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Optimizing Power Density and Efficiency of a Double-

Halbach Array Permanent-Magnet Ironless Axial-Flux 

Motor 

Kirsten P. Duffy1 

University of Toledo, Cleveland, Ohio, 44135 

NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion 

concepts for future aircraft to reduce fuel burn, emissions, and noise.  Systems studies show 

that the weight and efficiency of the electric system components need to be improved for this 

concept to be feasible.  This effort aims to identify design parameters that affect power density 

and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor 

configuration.  These parameters include both geometrical and higher-order parameters, 

including pole count, rotor speed, current density, and geometries of the magnets, windings, 

and air gap.   

Nomenclature 

BR = permanent magnet remanence flux (T) 

B = magnetic flux density (T) 

d = conductor strand diameter (m) 

f =  frequency (Hz) 

F = force (N) 

I = current (A-turns) 

J = current density (A/m2) 

k = wavenumber of pole pair (rad/m) 

m = mass (kg) 

nm = number of magnets comprising a pole pair 

p = number of pole pairs 

P = power (W) 

r = distance in radial direction (m) 

T = torque (N-m) 

V = volume (m3) 

x = distance in circumferential direction (m) 

y = distance in axial direction (m) 

z = distance in radial direction (m) 

𝜖 = magnet embrace 

 = mass density (kg/m3) 

 = conductivity (S/m) 

r = rotor angular speed (rad/s) 

Subscripts: 

a = average value 

A = phase A 

B = phase B 

c = conductor or coil 

C = phase C 

e = eddy 

g =  gap 

                                                           
1 Senior Research Associate, NASA Glenn Research Center, 21000 Brookpark Road, MS 49-8, Cleveland, Ohio 

44139, member AIAA. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

2 

m = magnet 

p = pole pair 

I. Introduction 

ASA Glenn Research Center is investigating hybrid electric propulsion and turboelectric propulsion for future 

aircraft to reduce fuel burn and emissions, and to enable technologies that will reduce aircraft noise.  A study 

conducted by Boeing titled Subsonic Ultra Green Aircraft Research1 showed that the use of hybrid electric propulsion 

significantly improved fuel burn and emissions for a 154-passenger aircraft. However, the weight and efficiency of 

the electric system components must be improved before hybrid electric or turboelectric propulsion is feasible.  At 

NASA Glenn Research Center, Brown2 performed an analysis of room temperature hybrid electric propulsion for a 

150-passenger aircraft. He concluded that a motor with a total power density (motor and casing) of 4.9 kW/kg (3 

HP/lb) and 97% efficiency would lead to an approximate 10% increase in aircraft weight.  Much of this weight increase 

is due to battery weight.  One goal for hybrid gas-electric propulsion is to develop electric machines with better than 

96% efficiency and 13 kW/kg (8 HP/lb) power density in order to provide benefits to the aircraft.  However, there are 

many combinations of power density and efficiency that could succeed for given aircraft configurations; for example, 

increasing efficiency results in lower required power density.  To explore that design space, Jansen3 estimated the 

combinations of total electrical system power density and efficiency required to break even in a cost-benefit analysis 

for turboelectric aircraft.  Based on the results of that study, it was decided to investigate various motor configurations 

with the target of 13 kW/kg and very low loss (1%). 

 One of the motor designs chosen for study is an axial flux double-Halbach array permanent-magnet (PM) ironless 

motor, which will be described in this paper.  It was chosen as a candidate motor since there will be no iron loss; the 

Halbach array concentrates the flux density well within the air gap, which increases torque; and there is a possibility 

of using compact, printed circuit board windings within the air gap.  The effort described here aimed to identify design 

parameters that affect motor performance, including both geometrical and higher-order parameters such as pole count, 

rotor speed, current density, and geometries of the magnets, windings, and air gap. 

