
User Guide for Generic Software Architecture for
Prognostics (GSAP) C++ V1.0

About
The Generic Software Architecture for Prognostics (GSAP) is a framework for applying
prognostics. It makes applying prognostics easier by implementing many of the common
elements across prognostic applications. The standard interface enables reuse of prognostic
algorithms and models across systems using the GSAP framework.

The GSAP framework is used through the creation of communicators, prognosers, or models
(the deployment layer). The elements of the deployment layer plugs into the framework and use
the tools of the support layer. These elements are described further below:

● Communicators:
Communicators are used to communicate data with the outside world. These function as
interfaces with various data sources and sinks. Some examples could be a playback
agent that reads from a file, a GUI for displaying prognostic results, an automated report
generator, or a client that connects into a network messaging system (for example:
SCADA). These systems can receive data which will be used by prognosers or
communicate the results with operators.

● Prognosers:
This is the core of the GSAP system. Inside the prognosers is the core logic for
performing prognostics. A new prognoser is created to support a new method for
performing prognostics. Many prognostics systems follow a common model-based
structure. Those systems do not require the creation of a new prognoser, only the
creation of a new model that will be used by the modelBasedPrognoser . For more
information on this see the section Extending .

● Models:
Models are a method of representing the behavior of a component. A common way of

performing prognostics is using a model that describes both the healthy and damaged
behavior of the components. The modelBasedPrognoser uses the models to perform
prognostics.

Each of these components is configured through the use of configuration files. This allows for a
GSAP deployment to be configured to a new configuration or system without any software
changes.

The GSAP system was tested with OS X 10.11, Red Hat Linux, Debian Linux, and Windows 7.

Compiling
Compile using the cmake list included and the cmake tool (https://cmake.org)

Running
Running a GSAP deployment requires an entry point . This entry point is a main function that
registers any models, observers, predictors, prognosers, or communicators used with the
relevant factory, and points the Prognostic Manager to the relevant prognostic configuration file.

Once the GSAP deployment is started up, a command prompt should appear. Here you can
command the deployment between four modes:

● Enabled: This is the mode that that the system starts in. In this mode the communicators
are initialized and running, and the prognosers are initialized, but not yet running. To
start the prognosers use the start command.

● Started: In this mode both the communicators and prognosers are running. From here
the prognosers can be paused with the pause command, and the system can be
stopped with the stop command.

● Paused: At this point the communicators continue, but the prognosers have paused.
From here the prognosers can be resumed with the resume command and the system
can be stopped with the stop command

● Stop: This is the mode where everything is shut down, after execution. GSAP can be
stopped using the stop command at any time.

The GSAP deployment keeps a log file (log.txt) of all operations in the same directory as the
executable.

Extending
GSAP is designed to be easy to extend to fit your use. Extending GSAP is done by adding
Prognosers, Models, or Communicators. When the behavior of the component being prognosed
is represented by a model, users can create a new model and use the supplied
modelBasedPrognoser for prognostics. This is doe instead of adding a new prognoser.

https://cmake.org/

Adding New Models
New models are created with a new class that derives from either the Model class or the
PrognosticsModel class. Models from the Model class implement only state and output
equations. Models from the PrognosticsModel class implement also input equations (used to
generate predicted inputs for a system being modeled) and a threshold equation (used to define
events to be predicted, e.g., failure).

Adding New Prognosers
This is done for Prognosers that do not follow the modelBasedPrognoser pattern. If you are
using the modelBasedPrognoser pattern, you do not need to create a new Prognoser. In that
case you use the modelBasedPrognoser and add a new Model.
If you are not using modelBasedPrognoser follow the following instructions to create a new
Prognoser:

1. Copy EmptyPrognoser.cpp and EmptyPrognoser.h and rename to the name of your
prognoser

2. Follow the instructions inside EmptyPrognoser.cpp to create your prognoser

Adding New Communicators
1. Copy EmptyCommunicator.cpp and EmptyCommunicator.h and rename to the name of

your communicator
2. Follow the instructions inside EmptyCommunicator.cpp to create your communicator

Configuring
A GSAP distribution is tuned using configuration files. There are three types of configuration
files: the Primary Configuration File, Prognoser Configuration Files, and Communicator
Configuration Files. These are described further below.

