Aeroservoelastic Modeling of Body Freedom Flutter for Control System Design

Jeffrey Ouellette

NASA Armstrong Flight Research Center

AIAA SciTech

January 9, 2017

Increasing Aspect Ratio

- Improves aerodynamic performance
- Increased flexibility
 - Reduces aeroelastic margin
 - Significant weight penalty to maintain margin
- Greater interaction with the flight dynamics

Active Flutter Suppression

- Use flight controls to maintain stability
 - Does not have a weight penalty
- Past efforts have had mixed results
 - B-52 successfully suppress flutter 1973
 - DAST was unsuccessful
- Body freedom flutter
 - Structural dynamics destabilize flight dynamics

Then and Now

- Found several issues with existing modeling approaches
- Development to date
 - Keep trying to patch issues
 - Inconsistencies between disciplines
 - Coordinate systems
 - Definition of parameters
 - Etc.
- Building upon previous approaches
 - Intentionally similar to existing approaches
 - Addressing inconsistencies between disciplines

The Problem: State Consistency

- Models generally made for specific mass/flight condition
- Full envelope design
 - What happens between these conditions?
- No sign convention in mode shapes
 - The direction of the mode shapes can change
- New modes can appear with masses
- Ordering of the modes can change
 - Finite element models sort by frequency

Previous methods: State Consistency

- Often simply ignored
 - Does not appear on simpler configurations
 - Can be bypassed by specific control architectures
- Corrective transformations
 - Applied to final models
 - Often not robust
 - Are there equivalent states?

The Solution: Assumed Modes

- Using an assumed mode method
 - The same mode shapes are used for all conditions
 - Changes are in modal mass and stiffness matrices
 - To match kinetic and potential (strain) energy
 - Aerodynamic coefficients are constant
- Assumed modes method is quite old
 - Using for state consistency is new

- Which mode shapes to use?
 - Are there sufficient mode shapes?
 - Are all of the modes represented?
- This is an issue with any method

The Problem: Low frequency Dynamics

- Why do we care?
 - Static Instabilities
 - Short-period frequency is reduced
 - Very strong coupling with the phugoid
 - Often less control margin
 - MIL-STD-9490 below 0.06 Hz
 - Requires 4.5 dB gain margin
 - Requires 30 deg phase margin
- Do not want separate models for these dynamics

- What are the primary effects?
 - Phugoid mode
 - Dominates low frequency behavior
 - Transfer of energy
 - Kinetic energy
 - Potential energy (gravity)
 - Large velocity variations
 - Flutter methods assume constant velocity

Previous method: Apply rigid body model

- Velocity Variations
 - Forces change due to changes in dynamic pressure
 - $\frac{\partial}{\partial V} \overline{q} = 2 \frac{\overline{q}}{V}$
 - Applying 6DoF coefficients neglects change in force on the structure

•
$$A_{1_{aug}} = S \begin{bmatrix} -2C_{D_0} & 0 & C_{L_0} & 0 & \cdots & 0 \\ -2C_{L_0} & 0 & -C_{D_0} & 0 & \cdots & 0 \\ 2\bar{c}C_{D_0} & 0 & 0 & 0 & \cdots & 0 \\ 2C_{\eta 1_0} & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 2C_{\eta 1_0} & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

• Gravity

- Can use 6 DoF results
 - If origin is at the center of gravity
- Assumed modes complicates this
 - Mass matrix is not diagonal
 - Center of gravity moves with structural deformations

The Solution: Gravitational Forces

- Using the complete mass matrix from the finite element model
 - Modal mass is not diagonal
 - Due to assumed modes method
- For each element
 - $F_{gravity} = m_{element} g(\hat{z} + T(\alpha_0)\theta_{element})$
 - \hat{z} : Vertical vector
 - $T(\alpha_0)$: Rotation matrix from trim angle
 - $\boldsymbol{\theta}_{element}$: Rotation of element from mode shape