 The axial flux permanent magnet motor has been investigated by numerous researchers, and a thorough 

explanation of the many aspects of these machines is given by Gieras, Wang, and Kamper4.  In their 2012 publication, 

Capponi, De Donato, and Caricchi5 reviewed the analysis and design progress in the literature, including 

electromagnetic modeling. They included discussion of the 2-D, 3-D, analytical and finite element modeling. One of 

the difficulties in performing finite element analysis of axial flux motor is that time-consuming three-dimensional 

models are required.  Utilizing first principles equations for the magnetic flux within the motor is one way to produce 

quicker results, as was done by Virtič et al. for a coreless axial flux PM motor.6  A similar analysis is done here, but 

for a slotless and coreless double-Halbach PM array.  

This type of analysis is a good approximation of the motor performance, but for an explanation of more thorough 

analysis techniques, see the following publications.  Huang, Luo, Leonardi, and Lipo7 presented the sizing equations 

and power densities for axial flux machines, showing performance was up to three times better than induction 

machines.  They found that the ratio of inner to outer diameter of the rotor affects the power density more than 

efficiency.  Mahmoudi, Rahim, and Ping8 looked at a double-sided slotted axial flux permanent magnet motor with 

application to an electric vehicle drive.  They used sizing equations as well as 3D finite element analysis to design a 

10 kW motor the goal of better than 90% efficiency.  Bumby et al.9 investigated a slotless axial flux PM motor, using 

analytical models in addition to 2D and 3D finite element analysis, using two existing generators as examples. 

 

II. Application 

 The target application was chosen to be the HEIST (Hybrid-Electric Integrated Systems Testbed) ground-based 

distributed motor-driven fan test.10 This testbed at NASA Armstrong Flight Research Center consists of a 31-foot span 

wing section with 18 electric motors powered by batteries.  The motors currently being used are radial-flux permanent 

magnet synchronous motors, rated at 13 kW power at 7200 RPM operating speed.  The motor axial length is 

approximately 2.0 inches, and its outer diameter is approximately 5.5 inches, yielding a tip speed of about 53 m/sec.   

The intention of the effort described here is to build a motor for this type of application; however, only analytical 

results are given in this paper.  

 

N 
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III. Approach   

 The basic configuration considered here consists of a double-Halbach array of permanent magnets arranged on 

both sides of the copper windings.  The windings comprise the stator, and the magnet arrays comprise a double-rotor.  

Figure 1 shows the magnets and windings of a ten-pole-pair configuration as modeled in Maxwell 3D electromagnetic 

finite element analysis software.  Since a full 3D analysis is time-consuming, a quicker estimation of motor power and 

losses was devised using a two-dimensional analysis based on equations for magnetic flux within a double-Halbach 

array. 

 

 

 
 

Figure 1.  Ten-pole-pair double-Halbach array axial flux motor configuration. 

 

 First, a simple two-dimensional magnetostatic analysis was done to look at the effect of various parameters on the 

flux within the air gap, which is proportional to the motor torque.  This analysis was performed on a single pole-pair 

motor segment, as shown in Figure 2.  The magnet array is modeled in rectangular coordinates, as if the motor of 

figure 1 were unwrapped circumferentially (mean radius model).  Here the circumferential direction is along the x-

axis, the axial direction is along the y-axis, and the radial direction is along the z-axis.   

 The static magnetic force on the conductors is calculated assuming the flux density produced by the double-

Halbach array, which is then used to estimate the motor torque and power.  The torque density and power density are 

then calculated from the component masses.  Efficiency is estimated by determining the resistive and eddy current 

losses in the conductors.  All equations were solved using Mathematica software, and then results were validated with 

Maxwell 2D and 3D finite element analysis. 

 

        
 

  a. Magnet and coil dimensions b. 3-Phase conductors 

Figure 2.  Single pole pair for magnetostatic analysis with conductors in a single row and 𝝐=1. 

