale is to resist outliers. This resistance it achieves remarkably well, because the median 

is high breakdown. The MAD is developed for symmetric distributions and does not address distribution 

skewness, which may be of concern since the explanatory data (strain mode matrix) is multivariate-skewed. 

Improvements of the MAD approximation for asymmetric long-tailed distributions are available if 

necessary (see two alternatives in ref. 36). Given the weights, 𝑤𝑘
(𝑏,𝑐)

, the linear system of equations is solved 

for �̂�(𝑏,𝑐)(𝜏), given sensors in subset 𝑆𝑔
𝑐 as in equation (13). 

∑𝑤𝑘
(𝑏,𝑐) (

𝑒𝑘
(𝑏,𝑐)

𝜎𝑘
(𝑏,𝑐)

)(𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) − Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)�̂�
(𝑏,𝑐)(𝜏))Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) = 0

𝑆𝑔
𝑐

𝑘=1

 (13) 

The weighted least-squares problem for the 𝑐𝑡ℎ concentration step is solved in the same way as in equation 

(10). Equations (11)-(13) are the primary feature estimator equations used within a concentration step of 

the concentration operator. These equations are iterated within any concentration step for a specified 

number of M-steps, 𝑏𝑓 resulting in the 𝑐𝑡ℎ feature or modal displacement estimate, �̂�(𝑏𝑓,𝑐)(𝜏). 
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Concentration Operations 

 The output of the M-estimator is prepared for concentration in figure 5. The purpose of concentration is 

to iteratively remove poor observations (sensor measurements) and use the sensors that are closest to the 

unbiased estimate of the centroid of the data distribution. Utilizing the sensors nearest to this centroid is 

assumed to give the best feature estimates. A best estimate of the centroid is the multivariate location, 𝑇 ,  
and dispersion, 𝑉 , of the data. Redescending M-estimators have been proposed as robust estimators of 

multivariate location and dispersion for theoretical asymmetric distributions (ref. 37). 

 Sensors furthest from this centroid are proposed to be downweighted in equation (13); however, 

downweighting sensors puts initial trust in possibly gross outliers. Therefore, the most offending 

observations must be completely removed from consideration (ref. 27). Although the redescending 

M-estimator does in fact equate weights to 0 for gross outliers, it puts some initial trust in gross leverage 

outliers in the first M-step. It is shown later that converged feature estimates from a redescending 

M-estimator may remain biased in some cases due to leverage outliers. The weighted sensor removal 

methodology to improve gross outlier rejection is developed here. Let the 𝑘𝑡ℎ sensor data vector be defined 

as in equation (14). 

𝑥𝑘 ≜ [Ψ𝑘(𝑥𝐶, 𝑦𝐶 , 𝑧𝐶) 𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏)] (14) 

Defining the data row vector in this way ensures that time-varying outliers shall not occur in 𝑚 features of 

the data matrix, because the strain modal matrix is a fixed (not dependent on 𝜏) and known data set, 

assuming no adaptation is present. Defining the data vectors in this way dramatically increases the 

breakdown point of an M-estimator. From any sample sensor set 𝑆𝑔
𝑐 ⊇ 𝑆, a location vector (see eq. (15))  

𝑇(𝑏𝑓,𝑐) =
1

∑𝑤
𝑘

(𝑏𝑓,𝑐)
(∑ 𝑤

𝑘

(𝑏𝑓,𝑐)
𝑥𝑘

𝑆𝑔
𝑐

𝑘=1

) (15) 

and a dispersion matrix  (see eq. (16))  

𝑉(𝑏𝑓,𝑐) =∑ 𝑤
𝑘

(𝑏𝑓,𝑐)𝑥𝑘
𝑇

𝑆𝑔
𝑐

𝑘=1

𝑥𝑘 (16) 

are estimated in the 𝑐𝑡ℎ concentration step. The weightings are the result of 𝑏𝑓 iterative M-steps over the 

subset of sensors 𝑆𝑔
𝑐. Weighted location and dispersion matrices have led to robust equivariant estimators 

with a high breakdown point for any dimension (ref. 38), such as the Stahel (ref. 39) and Donoho (ref. 40) 

estimator. It was shown that if the weights are affine equivariant, the estimates of location and dispersion 

are also affine equivariant. It was also shown that if the true mean and dispersion of the model has an 

asymptotic breakdown of 0.5, then the asymptotic breakdown point of the location and dispersion estimates 

also have an asymptotic breakdown of 0.5.  

 For the estimated location and variance, the squared Mahalanobis distance (𝐷2) (see ref. 41) is computed 

for every sensor data point 𝑘 by equation (17).  

