Recent re-analyses of the Apollo lunar seismic data: Insight into the Moon's deep interior

Renee Weber Raphael Garcia Pei-Ying Lin

> ISSI-BJ Forum on Lunar and Planetary Seismology Jan. 2017

Understanding prior to re-analysis of Apollo data and the GRAIL lunar gravity mission

 Moon's moment of inertia roughly approximated by homogeneous sphere (I_{solid}/MR² = 0.3930±0.0003), so if a core is present, it must be small

- No seismic energy originating from far side penetrated the core, so it is likely attenuating
- Deepest moonquake source regions ~1200-1400km depth; so core likely 300-500km radius

Indirect measurements found...

Lunar Laser Ranging (LLR):

- LLR began precise monitoring of the Moon's geodetic parameters in 1969
- Dissipation provided the first LLR evidence for a fluid core
- fluid core radius = 352km if iron, or 374km for a Fe-FeS eutectic composition

Magnetic Induction

- In April of 1998, the Lunar Prospector orbit plane was nearly parallel to the Sun-Moon line, optimally oriented for using the magnetometer to detect an induced moment in the Earth's geomagnetic tail
- Assuming that the induced field is caused entirely by electrical currents near the surface of a highly electrically conducting metallic core, the preferred core radius = 340+90 km.
- For an iron-rich composition such a core would represent 1 to 3% of the lunar mass

Compositional constraints:

 Over the past 30 years, estimates of siderophile ("metal-seeking") elements in the lunar mantle have been used to argue for the presence of a small metallic core (0.1–5.5 lunar wt%)

Study	Core Mass Fraction (%)	Core Radius (km) [†]	Silicate Mantle Degree of Melting (%)	Core Ni Abund. (wt%)	Bulk Moon Comp.*
Newsom (1984)	2.0 - 5.5	369 – 517	2 – 9	12 – 25	CI
O'Neill (1991)	~1	~ 293	0	35 – 55	PUM, CI, H
Ringwood & Seifert (1986)	0.4	216	0	40	PUM
Righter & Drake (1996)	1	293	100	43	PUM/CI/H
Righter & Drake (1996)	5	500	100	8.3	PUM/CI/H
Righter (2002)	0.7 – 1.0	260 - 293	100	20.0 –25.7	Proto-Earth/ Impactor

Table 3.15. Summary of lunar core sizes based upon siderophile element concentrations.

*CI (CI chondrite); PUM (Primitive upper mantle); H (H chondrite).

[†]Assuming a core density of 7 g cm⁻³

Uncertainties are also evident in seismic velocity models

seismic only: Nakamura 1983 Khan 2000, 2002 Lognonne 2003 Gagnepain-Beynix 2006 joint seismic & gravity: Khan 2007 free oscillations: Khan 2001

sources of velocity uncertainty include:

- P and S pick error
 - Long-duration codas caused by the scattering and reverberations of seismic energy in the highly fractured lunar regolith, which leads to emergent, rather than impulsive arrivals.
 - Limited bandwidth of the Apollo instruments meant that many events occurred at or near the detection threshold of the instruments

- Small number and limited geographical extent of seismic stations
- Depth and location uncertainty of moonquakes
- Assumed velocities in overlying layers

Error level:

Anywhere from 100 to several hundred m/s uncertainty in seismic velocities, the lower bound of which is on the threshold for mineralogical interpretations

• P- and S-wave arrivals from a variety of seismic signals are fit on a 3-D grid via velocity perturbations in the mantle and crust (Zhao et al., 2008 & 2012)

Garcia et al., 2011

core radius = 380 ± 40 km

Weber et al., 2011

core radius = 330 ± 20 km

GRAIL found...

Williams et al., 2014 family of core models consistent with geodetic parameters

Table 8. GRAIL Primary Mission (GPM) Models That Satisfy Mean Density, Mean Solid Moment, Love Number, and a Deep Mantle Low-Velocity Zone^a

Parameter	GPM1	GPM2	GPM3	GPM4	GPM5
<i>R</i> _f	372 km	350 km	325 km	300 km	278 km
R _i	0	183 km	230 km	259 km	277 km
R _{Iv}	507 km	520 km	534 km	545 km	554 km
M _f /M	0.0150	0.0107	0.0064	0.0028	0.0001
M _i /M	0	0.0028	0.0055	0.0079	0.0097
l _f /l _m	6.9×10^{-4}	4.9×10^{-4}	2.9×10^{-4}	1.2×10^{-4}	2.9×10^{-6}
l _i /l _m	0	3.1×10^{-5}	9.7×10^{-5}	1.8×10^{-4}	2.5×10^{-4}
I _m /MR ²	0.39338	0.39330	0.39322	0.39316	0.39311
k ₂	0.02422	0.02422	0.02422	0.02422	0.02422
h ₂	0.04237	0.04237	0.04240	0.04240	0.04242
l ₂	0.01076	0.01077	0.01077	0.01078	0.01079
<i>k</i> ₃	0.00951	0.00952	0.00952	0.00953	0.00954
h ₃	0.02344	0.02345	0.02348	0.02350	0.02353
l ₃	0.00298	0.00298	0.00298	0.00298	0.00297
<i>k</i> ₄	0.00536	0.00537	0.00537	0.00537	0.00537
k _{2f}	1.441	1.441	1.440	1.439	1.439
h _{2f}	2.441	2.441	2.440	2.439	2.439
l _{2f}	0.721	0.720	0.720	0.720	0.719

^aThe reference R = 1737.15 km.

Is a partial melt layer required?

mantle

partial melt

fluid outer core

solid inner core

240 km 330 km <u>480 km</u>

yes:

Khan et al., 2014

Inversion of lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations no:

Nimmo et al., 2012

viscoelastic dissipation model based on laboratory deformation of melt-free polycrystalline olivine topic of presentation by R. Garcia