IV. Analysis 

Figure 2a shows the dimensions of a pole pair of the unwrapped motor.  The motor being modeled has an outer 

radius of ro and a radial thickness of r.  The average radius of the motor is 𝑟𝑎 = 𝑟𝑜 − 1

2
Δ𝑟.  The circumferential 
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distance between like poles, xp, is merely the average circumference of the motor divided by the number of pole pairs 

p, or 𝑥𝑝 = 2𝜋𝑟𝑎 𝑝⁄ .  The magnet circumferential length is 𝑥𝑚 = 𝜖 𝑥𝑝 𝑛𝑚⁄ , where nm is the number of magnets in each 

pole pair (shown as equal to four in figure 2) and 𝜖 is the magnet embrace (shown as equal to one in figure 2).  The 

magnet axial length is ym, and the magnet radial length zm is set equal to the rotor radial thickness, or 𝑧𝑚 = Δ𝑟.  The 

gap between the magnet arrays is equal to 2yg.  For the conductors, each phase side has a circumferential length of xc, 

an axial length of yc, and a radial length equal to the rotor radial length, or 𝑧𝑐 = Δ𝑟. 

The magnetic flux between a rectangular double Halbach array is given by11 

 

 𝐵𝑥 = 2𝐵𝑅𝑒−𝑘𝑦𝑔(1 − 𝑒−𝑘𝑦𝑚)
sin(𝜖𝜋 𝑛𝑚⁄ )

𝜋 𝑛𝑚⁄
sin 𝑘𝑥 sinh 𝑘𝑦 (1) 

and 

 𝐵𝑦 = 2𝐵𝑅𝑒−𝑘𝑦𝑔(1 − 𝑒−𝑘𝑦𝑚)
sin(𝜖𝜋 𝑛𝑚⁄ )

𝜋 𝑛𝑚⁄
cos 𝑘𝑥 cosh 𝑘𝑦, (2) 

 

where k = 2/xp.  Clearly equations 1 and 2 show only the fundamental component of the flux density; the harmonics 

are ignored.  However, the force calculation is quite accurate using only these equations. 

 It is assumed that there is a three-phase excitation in the windings, as shown in figure 2b.  The currents are in the 

z-direction, and are given by 

 

  𝐼𝐴 = 𝐼𝑝𝑘 cos(𝑝𝜔𝑟𝑡 + 𝜙)  

  𝐼𝐵 = 𝐼𝑝𝑘 cos(𝑝𝜔𝑟𝑡 + 𝜙 − 2𝜋

3
) (3) 

  𝐼𝐶 = 𝐼𝑝𝑘 cos(𝑝𝜔𝑟𝑡 + 𝜙 − 4𝜋

3
), 

 

where Ipk is the peak current in the winding in Ampere-turns, r is the rotor speed in rad/s, and  is an arbitrary phase 

shift.  The windings are distributed between the magnet arrays, one example of which is shown in figure 2b.  There 

the windings are aligned in one row, but they can be distributed in any configuration, especially considering the reality 

of winding placement.  The force calculation will be magnetostatic, so an arbitrary time is chosen to perform the 

calculations. 

 The magnetostatic force on a piece of conductor is given by 𝑑𝐹 = 𝐼𝐿 × 𝑑𝐵.  So for a given winding configuration, 

the torque-producing force on a single phase side coil segment within a double-Halbach array can be directly 

calculated using equations 2 and 3: 

 

  𝐹𝑐 = 𝐽Δ𝑟 ∫ ∫ 𝐵𝑦
𝑦2

𝑦1

𝑥2

𝑥1
𝑑𝑥𝑑𝑦, (4) 

 

where J is the current density within the coil segment.  If the phase side coil segment has dimensions of xc = x2 – x1 in 

the circumferential direction, and yc = y2 – y1 in the axial direction, then J = I/(xcyc).  Assuming that J is constant across 

the conductor cross section, then the force on a phase side coil segment in the x-direction is 

 

  𝐹𝑐 = [2𝐽𝐵𝑅Δ𝑟] [
𝑒−𝑘𝑦𝑔(1−𝑒−𝑘𝑦𝑚)

𝑘2 ] [
sin(𝜖𝜋 𝑛𝑚⁄ )

𝜋 𝑛𝑚⁄
] sin 𝑘𝑥|𝑥1

𝑥2  sinh 𝑘𝑦|𝑦1

𝑦2 . (5) 

   

 The total force within a pole pair is just the sum of the forces due to all the conductors within that pole pair.  