𝐷2(𝑥𝑘) = (𝑥𝑘 − 𝑇
(𝑏𝑓,𝑐)) (𝑉(𝑏𝑓,𝑐))

−1
(𝑥𝑘 − 𝑇

(𝑏𝑓,𝑐))
𝑇

 (17) 

This multivariate distance differs from the Euclidean distance only in that it accounts for correlations 

between data points and is scale-invariant. If the population has a multivariate normal distribution, the 𝐷2 

is asymptotically approximated by a chi-square distribution (ref. 8). With this knowledge, statistical cutoff 

points from the inverse cumulative distribution can be determined. The strain data matrix has, however, an 

unknown highly skewed distribution, thus this data removal technique will not succeed (ref. 42). 

Theory-based concentration algorithms which trim the percentage of observations having the highest 𝐷2 
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are strictly invalidated. Leverage points naturally have very large 𝐷2, therefore, trimming good leverage 

points drastically biases the feature estimates.  

 The amplitude of 𝐷2 remains useful for finding outliers if the multivariate normal assumption is 

violated; however, asymptotic theoretical cutoffs must not be relied upon. Without knowledge of the 

underlying theoretical distribution, an approximation is required to find the cutoff value of 𝐷2. The initial 

distribution of 𝐷2 may be computed from the fixed modal matrix and time-varying set of strain data with 

Gaussian noise. The maximum of the computed 𝐷2 may be used as an upper bound for removing gross 

outliers. This method is very similar to the empirical cutoff approach for a fixed data set described in 

reference 43; that approach was improved with the adaptive approach taken in reference 42.  

 A shortcoming of these two methods is that small outliers may be missed if sensors are removed based 

on a maximum threshold of 𝐷2 or some derivative method, because the initial distribution mean and 

covariance may be biased. Iterative concentration steps are proposed herein to address this problem. During 

each concentration step, gross outliers are removed and the location and dispersion are re-estimated. The 

sample location and dispersion more closely resemble the population location and dispersion, thus, the 

small outliers become more pronounced. As the 𝐷2(𝑥𝑘) increases, the sensor can be identified as an outlier 

and removed. Outliers missed by this trim procedure are more likely to be down-weighted in the M-estimate 

(see eq. (13)).  

 The proposed method for finding the upper bound 𝐷𝑢𝑏
2  is time-consuming to implement, requiring 

thousands of simulations because the strain is time-varying. Since most of the data are described by the 

constant-strain data matrix, an approximation can be used for the upper bound. It can be assumed that the 

distribution of 𝐷2(𝑥𝑘), 𝑘 = 1…𝑆 is equal to or greater than the distribution of 𝐷2(Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)), 𝑘 =
1…𝑆 if the sensor data have a Gaussian error distribution. With this assumption, the impact of an additional 

feature may be assumed to change the distribution of 𝐷2 by the additional degree of freedom impact in a 

chi-square distribution. Recall that 𝐷2 is given in units of variance, which implies that the variance will 

increase with the additional degree of freedom. Therefore, it can be assumed that 𝐷2(Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)) +

𝜗(𝑛𝑠) ≥ 𝐷
2(𝑥𝑘), 𝑘 = 1…𝑆. Assuming the adjustment of 𝜗(𝑛𝑠) is due to the noise of the strain data, the 

scalar upper bound is defined as shown in equation (18): 

𝐷𝑢𝑏
2 ≜ 𝑃𝑐max

𝑘∈𝑆
𝐷2 (Ψ𝑘(𝑥𝐶, 𝑦𝐶, 𝑧𝐶)) (18) 

where 𝑃𝑐 is a tuning constant chosen to be slightly greater than 1. The tuning constant accounts for 𝜗(𝑛𝑠). 
By removing a portion 𝑘 ∈ 𝑆 sensors with 𝐷2 < 𝐷𝑢𝑏

2 , a new candidate group of sensors 𝑆𝑔
𝑐+1 is found for 

the next concentration step, and consecutive M-steps. The bound proposed in equation (18) is both 

theoretical and empirical and is the meat of the concentration procedure (see figure 5). Simulation studies 

given later verify this approximation of the upper bound, 𝐷𝑢𝑏
2  to be good for the strain mode matrix and 

strain data. The next section discusses another method of improving the robustness of the concentration 

estimator. 

Robust Starts and Online Operations of the Concentration Modal Estimator 

 Robustness for multi-stage estimators tends to come from good starts (initial feature estimates).  

A feature estimate from a high breakdown estimator is used to start the M-estimator for MM-estimates  

(ref. 19). The robustness is inherited by the more efficient M-estimator; however, this process can be time 

consuming because most high breakdown estimators are computationally inefficient. This attribute presents 

a problem for a distributed-sensor system, which requires a high breakdown estimate but must also be 

computationally efficient.  

