Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design

Jeffrey Ouellette
NASA Armstrong Flight Research Center
AIAA SciTech
January 9, 2017
Increasing Aspect Ratio

• Improves aerodynamic performance

• Increased flexibility
 • Reduces aeroelastic margin
 • Significant weight penalty to maintain margin

• Greater interaction with the flight dynamics
Active Flutter Suppression

• Use flight controls to maintain stability
 • Does not have a weight penalty
• Past efforts have had mixed results
 • B-52 successfully suppress flutter 1973
 • DAST was unsuccessful
• Body freedom flutter
 • Structural dynamics destabilize flight dynamics
Then and Now

• Found several issues with existing modeling approaches

• Development to date
 • Keep trying to patch issues
 • Inconsistencies between disciplines
 • Coordinate systems
 • Definition of parameters
 • Etc.

• Building upon previous approaches
 • Intentionally similar to existing approaches
 • Addressing inconsistencies between disciplines
The Problem: State Consistency

- Models generally made for specific mass/flight condition
- Full envelope design
 - What happens between these conditions?
- No sign convention in mode shapes
 - The direction of the mode shapes can change
- New modes can appear with masses
- Ordering of the modes can change
 - Finite element models sort by frequency
Previous methods: State Consistency

- Often simply ignored
 - Does not appear on simpler configurations
 - Can be bypassed by specific control architectures
- Corrective transformations
 - Applied to final models
 - Often not robust
 - Are there equivalent states?
The Solution: Assumed Modes

• Using an assumed mode method
 • The same mode shapes are used for all conditions
 • Changes are in modal mass and stiffness matrices
 • To match kinetic and potential (strain) energy
 • Aerodynamic coefficients are constant

• Assumed modes method is quite old
 • Using for state consistency is new

• Which mode shapes to use?
 • Are there sufficient mode shapes?
 • Are all of the modes represented?

• This is an issue with any method
The Problem: Low frequency Dynamics

• Why do we care?
 • Static Instabilities
 • Short-period frequency is reduced
 • Very strong coupling with the phugoid
 • Often less control margin
 • MIL-STD-9490 below 0.06 Hz
 • Requires 4.5 dB gain margin
 • Requires 30 deg phase margin

• Do not want separate models for these dynamics

• What are the primary effects?
 • Phugoid mode
 • Dominates low frequency behavior
 • Transfer of energy
 • Kinetic energy
 • Potential energy (gravity)
 • Large velocity variations
 • Flutter methods assume constant velocity
Previous method: Apply rigid body model

• Velocity Variations
 • Forces change due to changes in dynamic pressure
 • $\frac{\partial}{\partial V} q = 2 \frac{\tilde{q}}{V}$
 • Applying 6DoF coefficients neglects change in force on the structure
 • $A_{1aug} = S$

\[
\begin{pmatrix}
-2C_{D0} & 0 & C_{L0} & 0 & \cdots & 0 \\
-2C_{L0} & 0 & -C_{D0} & 0 & \cdots & 0 \\
2\tilde{C}_{D0} & 0 & 0 & 0 & \cdots & 0 \\
2C_{\eta10} & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
2C_{\eta10} & 0 & 0 & 0 & \cdots & 0 \\
\end{pmatrix}
\]

• Gravity
 • Can use 6 DoF results
 • If origin is at the center of gravity
 • Assumed modes complicates this
 • Mass matrix is not diagonal
 • Center of gravity moves with structural deformations
The Solution: Gravitational Forces

• Using the complete mass matrix from the finite element model
 • Modal mass is not diagonal
 • Due to assumed modes method

• For each element
 • \(\mathbf{F}_{\text{gravity}} = m_{\text{element}} \mathbf{g} (\hat{\mathbf{z}} + \mathbf{T}(\alpha_0)\mathbf{\theta}_{\text{element}}) \)
 • \(\hat{\mathbf{z}} \): Vertical vector
 • \(\mathbf{T}(\alpha_0) \): Rotation matrix from trim angle
 • \(\mathbf{\theta}_{\text{element}} \): Rotation of element from mode shape
The Problem: Unsteady Aerodynamics

- The structural motions are high frequency
 - On the order of the dynamics of the flow
 - Significant delays in the response
 - Need to model the flow dynamics
- Frequency domain aeroelasticity tools
 - Considering harmonic motions simplifies the dynamics
 - Time histories are required for evaluating closed loop performance
 - No closed form solution from frequency response to time history
Previous method: Rational Function Approximation

- Rogers Rational Function Approximation
 - \(\{q\} \approx (A_0 + A_1 ik + A_2 k^2 + D(ikI - R)^{-1}Eik)\eta \)
 - Has been used many times (40+ years old)
 - Developed with weak interactions between flight dynamics and aeroelasticity
 - Uses a modal coordinate system
 - Inertial coordinate system (origin is fixed in space)
 - Does not work for flight mechanics
 - Origin must move with the aircraft
Previous method: Time domain transformation

• Transformation
 • Applied to final model
 • Equivalent to
 • $A_0^* = A_0 T \eta_{2x} + A_1 T \eta_{2x}$
 • $A_1^* = A_1 T \eta_{2u} + A_2 T \eta_{2x} T^{-1} \eta_{2x} T \eta_{2u}$
 • $A_2^* = A_2 T \eta_{2u}$

• Results in erroneous coefficients
 • Vehicle heading does not effect aerodynamic forces
 • Issues are emphasized in model reduction
 • Removing increases the error in the RFA
The Solution: Frequency domain Transformation

• Apply transformation directly to frequency domain aerodynamics
 \[
 \{ i k \eta \} = \begin{bmatrix} T \dot{\eta} u & T \dot{\eta} x \\ 0 & T \eta x \end{bmatrix} \{ u \}
 \]

• Stability Axis RFA
 \[
 \{ q \} \approx A_0 x + (A_1 + A_2 i k + D(ikI - R)^{-1} E) u
 \]
 • Separate positions (\(x\)) and velocities (\(u\))
 • Euler angles appear only in \(A_0\)
 • Only need to constrain single matrix
 • Curve fit remains minimum error solution
Applying the method: X-56A MUTT

- Designed for testing active flutter suppression
 - Flexible wings have unstable flutter modes
- Currently have stiff wing data
 - No unstable flutter modes
- Using frequency domain potential flow aerodynamics
Results

Comparing to rigid models

Comparing to flight data

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Fuel Mass</th>
<th>Airspeed</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>Low</td>
<td>Pitch</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Low</td>
<td>Pitch</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
<td>Pitch</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>High</td>
<td>Roll</td>
</tr>
</tbody>
</table>
Flight Data Comparison: Pitch response, low fuel, low speed

Pitch Rate

Wing Tip Accelerometer

- Magnitude, dB
- Phase, deg
- Coherence

Frequency, Hz

Flight test vs. Model: Short-period and First wing bending

January 9, 2017

AIAA SciTech
Flight Data Comparison: Pitch response, low fuel, high speed

Pitch Rate

Wing Tip Accelerometer

Magitude, dB

Phase, deg

Coherence

Frequency, Hz

January 9, 2017
Flight Data Comparison: Roll Response, low fuel, high speed

Roll Rate

Wing Tip Accelerometer

Magnitude, dB
- Flight test
- Model

Phase, deg

Coherence

Frequency, Hz

January 9, 2017
AIAA SciTech
Conclusions

• Model generation for body freedom flutter

• Addressing issues in:
 • State Consistency
 • Low frequency dynamics
 • Unsteady aerodynamics

• Applied approach to X-56A MUTT
 • Comparing to flight test data