Assuming the three phases are acting within each pole pair, and each phase has two coil phase sides (plus and minus), 

then the pole pair force is 

 

  𝐹𝑝 = ∑ 𝐹𝑐
6
𝑐=1 , (6) 

  

The motor torque can be calculated by multiplying the force per pole pair by the average radial distance to the center 

of rotation, 𝑟𝑎, and the number of pole pairs: 

 

  𝑇 = 𝑝𝑟𝑎𝐹𝑝, (7) 

 

and the motor power is then the torque multiplied by the rotor speed r: 

 

  𝑃 = 𝑇 𝜔𝑟 = 𝑇 𝑅𝑃𝑀 𝜋/30. (8) 
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 The mass used to calculate torque density and power density includes only the conductors and magnets.  The 

magnet mass is given by 

 

  𝑚𝑚 = 2𝑝𝜌𝑚𝜖𝑥𝑝𝑦𝑚Δ𝑟 , (9) 

 

where m is the magnet mass density.  The conductor mass is calculated assuming circular end turns for simplicity, 

and is given by 

 

  𝑚𝑐 = 6𝑝𝜂𝜌𝑐𝑥𝑐𝑦𝑐(Δ𝑟 + 𝜋𝑟𝑐), (10) 

 

where  is the packing factor of conductor within the coil area, c is the conductor mass density, and rc is half the 

distance between the turns of the coil, as shown in Figure 3.  For the configuration in Figure 2a, rc = xp/4. 

 

 
 

Figure 3.  Coil dimensions. 

 

 

 Next we consider the losses within the motor.  It is expected that the dominant loss in this design will be the I2R 

loss in the conductors.  The total conductor resistive loss is  

 

  𝑃𝑐 = 6𝑝𝐽𝑟𝑚𝑠
2 𝑥𝑐𝑦𝑐(Δ𝑟 + 𝜋𝑟𝑐) (𝜎𝜂)⁄ , (11) 

 

where   is the conductivity of the conductor material, and Jrms is the rms value of the current density J based on the 

Ampere-turns Ipk in equation 3.   

Eddy current loss in the conductors can be estimated using from the fundamental component of the time-varying 

magnetic flux.  The eddy current loss for round conductors is4  

 

  𝑃𝑒 =
𝜋2

4
𝜎𝑓2𝑑2𝑉𝑐 [(𝐵𝑥

2 + 𝐵𝑦
2)

𝑝𝑘

2
+ 𝐵𝑧𝑝𝑘

2 ], (12) 

  

where f is the electrical frequency in Hz, d is the conductor strand diameter, Vc is the volume of the conductors without 

end turns, and Bzpk is the peak flux density along the conductor length.  The electrical frequency is simply the product 

of the rotor speed and the number of pole pairs, or f = p RPM/60. 

Other losses in the motor include eddy current losses in the magnets, windage losses, and bearing losses.  Eddy 

current losses in the magnets should be very low, since the time-varying field in the magnets due to the conductors is 

very low.  A discussion of eddy current loss in permanent magnets can be found in Ding and Mi.12  Equations for 

windage and bearing losses can be found in Gieras.4 
 

V. Discussion 

 Observing the equations for force, torque, and mass can tell us much about the importance of various parameters. 

In order to maximize torque, the conductor force given by equation 5 must be maximized.  From the expression in the 

first pair of brackets in equation 5, we see that the force is directly proportional to current density, PM remanence 

flux, and radial length.  Observing the expression in the second pair of brackets of equation 5, we can see that 

minimizing kyg, which is proportional to the ratio of air gap to magnet circumferential length, will maximize Fx.  

Similarly maximizing kym, which is proportional to the ratio of the magnet axial thickness to the magnet 

zc = zm = r

2rc
xc
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circumferential length (magnet aspect ratio), will maximize Fx.  Finally, observing the term sin(𝜖𝜋 𝑛𝑚⁄ ) (𝜋 𝑛𝑚⁄ )⁄ , we 

can see that increasing nm and increasing 𝜖 will maximize Fx (Figure 4).  However, the goal is not just to maximize 

the torque, but to maximize the torque density.  So increasing the magnet thickness for example would increase flux 

density, but also increase the mass. 