 Other concentration operators use starts from estimates from all of the data or the data closest in distance 

to the coordinate-wise median of the data. The median ball algorithm (ref. 23) uses feature estimates from 
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sensors closest to the median as a robust start. This is a good start if the data can be assumed to be 

multivariate-normal, and works reasonably well for skewed distributions. 

 The first estimate of the system when 𝜏 is 0, (that is, when the sensor system is first operational), is 

calculated with a non-robust least-squares estimate. The first estimate is assumed to come from a working 

sensor system, thus it is a robust estimate. The initial robust feature estimate �̂�(0,0)(0) is found by solving 

the least-squares problem shown in equation (19): 

∑(𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) − Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)�̂�
(0,0)(0))Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) = 0 

𝑆𝑔
0

𝑘=1

 (19) 

where 𝑆𝑔
0 is the set all of the available working sensors. 

 During operation, a robust start is paramount. A significant advantage of a time-based sensor system is 

that previous close estimates are available. The most robust start will be the estimate from the previous time 

step, because the strain change is expected to be small between discrete time steps. Thus, the robust starts 

between discrete time steps are implemented as shown in equation (20): 

�̂�
(0,0)(𝜏) = �̂�

(𝑏𝑓,𝑐𝑓)(𝜏 − 1) (20) 

where 𝑏𝑓 is the total number of M-steps chosen, and 𝑐𝑓 is the total number of concentration steps.  

 The importance of starts carries over into the concentration steps themselves. In order for the steps to 

be high breakdown, each concentration step requires a robust start. The initial start, �̂�(0,0)(0), being robust, 

the final estimates at the end of each of the concentration steps: �̂�(𝑏𝑓,1)(𝜏), �̂�(𝑏𝑓,2)(𝜏),… �̂�(𝑏𝑓,𝑐𝑓−1)(𝜏) are 

robust under the assumption of robust inheritance (ref. 14). The estimates of corresponding concentration 

steps, then, are robust starts for the respective next concentration steps: �̂�(0,2)(𝜏), �̂�(0,3)(𝜏),… �̂�(0,𝑐𝑓)(𝜏). 
Therefore, the inheritance assumption shown in equation (21) is used to generate robust starts between 

concentration steps (see outer-loop feedback in fig. 5): 

�̂�
(0,𝑐+1)(𝜏) = �̂�

(𝑏𝑓,𝑐)(𝜏) (21) 

The full steps of the CME for any discrete time step are summarized in Algorithm 1 (also see fig. 5), 

assuming that an initial feature estimate has already been calculated with equation (19) at time 0. 

 

Algorithm 1: {𝑠𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏), �̂�
(𝑏𝑓,𝑐𝑓)(𝜏 − 1)} →  �̂�(𝑏𝑓,𝑐𝑓)(𝜏)  

 

1. If c = 0, compute �̂�(0,0)(𝜏) using equation (20); otherwise compute �̂�(0,𝑐)(𝜏) using equation (21). 

2. For 𝑏 = 0: 𝑏𝑓, iteratively compute weights, 𝑤𝑘
(𝑏𝑓,𝑐)

, using equations (11)-(13) to obtain 𝑤𝑘
(𝑏𝑓,𝑐)

. 

3. Compute location 𝑇 (see eq. (15)) and dispersion 𝑉 (see eq.(16)) with 𝑤𝑘
(𝑏𝑓,𝑐)

. 

4. Compute 𝐷2(𝑥𝑘), 𝑘 = 1…𝑆, using eq. (17) with 𝑇 and 𝑆. 

5. Generate a new sensor set 𝑆𝑔
𝑐+1 by trimming sensors below cutoff 𝐷𝑢𝑏

2  in eq. (18). 

6. If 𝑐 < 𝑐𝑓, go to step 1; otherwise output �̂�(𝑏𝑓,𝑐𝑓)(𝜏). 

For each time step, the M-step iteration count 𝑏𝑓 may be initialized to be large, so that a robust redescending 

M-estimate initializes the CME. This improves the algorithm’s stability during the concentration steps. 

Afterward, single M-steps where 𝑏𝑓 is equal to 1 may be utilized. This method has the effect of improving 

computational efficiency. 
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Concentrated Modal Estimator Summary 

 The CME finds great application for sensor systems with very large numbers of data points, such as will 

be available with the FOS, because some of the sensors are just not as important as others and there are 

hundreds from which to choose. If some sensors are biased, others can be used in place of those biased to 

form modal estimates. 

