

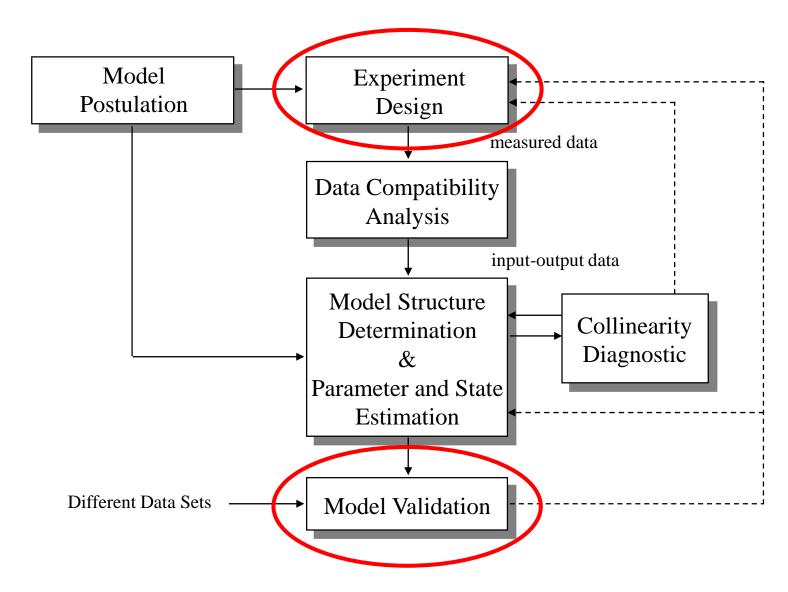
Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

Patrick C. Murphy
Jay M. Brandon
NASA Langley Research Center

AIAA SciTech 2017
Atmospheric Flight Mechanics Conference
Grapevine, TX
January 09-13, 2017

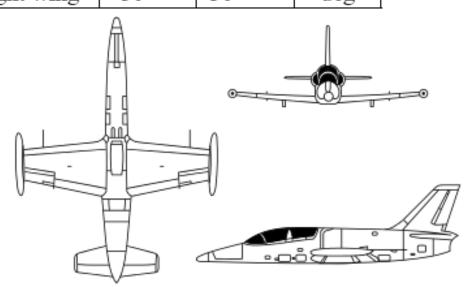
Outline

- Introduction
 - Seeking greater efficiency & performance through experiment design
 - Efficiency gained by collecting the "right amount" of data
 - Performance gained by adding statistical rigor
- System Identification Process in Wind Tunnel
 - Design of Experiment (DOE)
 - Learn-to-Fly (L2F)
 - Blended DOE-L2F
 - First time testing blended concept strawman approach
 - Work in progress
- Analysis, Results, and Validation Tests
 - DOE Tests
 - L2F Tests
 - Blended DOE-L2F Tests
- Concluding Remarks


Motivation: Seek Efficiency Using Experiment Design

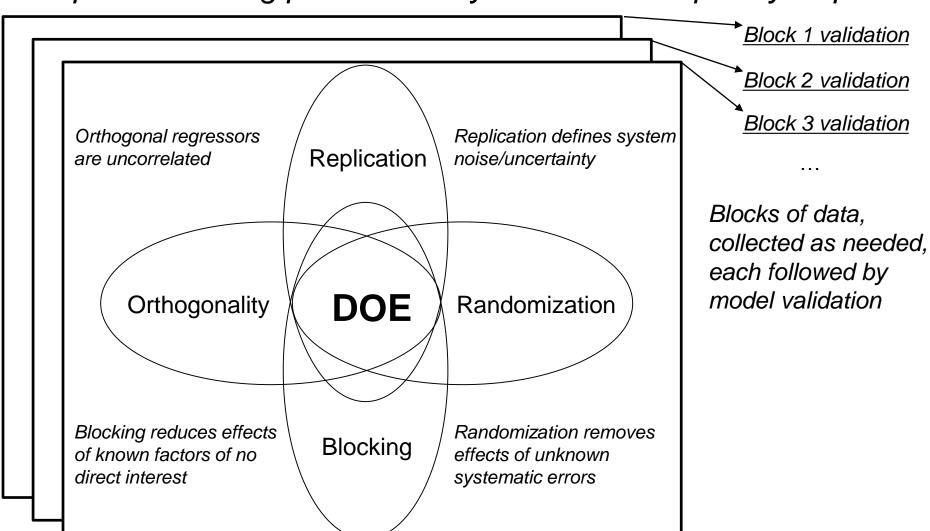
- Wide spectrum of modeling demands
 - Fidelity requirements
 - Aircraft complexity
- Aircraft complexity drive up costs
 - Conventional practice in LaRC 12-foot Wind Tunnel (static test)
 - 100 Hz sample rate, dwell for 10 seconds, average data
 - ~ 2 data pts/min
 - Simple factorial test for L-59
 - 9-Factors: α , β , and 7 control surfaces
 - $2^9 = 512$ test points => 4.26 hours
 - Reasonable data density often requires $5^9 = 16,276$ hours (~8years)!
- Investigators must tradeoff of cost vs fidelity/complexity
 - Define purpose of model and required fidelity. What is allowable error?
 - Asking for "best possible answer" is not adequate
 - Speeding up the modeling process helps anywhere on spectrum