 

 
Figure 4.  Effect of number of magnets per pole pair. 

 

 The power density is proportional to the torque density, which is (not considering end turns or non-active materials) 

 

  
𝑇

𝑚
≅

𝐹𝑝𝑟𝑎

Δ𝑟(6𝜌𝑐𝜂𝑥𝑐𝑦𝑐+2𝜌𝑚𝜖𝑥𝑝𝑦𝑚)
. (13) 

 

Substituting equation 5 into equation 13, we see that the torque density is proportional to 

 

  
𝑇

𝑚
∝ [𝐽𝐵𝑅𝑟𝑎] [

𝑒−𝑘𝑦𝑔(1−𝑒−𝑘𝑦𝑚)

𝑘2(3𝜌𝑐𝑥𝑐𝑦𝑐+𝜌𝑚𝜖𝑥𝑝𝑦𝑚)
] [

sin(𝜖𝜋 𝑛𝑚⁄ )

𝜋 𝑛𝑚⁄
]. (14) 

 

From the expression in the first pair of brackets in equation 14, we see that the torque density is proportional to the 

average radius, and the radial thickness has cancelled out (as compared to equation 5 for torque).  For torque density, 

note that the coil dimensions are counted twice – once implicitly in current density and once explicitly in coil mass.  

Packing a maximum amount of current into a small area benefits the torque density; however, the current density and 

coil dimensions will end up being constrained by temperature rise within the conductor.  Looking at the expression in 

the second pair of brackets, considering only magnet mass in the denominator, and simplifying, we can see the torque 

density based on magnet mass alone is proportional to 

 

  
𝑇

𝑚𝑚
∝

𝑒−𝑘𝑦𝑔(1−𝑒−𝑘𝑦𝑚)

𝑘𝑦𝑚
. (15) 

 

Equation 15 shows that even though the torque increases with increasing kym, the torque density actually maximizes 

at kym→0.   

 The power density is the torque density multiplied by the rotor speed.  Clearly the power density increases with 

increasing rotor speed; however, the rotor tip speed will be limited by structural considerations.  There will need to be 

a support structure, such as a containment ring, holding the magnets in the rotor.  Depending on the materials used, 

the strength and mass of this containment ring will affect the power density through allowable tip speed and ring mass.  

This is why the high strength and low density of carbon fiber composite containment rings are considered for these 

configurations.  

 

VI. Results 

The equation for the conductor force was used in Mathematica software to calculate the total force in the motor 

for the single row winding configuration.  Then the torque, power, and resistive loss were calculated as functions of 

various parameters.  The results were verified by running some of the cases in a Maxwell 2D magnetostatic analysis.  

Generally the force results were good to within 1% error as compared to Maxwell 2D. 
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The coil fill factor was assumed to be 50%, and the current density ranged from 3-30 A/mm2, to cover the range 

of cooling from natural convection to liquid cooling.  It was assumed that some form of cooling is added to maintain 

an average conductor temperature at 120oC for loss calculation purposes.  The mass of the cooling system is not 

included in the power density calculation.  For all calculations, a fixed outer diameter of 139.7 mm (5.5 in) was used.  

The baseline rotor speed is assumed to be 7200 RPM (53 m/s tip speed), but rotor speeds of 14,400 RPM (tip speed = 

106 m/s) and 28,800 RPM (212 m/s) were also used, and the additional mass of a gearbox was added into the power 

density calculation.  At 7200 RPM, a torque of 17.3 N-m is required to give 13 kW. 

First, the effect of motor inner diameter and current density on power, power density, and efficiency was 

investigated for 16 pole pairs, a coil thickness of 3 mm, and a ratio of magnet axial thickness to circumferential 

thickness of one.  A value of 16 pole pairs was chosen because it yields an electrical frequency of 1920 Hz, which is 

at the upper end of the desirable range.  Figures 5-7 show that the ratio of motor inner to outer diameter has a maximum 

power density near 0.7 and minimum resistive loss near 0.5.  However, the power is higher for a smaller inner diameter.  