The Problem: Unsteady Aerodynamics

- The structural motions are high frequency
 - On the order of the dynamics of the flow
 - Significant delays in the response
 - Need to model the flow dynamics
- Frequency domain aeroelasticity tools
 - Considering harmonic motions simplifies the dynamics
 - Time histories are required for evaluating closed loop performance
 - No closed form solution from frequency response to time history

Previous method: Rational Function Approximation

- Rogers Rational Function Approximation
 - $\{\boldsymbol{q}\} \approx (\boldsymbol{A}_0 + \boldsymbol{A}_1 i k + \boldsymbol{A}_2 k^2 + \boldsymbol{D}(i k \boldsymbol{I} \boldsymbol{R})^{-1} \boldsymbol{E} i k) \boldsymbol{\eta}$
 - Has been used many times (40+ years old)
 - Developed with weak interactions between flight dynamics and aeroelasticity
 - Uses a modal coordinate system
 - Inertial coordinate system (origin is fixed in space)
 - Does not work for flight mechanics
 - Origin must move with the aircraft

AIAA SciTech

13

Previous method: Time domain transformation

- Transformation
 - Applied to final model
 - Equivalent to
 - $\boldsymbol{A}_0^* = \boldsymbol{A}_0 \boldsymbol{T}_{\eta 2 x} + \boldsymbol{A}_1 \boldsymbol{T}_{\dot{\eta} 2 x}$
 - $A_1^* = A_1 T_{\dot{\eta} 2u} + A_2 T_{\dot{\eta} 2x} T_{\eta 2x}^{-1} T_{\dot{\eta} 2u}$
 - $A_2^* = A_2 T_{\dot{\eta} 2 u}$
 - Results in erroneous coefficients
 - Vehicle heading does not effect aerodynamic forces
 - Issues are emphasized in model reduction
 - Removing increases the error in the RFA

The Solution: Frequency domain Transformation

• Apply transformation directly to frequency domain aerodynamics

$$\cdot \begin{cases} i k \boldsymbol{\eta} \\ \boldsymbol{\eta} \end{cases} = \begin{bmatrix} \boldsymbol{T}_{\dot{\eta} 2 u} & \boldsymbol{T}_{\dot{\eta} 2 x} \\ 0 & \boldsymbol{T}_{\eta 2 x} \end{bmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{x} \end{cases}$$

- Stability Axis RFA
 - $\{q\} \approx A_0 x + (A_1 + A_2 ik + D(ikI R)^{-1}E)u$
 - Separate positions (x) and velocities (u)
 - Euler angles appear only in A₀
 - Only need to constrain single matrix
 - Curve fit remains minimum error solution

Applying the method: X-56A MUTT

- Designed for testing active flutter suppression
 - Flexible wings have unstable flutter modes
- Currently have stiff wing data
 - No unstable flutter modes
- Using frequency domain potential flow aerodynamics

Results

Comparing to rigid models ----Rigid -Flexible Magnitude, dB Phase, deg

Frequency, Hz

Comparing to flight data

Test Case	Fuel Mass	Airspeed	Input
1	Low	Low	Pitch
2	High	Low	Pitch
3	Low	High	Pitch
4	Low	High	Roll

Flight Data Comparison: Pitch response, low fuel, low speed

Pitch Rate

Wing Tip Accelerometer

AIAA SciTech

Flight Data Comparison: Pitch response, low fuel, high speed

Wing Tip Accelerometer **Pitch Rate** Вb ЪВ Magnitude. Magnitude. Flight test Flight test Model Model deg deg Phase, Phase, Coherence Coherence Frequency, Hz Frequency, Hz

AIAA SciTech

Flight Data Comparison: Roll Response, low fuel, high speed

AIAA SciTech

Conclusions

- Model generation for body freedom flutter
- Addressing issues in:
 - State Consistency
 - Low frequency dynamics
 - Unsteady aerodynamics
- Applied approach to X-56A MUTT
 - Comparing to flight test data