Aircraft System Identification Process



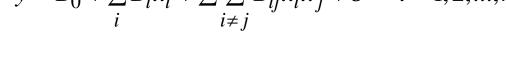
Test vehicle for Wind Tunnel Static Test

No.	Label	Description	Low	High	Units
			Value	Value	
1	aoa	Aircraft alpha	-2	20	deg
2	beta	Aircraft beta	-5	5	deg
3	dela_L	Aileron left wing	-25	25	deg
4	dela_R	Aileron right wing	-25	25	deg
5	delf_L	Flap left wing	0	40	deg
6	delf_R	Flap right wing	0	40	deg
7	delr	Rudder	-30	30	deg
8	dele_L	Elevator left wing	-30	30	deg
9	dele_R	Elevator right wing	-30	30	deg

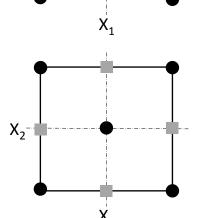

- ➤ L-59 Albatros
- > Czech military trainer
- ➤ Low-cost off-the-shelf kit
- ➤ 12.5% scale model
- > Sport application, RC actuators

Tenets of Design of Experiment (DOE)

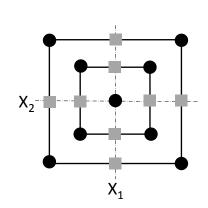
Sequential testing proceeds only as model complexity requires



Block Designs & Supported Models


Full factorial design

$$y = B_0 + \sum_{i} B_i x_i + \sum_{i \neq j} \sum_{j} B_{ij} x_i x_j + \varepsilon$$
 $i = 1, 2, ..., k$

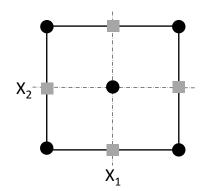


$$y = B_0 + \sum_{i} B_i x_i + \sum_{i} B_{ii} x_i^2 + \sum_{i \neq j} \sum_{j \neq i} B_{ij} x_i x_j + \varepsilon$$
 $i = 1, 2, ..., k$

Nested face-centered design

$$y = B_0 + \sum_{i} B_i x_i + \sum_{i} B_{ii} x_i^2 + \sum_{i \neq j} \sum_{i \neq j} B_{ij} x_i x_j + \sum_{i} B_{iii} x_i^3 + \varepsilon$$
 $i = 1, 2, ..., k$

Block 1, DOE Design Metrics (9-factors)

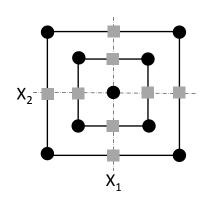


Block Type	Blocks	Runs	Design Terms	VIF	% Power
	(inclusive)				2σ, s/n=2
1/4 Fraction FCD	1	156	Quadratic	9.64	84.4

Maximum Variance Inflation Factor (VIF), reflects lack of orthogonality in design; desire ≤ 10

% Power reflects statistical power of design, manages type-2 error; desire ≥ 80

$$y = B_0 + \sum_{i} B_i x_i + \sum_{i} B_{ii} x_i^2 + \sum_{i \neq j} \sum_{i \neq j} B_{ij} x_i x_j + \varepsilon$$
 $i = 1, 2, ..., k$