 The CME is noticeably similar to previously derived estimators. The CME uses concentration steps as 

proposed for the DGK (Devlin, Gnanadesikan, and Kettenring) estimator (see ref. 14) and median ball 

algorithm proposed by Olive (ref. 23). Rather than removing a percentage of data at every concentration 

step, however, a datum is only trimmed if its 𝐷2 exceeds 𝐷𝑢𝑏
2  (see eq. (18) and step 5 of Algorithm 1). The 

estimator thus follows the Hippocratic Oath, which may be paraphrased as “do no harm.”  

 Another difference includes robust start inheritance used between concentration steps (see eq. (21)) and 

between time steps (see eq. (20)). The median ball algorithm uses two starts, including the median start and 

the classical start, because access to close estimates of population parameters is not available. A previous 

close sample estimate will likely outperform a geometrically robust start, especially if the data are heavily 

skewed.  

 The CME is a deterministic algorithm, and requires no random subsampling. Most robust estimators 

rely on random subsampling; an example is the popular LTS estimator (ref. 29). It has been shown, 

however, that estimators with random seeds are not consistent (ref. 14). Instability may result if large 

(incorrect) changes in modal displacement estimates occur between time steps. The deterministic approach 

of the CME leads to stable estimates which do not vary by re-running the algorithm.  

 It is difficult to see how the deterministic concentration procedure or the start can negatively affect the 

high-breakdown nature of the redescending M-estimate. With robust starts and high-breakdown 

implications over time and over concentration steps, robustness will likely be achieved by the CME. In fact, 

the breakdown point can be higher than 0.5 due to the robust start utilized in equation (20). Simulation 

studies presented later justify the CME as a robust estimator for several worst-case asymmetric data 

distributions. 

Simulation 

 The CME is demonstrated in static and dynamic simulation studies. First, the sensor failure simulation 

is developed. An appropriate worse-case scenario failure point is determined. For analyses, a failure in a 

fiber is induced in a critical location. The CME is applied to scenarios in which the wing is in 

aeroservoelastic trim and perturbed from trim. An aeroservoelastic trim includes trim modal displacements.  

 Monte Carlo simulation is used to gather error distribution estimates for the modal displacement 

approximation. The modal estimate errors are compared to the state-of-the-art M-estimator feature 

estimates. A computational time study is given to show the CME has the potential to be a real-time 

estimator. Finally, a dynamic simulation verifies that the ASC system for the X-56A model does not go 

unstable. This includes a comparison of the CME to the state-of-the-art robust estimator. 

Fiber Optic Sensor Failure Simulation 

 The controller requires accurate modal estimation to track the displacements at the locations given in 

figure 2. Modeling FOS failures is required to test the robustness of the modal filter and FOS-based control 

system. Researchers at LaRC investigated the nature of spurious strain data after a break in the FOS fiber 

occurred (ref. 4). From visual inspection of the data it appeared that high bias in the strain occurs just 

upstream of the break in the fiber. Downstream of the break, the strain measurements appear biased to have 

a mean of 0 and a low standard deviation. These characteristics are captured here for a SFOS failure; 

however, this particular failure model may not be the general case. This demonstration should, however, 

lead to systems which model small, medium, and gross outliers. 
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 The sensor locations 𝑃𝑛𝑓
𝑠 (𝑥, 𝑦, 𝑧) upstream (closer to the wing root) from the fault location 𝑃𝑓(𝑥, 𝑦, 𝑧) 

are found, within a radius, 𝑟𝑛𝑓. The relative bias shape on the 𝑘𝑡ℎ sensor upstream of the fault is modeled 

by a normal distribution as shown in equation (22). 

𝐵𝑘
𝑛𝑓
=

1

𝑟𝑛𝑓√2𝜋
exp(−

1

2
(
‖𝑃𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) − 𝑃𝑛𝑓

𝑠 (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)‖

𝑟𝑛𝑓
)) (22) 

The sensors nearest the fault are modeled to have the most bias; those farthest from the fault are modeled 

to have the least bias. The bias is added to the sensor measurements with the rule shown in equation (23): 

𝑠𝑘
𝑛𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) = 𝑠𝑘

𝑛𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) +
𝐵𝑘
𝑛𝑓

max
𝑘𝜖𝑆𝑛𝑓

𝐵𝑘
𝑛𝑓
𝐴 (23) 

where 𝐴 is the maximum desired strain variation on sensors upstream of the fault in the fault radius. The 

sensors downstream of the fault (outboard near the wing tip in this case) also experience a bias; however, 

rather than a bias added to the existing measurement, the bias is modeled to take over the sensor 

measurement completely. This condition is modeled by replacing the sensor measurement with a sample 

from a normal distribution with a mean of 0 and a standard deviation of half the magnitude of 𝐴, as shown 

in equation (24). 