Primary Configuration File
This is the configuration file identified to the ProgManager. It identifies where all the other
configuration files are, and specifies top-level configuration A list of the accepted parameters
can be seen below:

Parameter Description

Prognosers A list of the prognoser configuration files to use. A prognoser
will be made for each configuration file in the list

Communicators A list of the communicator configuration files to use. A
communicator will be made for each configuration file in the list

CommManager.step_size
[optional]

Wait time between iterations of the comm manager in
milliseconds

Prognoser Configuration Files
This is for configuring individual prognosers. A list of the accepted configuration parameters can
be seen below:

Prognoser Parameter Description

All type [Required] The type of prognoser (ex:
modelBasedPrognoser)

All name [Required] The name of the component being
prognosed (ex: battery1)

All id [Required] A unique identifier for the piece of
hardware being prognosed (ex: Serial
Number)

All histPath [Optional] A path for the history files

All inTags [Optional] A list of tags expected from
communicators

All resetHist [Optional] A flag to reset the recorded history for
the component. Will archive the
current history file and start a new one

modelBasedPrognoser model [Required] The model to be used by the
modelBasedPrognoser

modelBasedPrognoser observer [Required] The observer to be used by the
modelBasedPrognoser

modelBasedPrognoser predictor [Required] The predictor to be used by the
modelBasedPrognoser

modelBasedPrognoser Model.event [Required] The name of the event to predict.

modelBasedPrognoser Predictor.numSamples
[Required]

The number of samples used by a
predictor.

modelBasedPrognoser Predictor.horizon
[Required]

The time horizon for prediction (in
seconds), which is relative to the
current time.

modelBasedPrognoser Model.predictedOutputs
[Required]

The names of the system variables
that are to be predicted and written to
the SystemTrajectoies. These must be
specified in the order that is consistent
with the model.

modelBasedPrognoser inputs [Required] The names of the input variables for
the model. These must be specified in
the order that is consistent with the
model.

modelBasedPrognoser outputs [Required] The names of the (measured) output
variables for the model, associated
with the system sensors. These must
be specified in the order that is
consistent with the model.

modelBasedPrognoser
with Battery Model

Battery.qMobile [Optional] The amount of mobile ions in the
battery. This is representative of
battery capacity (a larger value means
a larger capacity).

modelBasedPrognoser
with Battery Model

Battery.Ro [Optional] Internal Ohmic resistance of the
battery.

modelBasedPrognoser
with Battery Model

Battery.VEOD [Optional] The voltage level that defines
end-of-discharge (EOD).

modelBasedPrognoser
with
UnscentedKalmanFilter

Observer.Q [Required] The process noise covariance matrix
for the model. These must be
specified in the order that is consistent
with the model. It is represented as a
comma-separated list of values, going
row by row.

modelBasedPrognoser
with
UnscentedKalmanFilter

Observer.R [Required] The sensor noise covariance matrix
for the model. These must be
specified in the order that is consistent
with the model. It is represented as a
comma-separated list of values, going
row by row.

MonteCarloPredictor Model.processNoise
[Required]

This is a vector consisting of the
variances of each process noise term.

There exists a process noise term
corresponding to every state in the
model, and is assumed to follow a
Gaussian distribution with zero mean
and variance specified in the
configuration file.

MonteCarloPredictor Predictor.inputUncertanty
[Required]

A specification of the uncertainty in the
input parameters specifying the future
inputs to the system. For the battery
model, it expects quadruples of
numbers, one for each loading
segment: the mean of the load (in W),
the standard deviation of the load, the
mean of the segment duration (relative
to the initial time) and the standard
deviation of the segment duration.

Communicator Configuration Files
This is for configuring individual communicators.

Communicator Parameter Description

Playback file [Optional] The file to be used for playback

Playback Delim [Optional] The delimiter used in the playback file

Playback timestampFromFile
[Optional]

If set to ‘true’ the playback data will
be assigned the timestamp in the file.
Otherwise, it will be assigned the
current time

Recorder saveFile [Optional] The file to be recorded to

Recorder recordProbOccur
[Optional]

If ‘true’ the probability of occurrence
will be written to the file

Recorder recordOccurance
[Optional]

If ‘true’ the occurrence matrix will be
written to the file

Recorder recordPredictions
[Optional]

If ‘true’ the predictions will be written
to the file, otherwise only the curent
timestep will be recorded

Recorder recordSystemTrajectories If ‘true’ the system trajectories will be

[Optional] written to the file

Random step [Optional] The minimum step between adjacent
random numbers

Random max [Optional] The maximum random number used
(minimum is 0)

Contact
If you have questions, please contact Chris Teubert (christopher.a.teubert@nasa.gov)

Change Log
V0.1 [5/27/16]: Initial draft for software release V0.1