The current density increases power and power density at the expense of efficiency, as expected.  To obtain the 

required motor power of 13 kW with less than 1% resistive loss requires a current density of about 20 A/mm2 and 

ID/OD ratio of 0.6, so this is used in further calculations.  This yields a power density of nearly 13 kW/kg, based on 

copper and magnet mass alone.  Figure 8 shows the importance of the conductor strand diameter for eddy current loss 

for J = 20 A/mm2. 

 

     
 Figure 5.  Power vs. ID/OD. Figure 6.  Power density vs. ID/OD. 

 16 pole pairs, yc = 3 mm,  16 pole pairs, yc = 3 mm, 

 magnet aspect ratio = 1.0 magnet aspect ratio = 1.0, 

 7200 RPM 7200 RPM 

 

     
  Figure 7. Resistive loss vs. ID/OD. Figure 8.  Conductor eddy loss vs. ID/OD. 

  16 pole pairs, yc = 3 mm,  16 pole pairs, yc = 3 mm, J = 20 A/mm2 

  magnet aspect ratio = 1.0, 7200 RPM magnet aspect ratio = 1.0, 7200 RPM 
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Next, the effect of magnet axial thickness was studied.  Figure 9 shows how the magnet aspect ratio affects power 

density and resistive loss for a power of 13 kW, 16 pole pairs, and coil axial thickness of 3 mm.  In the discussion, we 

determined that decreasing the magnet aspect ratio maximizes power density, which can be seen in Figure 9.  However, 

the current density required to reach the required power of 13 kW increases with decreasing aspect ratio, which causes 

the resistive loss to increase.  Again, requirements for power density and efficiency are at odds, and an aspect ratio of 

around 1.0 yields a resistive loss of less than 1%, so that value is used in further calculations. 

 

 
Figure 9.  Effect of magnet aspect ratio on power density and efficiency. 

16 pole pairs, yc = 3 mm, rotor ID/OD = 0.6,  

current density varied to give 13 kW power at 7200 RPM 

 

 

Next the effect of the coil axial thickness was studied.  Figure 10 shows the power density and resistive loss as a 

function of coil axial thickness, for 13 kW, 16 pole pairs, magnet aspect ratio of 1.0, and ratio of rotor ID to OD of 

0.6.  As expected, the power density increases with decreasing coil thickness, because a smaller coil thickness yields 

a smaller air gap between the magnet arrays.  The resistive loss at low coil thickness is higher because a higher current 

density is required to reach 13 kW because of the smaller coil size.  The resistive loss at high coil thickness is higher 

because of the lower magnetic field resulting from a larger gap between magnet arrays.  A coil thickness of 3 mm was 

chosen as the optimal value for further calculations. 

 

 
Figure 10.  Effect of coil thickness on power density and efficiency. 

16 pole pairs, rotor ID/OD = 0.6, magnet aspect ratio = 1.0,  

current density varied to give 13 kW power at 7200 RPM 
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Finally, the effect of the number of pole pairs was studied.  In this case, the magnet thickness was set to be constant 

over the pole count range resulting in a maximum magnetic flux density of 1.0 T in the gap between magnets.  Figure 

11 shows that increasing the number of pole pairs increases power density.  The magnet mass remains the same over 

the pole count range; however, the higher pole count reduces the coil end turn mass, increasing power density. As 

pole count increases, the coil cross sectional area decreases as well as the turn length, which are competing factors 

with regard to resistance.  The higher pole count also increases the number of coils, also increasing resistance.  The 

combination of these factors results in an optimum pole pair count of 16 for minimizing resistive loss.    

The higher pole count also increases the electrical frequency, which affects the eddy current loss in the conductor 

and in the magnets, as well as switching losses in the power electronics.  Again, the baseline pole pair number of 16 

was chosen to keep the electrical frequency below 2000 Hz.     