𝑠𝑘
𝑎𝑓(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 , 𝜏) = 𝑁(0,

𝐴

2
) (24) 

The amplitude is divided by 2 to make the error variation smaller farther from the fault. The mean was 

selected to be 0, but this may vary depending on the way the fiber is failed. Certainly this is not a perfect 

model of a fiber optic sensor fault, but the bias added to the sensors using equations (22)-(24) is appropriate 

for demonstrating outlier rejection. 

 For the failure model given in equations (22)-(24), three structural strain scenarios are analyzed. The 

first structural strain scenario is for aeroservoelastic trim strain at the design speed. This is a strain scenario 

in which the aircraft wing will spend the most time. The second structural strain scenario is for a large wing 

tip leading-edge-down torsional displacement from aeroservoelastic trim. The third structural strain 

scenario is for a large-amplitude bending displacement from aeroservoelastic trim.  

 It is expected that large displacements from aeroserovelastic trim may result from maneuvers, shape 

control, or large disturbances. To simulate the expected failure bias during a break, the failure bias 

amplitude, 𝐴, is arbitrarily set to 30 times the standard deviation of the SFOS noise (see eqs. (22)-(24)). 

The SFOS normal error was assumed to be 3 microstrains (𝜇𝑠) because the FOS is expected to have a high 

signal-to-noise ratio. The radius, 𝑟𝑛𝑓, which is used to find biased sensors upstream of the fault, is set to  

3 inches.  

 The radius selection is somewhat insignificant, as the break in the SFOS is assumed to occur near the 

trailing edge of the right wing near the wing root. This location has the highest leverage points or 

Mahalanobis distance (see fig. 4). The nominal sensor measurements for all three scenarios superimposed 

with suitable sensor bias for a fiber break at the wing root is presented alongside the other five fibers in 

figure 6.  
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Figure 6. Simulated fiber optic sensors strain with fault + noise: a) trim strain; b) trim + torsional strain; 

and c) trim + bending strain. 

 The biased strain in figure 6(a) represents small outliers. The biased strain in figure 6(b) caused medium 

outliers. The biased strain in figure 6(c) represents a case with gross outliers which occur both at 

non-leverage and leverage points (see fig. 4). The strongly biased strain measurement data (see fig. 6) 

present a challenge to the modal filtering and control system. 
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Concentrated Modal Estimator Simulation and Comparison 

 For each structural strain scenario, Algorithm 1 is computed for four concentration steps. The CME 

requires a robust start from a previous time step; in this case the robust start was not available. The robust 

start was therefore modeled by the true modal displacements offset by 10% of a multiplicative normal error. 

The relatively large offset simulates the modal displacement variation between discrete time steps 𝜏. Recall 

that modal displacement estimates current discrete time steps are used as robust starts for future time steps 

in the CME. The number of M-steps in 𝑐0 is initially set to 10 to achieve a converged Tukey bisquare 

M-estimate and then is set to 1 for all remaining concentration steps 𝑐0, 𝑐1, … , 𝑐𝑓 to improve computational 

efficiency. The tuning constant 𝑃𝑐 for the 𝐷𝑢𝑏
2  required for each concentration step is set to 1.1. The 𝐷𝑢𝑏

2  

works out to be 68 using equation (18).  

 The CME is compared to M-estimates with Huber and Tukey bisquare weightings. Huber’s function is 

utilized because it down-weights but does not completely remove the presence of gross outliers. Its 

performance is comparable to that of OLS used by Kang et al. (ref. 44); however, it will be much more 

robust to outliers. The M-estimators are given the same robust start as the CME: the true modal solution 

offset by 10% multiplicative normal noise. Recall that the additional noise simulates the difference in modal 

estimates between time steps.  

 Since control systems require high sampling rates, the CME must have low computational complexity. 

The computational processing time used for all estimators is recorded with the MATLAB profiler, which 

estimates the total CPU time required by processors to run functions and sub-functions. For each scenario 

a 2.6-GHz processor is used to compute CPU time.  Since the noise and fault conditions are characterized 

by normal distributions, an MCS is run. The MCS is generated from 300 random seeds.  

 Results are presented for percent relative error and deviation for modal bending and torsion displacement 

estimates. The simulation modal displacement is considered the true model of modal displacement in the 

system. The results of the MCS simulations for the aeroservoelastic trim case and the structurally perturbed 

cases are presented in figure 7. 