Validation Test Performed after each block of data

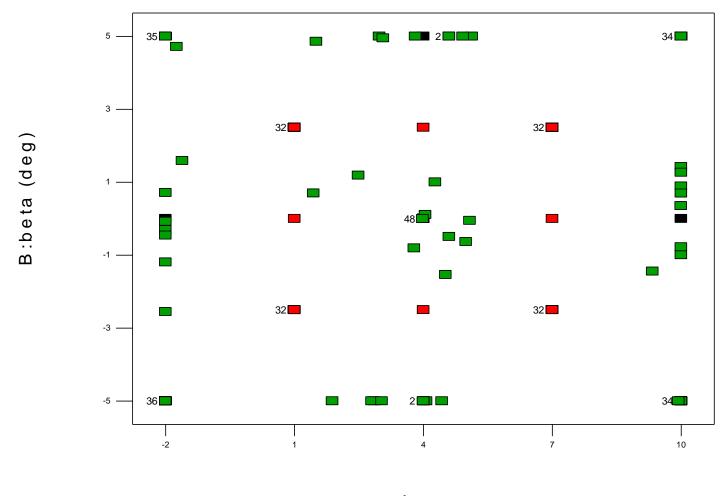
Block 2 added to create Nested FCD

Block Type	Blocks	Runs	Design Terms	VIF	% Power	
	(inclusive)				2σ, s/n=2	
1/4 Fraction FCD	1	156	Quadratic	9.64	84.4	
Nested FCD	1, 2	312	Quadratic	22.41	86.8	

$$y = B_0 + \sum_{i} B_{ii} x_i^2 + \sum_{i} \sum_{i \neq j} B_{ij} x_i x_j + \sum_{i} B_{iii} x_i^3 + \varepsilon \qquad i = 1, 2, ..., k \qquad x_2$$

Require optimized design points to reduce VIF

Final DOE Design, 3-blocks


Block Type	Blocks	Runs	Design Terms	VIF	% Power	
	(inclusive)				2σ, s/n=2	
1/4 Fraction FCD	1	156	Quadratic	9.64	84.4	
Nested FCD	1, 2	312	Quadratic	22.41	86.8	
I-optimal	1, 2, 3	366	Quadratic	4.0	99.9	

I-optimal block provides test points that minimize prediction error

Validation Test Performed after each block of data

DOE Design for 3 blocks

- FCD (black)
- Nested FCD (red)
- I-optimal (green)

A:aoa

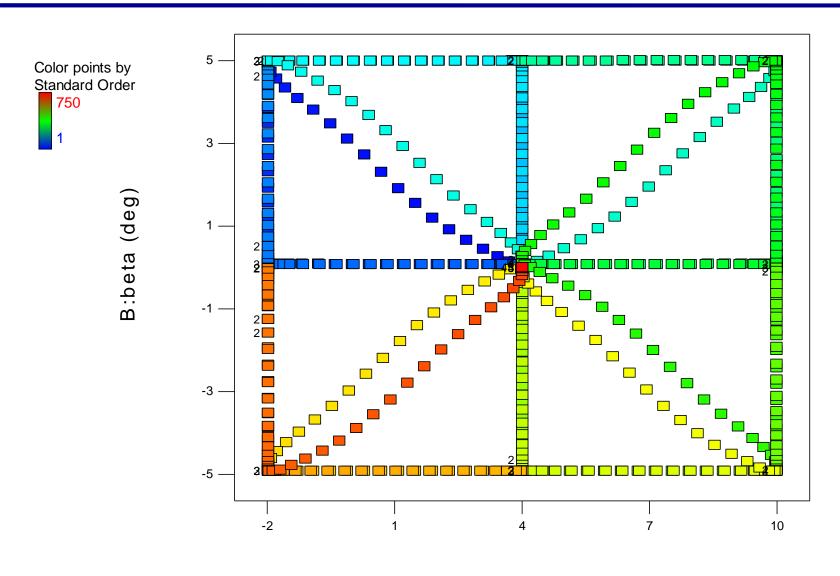
Stepwise Regression Modeling

Stepwise regression used to select model parameters

$$y = \beta_0 + \sum_{i} \beta_{ii} x_i + \sum_{i} \beta_{ii} x_i^2 + \sum_{i \neq j} \sum_{j \neq i} \beta_{ij} x_i x_j + \sum_{i} \beta_{iii} x_i^3 + \dots + \varepsilon \quad i = 1, 2, \dots, 23$$

