Risk-Hedged Approach for Re-routing Air Traffic Under Weather Uncertainty

Alexander V. Sadovsky
Karl D. Bilimoria

NASA Ames Research Center
AIAA Aviation 2016
June 13-17, Washington, D.C.

Outline

- Background on route planning
- Re-routing options for weather avoidance
- Risk-hedged approach for re-routing
- Example results
- Conclusion

Background

- Flight operators design the routes they wish to fly
- Air traffic service provider designs and implements re-routing around bad weather
- Strategic planning for re-routes around large weather systems is based on multi-hour weather forecasts
- Multi-hour weather forecasts have high uncertainty, but current products typically provide only the most likely instantiation of future weather

Re-routing for Weather Avoidance

Re-routing for Weather Avoidance

Motivation for Risk-Hedging

can incur high flight operation cost

can incur high cost for disruption of

 traffic operations
Risk-hedged approach:

minimize a combination of these two costs (later slide)

- "Risk" refers to risk of disruption caused by tactical re-routing; hence a path has high risk if a large segment lies within a weather instantiation of high likelihood
- Research is far term: assumes ensemble weather forecast with multiple (instantiations + likelihoods)
- CDM (Collaborative Decision Making) Convective Forecast Planning (CCFP) currently provides a rudimentary version of the desired capability

Example CCFP Advisory

AVIATION WEATHER CENTER (NOAA/NWS/NCEP)
CONFIDENCE:

		$\begin{gathered} \text { LOW } \\ 25-49 \% \end{gathered}$	$\begin{gathered} \mathrm{HIGH} \\ 50-100 \% \end{gathered}$
CONVECTIVE	$\begin{aligned} & \text { SPARSE } \\ & 25-39 \% \end{aligned}$	\#,	\#!
COVERAGE:	MEDIUM + 40-100\%		毋া"

ISSUED: 1900 UTC THU 19 MÄ 2016

HEIGHT

TOPS: 100's OF FEET MSL
25000-29000
30000-34000 340
35000-39000 $\mathbf{3 9 0}$ 40000+ -400

Risk-Adjusted Field

$$
\mathrm{P}=1 /\left(1-\Sigma \alpha_{i}\right)
$$

Risk-Adjusted Field

$$
\mathrm{P}=1 /\left(1-\Sigma \alpha_{i}\right)
$$

Risk-Adjusted Path Length: the minimization objective

Risk-adjusted path length $=$

$$
(1 \times 13+2.5 \times 23+1 \times 20+1.1 \times 34+1 \times 12)=130.9 \text { miles }
$$

Risk-Hedged Re-routing

- Compute re-routes by minimizing risk-adjusted path length
- Evaluate the computed re-routing using these metrics:
- Path length (proxy for flight operation cost)
- Path risk (defined on next slide)

Path Risk: an evaluation metric

Path Risk =

$$
(0 \times 13+0.6 \times 23+0 \times 20+0.1 \times 34+0 \times 12) /(13+23+20+34+12)=
$$

Re-routing Options - Example \#1

Metrics for Example \#1

path
risk (nondim.)
0.

0

Re-routing Options - Example \#2

Conclusion

- In some weather avoidance scenarios, the risk-hedged re-routing is shorter and less risky than operational practice
- In other scenarios, risk-hedged re-routing can be:
- Less risky, but has a longer path
- More risky, but has a shorter path
- Potential application to re-routing for weather avoidance:
- Compute risk-hedged path
- Compare with operational-practice path for risk and path length
- Choose risk-hedged path if both safer and shorter

Backup Slides

Minimization problem: the Eikonal equation

$\left.\left.\frac{1}{P(x)} \right\rvert\, \operatorname{grad}(\min . \operatorname{cost}$ to endpoint from $x) \right\rvert\,=1$

Example Playbook Re-routing

Play: LEV EAST 1

East-bound flows from ZLA, ZAB, ZFW, ZHU are merged and then split into two flows going to DC and NYC airports