 



20 

 

 
 

Figure 7. Modal estimates during fault: Relative error a) trim strain, b) trim + torsional strain, and  

c) trim + bending strain; and CPU time d) trim strain, e) trim + torsional strain, and f) trim + bending strain. 

 The significance of figure 7 is primarily in the relative error comparisons. In the first structural strain 

scenario in figure 7(a), the relative error distribution of the SW1B modal displacement estimated with 

Huber weights is symmetrical and centered at -7%. The first standard deviation moves the overall maximum 

error to -15%. The SW1T modal displacement relative error distribution is skewed negatively and centered 

at -3%. The maximum deviation of the error moves the error to -22%.  
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 The Tukey estimates fared better, but only slightly. The SW1B modal displacement error distribution 

estimated with Tukey functions is symmetrical and centered at 0%. The error deviation is up to 10%. The 

SW1T modal displacement error distribution is symmetrical and centered at 2%. The maximum deviation 

of the estimate goes up to 18%. Reduced mean errors are expected for Tukey function estimates due to the 

reduction of the influence of gross outliers with bounded influence functions. The error bars were nearly 

the same size for both estimators.  

 The CME estimates the SW1B modal displacement with an error distribution for both SW1B and SW1T 

modal displacements symmetrically centered at 0.5% in figure 7(a). The deviation of the error for the SW1B 

modal displacement was at a maximum of 5%. The deviation of the error for the SW1T modal displacement 

achieved a maximum of 10%. When compared to state-of-the-art estimates, CME outperforms them with 

respect to relative error for the aeroservoelastic trim case. Figure 7(d) indicates that the CME is 

computationally comparable to the state-of-the-art estimators. The means of the CPU time for the CME 

was at 25 ms. The CPU time varied 18 ms from the mean. 

 Figure 7(b) shows the relative error comparisons for the second scenario, in which the wing is elastically 

twisted leading-edge-down by 3 deg. With higher displacements from trim, the estimators are expected to 

perform worse, due to the growth of outliers, and in fact this is shown to be the case. The Huber SW1B 

modal displacement error distribution is skewed positively and centered at 7%. The maximum deviation of 

the error moves the relative error up to 14%. The SW1T modal displacement error distribution is skewed 

negatively and centered at -28%. The error variation takes the maximum error to -47%.  

 Tukey’s estimate is better than Huber’s but worse than for the aeroservoelastic trim scenario. The SW1B 

modal displacement error distribution is skewed negatively and centered at 3%. The maximum relative 

error is down to -10%. The SW1T modal displacement error distribution is symmetrical and centered at  

-7%. The error variation takes the error distribution to -20%.  

 The CME estimates for the torsional scenario are comparable to the aeroservoelastic trim case. The 

means of both modal estimates are symmetrical and centered near 0%. The SW1B modal displacement 

estimate varies up to 4% in either direction. The SW1T modal displacement distribution varies up to 8%. 

The CME outperforms both the Tukey and Huber estimates. The CPU time for the three estimators shown 

in figure 7(e) is nearly the same as for the aeroservoelastic trim case, however, the CME CPU time 

distribution increased to 31 ms with a 17-ms variation. 

 In the final scenario the biggest improvement is seen when using the CME compared to the Huber and 

Tukey estimates. Huber’s estimate is strongly biased. The SW1B modal displacement error distribution is 

nearly a point and centered at 7%. The SW1T modal displacement error distribution is symmetrical and 

centered at 145%. The error varies up to 190%. The torsional modal displacement estimate is extremely 

poor. This holds true for the Tukey estimate as well, the SW1T modal displacement distribution of which 

is symmetrical and centered at 20%. The error variation of the estimate is up to 48%.  

 The CME estimate shows almost no error bias in the SW1B modal displacement. The SW1T modal 

displacement error distribution is higher than from previous scenarios, however, the mean is near 0 again. 

The variation is up to 20%. The clear advantage seen in the third scenario comes from the handling of gross 

outliers at leverage points through the concentration procedure. Neither the redescending M-estimator based 

on Tukey’s bisquare function nor the M-estimator with Huber weights considered significant removal of 

these leverage outliers. 

Analysis of Concentration Steps 

 The previous results are telling of how the CME will outperform the state-of-the-art estimators for the 

asymmetrical multivariate estimation problem. The CME process of concentration is not completely 

intuitive without analysis of the squared Mahalanobis distance 𝐷2 at each concentration step.  