 

 
Figure 11.  Effect of pole pairs on power density and resistive loss. 

yc = 3 mm, rotor ID/OD = 0.6, ym = 5.49 mm, 

current density varied to give 13 kW power at 7200 RPM 

 

 

The tip speed of the rotor at 7200 RPM is only 53 m/sec, which is relatively low.  A higher speed should improve 

the motor’s performance if it remains a direct-drive motor, but in this case it will require a gearbox to produce the 

correct speed for the fan.  Based on gearbox technology from the year 2000, Brown et al.13 gave an expression for the 

weight of a gearbox as 

 

  𝑊 = 94𝐻𝑃0.76 𝑅𝑃𝑀𝑟
0.13

𝑅𝑃𝑀𝑓
0.89 , (16) 

 

where W is the gearbox weight in lbs, HP is the motor power in horsepower (13 kW is approximately 17 HP), and 

RPMr is the motor rotor speed and RPMf is the fan speed, both in revolutions per minute.     

If we simply increase the speed of the optimal 7200 RPM motor, we see that power, power density, and efficiency 

are all increased, even with the added gearbox weight, as shown in Figure 12.  However, if the higher speed motors 

are re-sized to the 13 kW target, it becomes clear that adding a gearbox negatively impacts the motor performance for 

both power density and resistive loss, as shown in Table 1. 
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Figure 12.  Effect of running the motor at higher speed. 

 

 

Rotor 

Speed 

(RPM) 

Drive 

Type 

Rotor 

ID/OD 

Pole 

Pairs 

Magnet 

Aspect 

Ratio 

Coil 

Thickness 

(mm) 

Current 

Density 

(A/mm2) 

Power 

Density 

(kW/kg) 

Resistive 

Loss 

7200 Direct 0.50 16 1.0 3.0 20.0 12.8 0.85% 

14,400 Gearbox 0.71 8 0.375 2.0 21.3 11.2 0.87% 

28,800 Gearbox 0.71 4 0.25 1.0 24.8 12.1 0.97% 

Table 1.  Motor parameters for 13 kW power vs. rotor speed. 

 

  

The 7200 RPM optimal motor shown in Table 1 was modeled in Maxwell 3D to obtain transient results for torque, 

magnet eddy current losses, and resistive losses.  The coils were modeled as forming two rows within the air gap.  To 

reduce computational time, one pole pair was included in the analysis, with a single Halbach magnet array and a 

symmetric boundary condition running through the center of the gap, as shown in Figure 13.  A slotless configuration 

was difficult to model in Maxwell; therefore, a slotted configuration was modeled, with the stator core assumed to be 

vacuum.  This caused the coils to be much more compact than in the optimal design, increasing the current density, 

and therefore the resistive loss.  However, a comparison of results for both the simple analysis and the Maxwell 3D 

magnetostatic and transient analysis could be easily performed, and results are shown in Table 2.  The simple analysis 

underestimated the torque by about 4%, and the resistive loss by about 6% compared to the Maxwell 3D prediction. 
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Figure 13.  Maxwell 3D motor model. 

 

 

Analysis 
Torque 

(N-m) 

Resistive Loss 

(%) 

Eddy Current  

Loss in 0.1mm-

diameter 

Conductors (%) 

Eddy Current 

Loss in 

Magnets (%) 

Equation-based magnetostatic 

– large coils (optimal design) 
17.3 0.85% 0.11% - 

Equation-based magnetostatic 

– compact coils/high J 
16.3 7.6% 0.06% - 

Maxwell 3D magnetostatic – 

compact coils/high J 
16.6 - - - 

Maxwell 3D transient –  

compact coils/high J 
16.9 8.1% - 0.02% 

Table 2.  Comparison of analysis results. 

VII. Conclusions 

With target values for power density of 13 kW/kg and resistive loss of 1%, this study showed the difficulty of 

achieving this goal within the constraints of the fan speed, geometry, and electrical frequency.  A direct-drive 7200 

RPM motor was designed that achieved 12.8 kW/kg (including only magnet and copper weight), 0.85% resistive loss, 

and a 0.1% eddy current loss with 0.05 mm diameter conductors.  The added mass of the structure and cooling system 

still need to be included, which should reduce power density by a significant amount.  In addition, other losses such 

as bearing loss and windage loss should be included in the efficiency calculation, as well as higher order effects.  

Future plans include investigating other motor types and configurations with the same goal of reducing losses to 1% 

while maximizing power density. 
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