For the aeroservoelastic trim strain scenario, the initial distribution of 𝐷2 is given, along with the measured 

𝐷2 and weighted 𝐷2 for four concentration steps. The initial distribution is based on 
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𝐷2(Ψ𝑘(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)), 𝑘 = 1…𝑆, where the squared Mahalanobis distance is computed only for the 

fixed-strain mode matrix. The measured 𝐷2 includes the strain mode matrix and measured strain in the 

computation of the squared Mahalanobis distance. The weighted 𝐷2 is computed by multiplying the 

measured 𝐷2 by the final weights 𝑤𝑘
(𝑏𝑓,𝑐)

 from the CME for each sensor. For the aeroservoelastic trim strain 

scenario, the distribution of the 𝐷2 for all SFOS is given for successive concentration steps in figure 8. 

 

 

Figure 8. Mahalanobis distances at the end of each concentration step in the aeroservoelastic trim case:  

a) 𝒄𝟎; b) 𝒄𝟏; c) 𝒄𝟐; d) 𝒄𝟑; and e) 𝒄𝟒 . 
 

 Figure 8 gives several indicators that the CME is operating as predicted during its derivation. The first 

indication is that the measured and weighted 𝐷2 tends to decrease through further concentration. At the 

beginning of the concentration procedure (see fig. 8(a)), the measured 𝐷2 is very large - up to 6,600 - and 
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largest where the sensors have initially failed. The second concentration step, in figure 8(b), shows that the 

magnitude of the weighted and measured 𝐷2 has reduced to a maximum of 250. In the final step (see fig. 

8(e)), the 𝐷2(𝑥𝑘) of each sensor is below the 𝐷𝑢𝑏
2  of 68.  

 All of the sensors cannot be detected and trimmed in the first step because the mean and co-variance 

estimates are still biased. As the more biased leverage sensors are removed, the estimates move closer to 

the true population mean and covariance. As the true population mean and covariance are approached, the 

sensors with smaller bias begin to look more like outliers and cross the 𝐷𝑢𝑏
2  threshold. These sensors are 

detected and removed, thus further improving the estimate of the mean and covariance of the distribution. 

This process is iterative and converging. 

  Notice from figure 8 that not all of the sensors can be removed with trimming, as outliers at off-leverage 

points are likely to reside below the 𝐷𝑢𝑏
2  threshold. The effects of these outliers are down-weighted by the 

M-step re-weighting procedure. Since the weighted 𝐷2 is below that of the good leverage points, the effects 

of these outliers have a minimal impact on the estimate. Therefore, the optimal feature estimates are pulled 

toward the true global optimum. 

 Some computational observations of theoretical predictions can be made. Note that the measured 𝐷2 is 

lower-bounded by the initial 𝐷2, supporting the fact that the addition of another feature and sensor noise to 

the initial 𝐷2 increases the maximum 𝐷2. The utilization of equation (18) to approximate 𝐷𝑢𝑏
2  is thus 

justified; it is best depicted in the last concentration step (see fig. 8(e)), where the resolution is more 

pronounced. Another observation can be made about the effect of the weights on the noise: It is clear that 

the CME has a side effect of down-weighting noisy sensors; the weighted 𝐷2 appears smoother than the 

measured 𝐷2. For those sensors which were particularly impacted by noise, the weighted 𝐷2 was even 

lower than the initial 𝐷2. Thus, sensors with more noisy measurements than others can be identified and 

down-weighted within a single time step. 

Dynamic Simulation – Automatic Sensor Failure Rejection 

 The previous static analyses show that the CME can perform adequately in the presence of unbiased and 

biased sensor data. But performance in a control system is a critical requirement of the CME, thus, the CME 

is tested in a dynamic simulation to verify that the interaction of the estimators with the control system will 

not lead to instability. For this verification test, the virtual deformation simulation control architecture 

shown in fig. 9 is used (also see ref. 2). 
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Figure 9. Virtual deformation control architecture for the X-56A model. 

 Virtual deformation control is a concept which has been proposed to actively control the shape of the 

aircraft,(refs. 2 and 3) however, to enable this concept in the manner previously proposed, distributed 

sensing is required. The distributed sensing and control architecture represents the control system for the 

simulated X-56A model, where the inputs are assumed to originate from a guidance computer. The 

commands are split into deformation and airframe type and the entire simulation and controller is run at 

100 Hz. This sampling rate is faster than the predicted performance of the CME, but the algorithm has not 

yet been optimized computationally and placed into hardware. 

 The simulated virtual deformation control system is thoroughly described in reference 2. For the present 

simulation, rigid body pitch angle, 𝜃, and bank angle, 𝜙, are tracked in the flight controller. Yaw axis 

commands are not given. Commands of 0 deg are given to both pitch and bank angles. Points at the wing 

tips (see fig. 2) are given an equal 1.2% of wing span vertical displacement commands. The points are 

tracked by commanding the first bending and torsion modal displacements using the transformation given 

in reference 2, explaining the “virtual” in “virtual deformation control.”  

 In previous work (ref. 2), the simulation incorporated airframe noise, 𝑛𝐴𝐹, into the rigid body sensors. 

Only SFOS noise, 𝑛𝑠, is modeled here, so that the effect of the fault is isolated. For the current simulation, 

the SFOS failure bias 𝑛𝑓 is added to faulty sensors using the same failure shown in figure 6(b). At any time 

after 10 s the sensor bias, 𝑛𝑓, impacts the sensor system. The CME is allowed four concentration steps. As 

before, the CME is allowed 10 M-steps in the initial concentration step. A single M-step is utilized in the 

last 2-4 concentration steps. The 𝐷𝑢𝑏
2  is again calculated to be 68, with 𝑃𝑐  set to 1.1 using equation (18). 

 For comparison, simulation results for state-of-the-art M-estimator with Tukey bisquare weights was 

utilized in lieu of the true state-of-the-art OLS estimator from Kang et al. (ref. 44). Clearly, an OLS 

estimator is an unfair comparison in the presence of such large sensor bias (see fig. 6). During each 

simulation, both the CME and Tukey’s estimator use the robust starts in equations (20) and (21). This is 

done to ensure a fair comparison and to demonstrate the importance of concentration. The Tukey estimator 

is also allowed to iterate to convergence. 

 The modal displacement estimates from each estimate are passed to a 𝜇-optimal controller developed in 

previous work (ref. 2). The controller achieves robust stability and performance for modeled feature and 
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speed variations there, however, it has some nominal overshoot performance problems, which may be 

corrected with improved weightings. 

 It is not expected that nominal stability or performance problems from the controller will create other 

problems, thus, if instability occurs during the fault, it would not be expected to be the result of an 

improperly designed control system. Good or bad performance is due only to the estimator performance. 

The comparative results of the dynamic simulation studies are presented in figure 10. 

 

 

Figure 10. Dynamic simulation comparing estimators during SFOS failure: M-estimate a) deformation 

tracking and b) airframe state tracking; and CME c) deformation tracking and d) airframe state tracking. 
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 Differences are noted from the side-by-side comparison of the M-estimator (see figs. 10(a) and 10(b)) 

and CME (see figs. 10(c) and 10(d)) performance. After 10 s, the control system with the state-of-the-art 

M-type estimator experiences strong divergent oscillations (see figs. 10(a) and 10(b)), never returning to 

normal, and the system goes unstable. It is evident that the bias modeled by equations (22)-(24) appears to 

lead to either control-induced instability or flutter amplification. This condition is worsened by the fact that 

the X-56A plant model is open-loop unstable. This observation exposes the danger that may result from 

using a failed FOS system with an estimator which is not robust to leverage outliers. 

 The CME time histories (see figs. 10(c) and 10(d) show no signs of growing oscillations after the fault. 

When the structure is perturbed, the distribution of the noise does not appear to change and the estimates 

remain unbiased. The same is true when the structural command is changed, showing that the CME is 

consistently rejecting the outliers for different structural conditions. Note that “different structural 

conditions” also means “different outlier characteristics.” 

 The dynamic performance of the CME is adequate when considering that 230 sensors have become 

strongly biased (as in fig. 6(c)). The dynamic simulation demonstrates that the robust start between discrete 

time steps (see eq. (20)) is justified in Algorithm 1 - that is, that the previous modal displacement estimate 

can be satisfactorily used as a robust start for the CME.  

 The results presented here clearly show that the CME can help to create a robust 

distributed-sensor-based control system. Further simulation work may be necessary to verify that the CME 

is robust to all types of FOS failure modes in experimental studies. 

Conclusions and Future Work 

 The concentrated modal estimator (CME) was introduced as a candidate estimator to mitigate the 

severity of a fiber optic sensor failure. The algorithm works primarily under the assumption that there are 

many available sensors. The concept is that many sensors will work properly, and these can be used to 

determine which sensors are bad.  

 The CME provides unbiased modal displacement estimates to the control system under simulated fiber 

optic sensor failure conditions. This estimation was achieved through the concentration procedure, which 

utilized an approximated squared Mahalanobis distance trim criterion. The CME was found to outperform 

state-of-the-art M-estimators, using the same robust starts. The CME was also shown to be computationally 

efficient relative to state-of-the-art M-estimators.  

 The CME supports the safety-critical aspect of employing fiber optic sensors in 

distributed-sensing-based control systems. There are other applications of the CME, such as health 

monitoring and load safety, which are planned to be presented at a later date. Future work is also planned 

to extend to actively optimizing the shape of the aircraft. 
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