- Primary metrics utilized for model selection:
 - Stepwise Regression significance level: 95% 99%
 - Standard ANOVA table analysis
 - Lack of Fit (LOF) measure of model error relative to pure error
 - Standard deviation (fit error)
 - PRESS (prediction error sum of squares)
 - Coefficient of Variation (C.V.% = std. dev. / mean)
 - $-e_i$ / C_N max %; (e_i = C_N _measured $-C_N$ _predicted) ...(desire ≤ 3%
 - R², adjusted R², predicted R², (family of metrics)

$$R^2 = \frac{\text{variation explained}}{\text{total variation}}; \quad 0 < R^2 < 1$$


Learn-to-Fly (L2F) Testing

- L2F approach adapted to wind tunnel
 - General L2F approach is real-time global modeling of aerodynamics
 - Applicable to wind tunnel or flight testing
 - Continuous sampling during dynamic test
- This study is a "quasi-static" test
 - Continuous sampling while sweeping target points slowly
 - Batch processing, stepwise regression
- Key to efficiency: Wide-band orthogonal inputs
 - Higher bandwidth (HBW) inputs applied to control surfaces
 - Lower bandwidth (LBW) inputs apply to other factors
- L2F experiment design
 - Test grid is setup for LBW factors
 - LBW trajectories form a nested "FCD-like" design

Learn-to-Fly (L2F) Trajectories

A:aoa (deg)

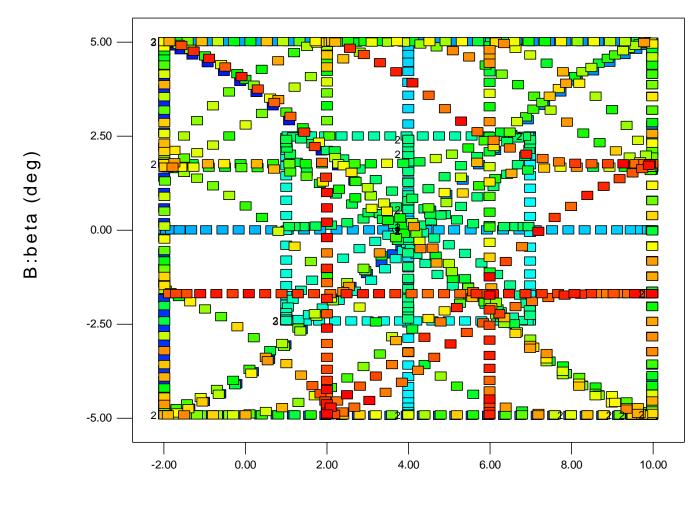
Blended DOE-L2F Testing ("quasi-static" test)

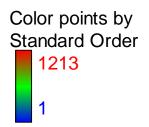
- Use key "efficiency features" of both approaches
 - DOE: 4 tenets, sequential testing blocks of data, with validation tests
 - L2F: HBW design for factors that accept wide-band inputs
- Blended design both simplifies and complicates final design
 - Simplifies 9-LBW experiment to a 2-LBW + 7-HBW experiment
 - Complicates evaluation of design metrics
- Strawman blended design
 - Design for 9-LBW experiment ensure all factors are included in design
 - Keep statistical advantages and design metrics of DOE
 - Assume "extra" data between target points enhances modeling
 - Assume blended design is obtained by removing redundant α – β targets
 - Blended designs require rig move slow enough to allow full sweep of controls at each α – β target point

Blended DOE-L2F Design Metrics (9-factors)

Block Type Blocks		Runs	Terms	VIF	% Power
	included	target points			2σ, s/n=2
Factorial	1	134	Linear + 2FI	1*	99.7
FCD	1, 2	156	Quadratic	9.68	84.2
Nested FCD	1, 2, 3	312	Quadratic	22.47	86.7
I-optimal	1, 2, 3, 4	384	Quadratic	4.85	99.9

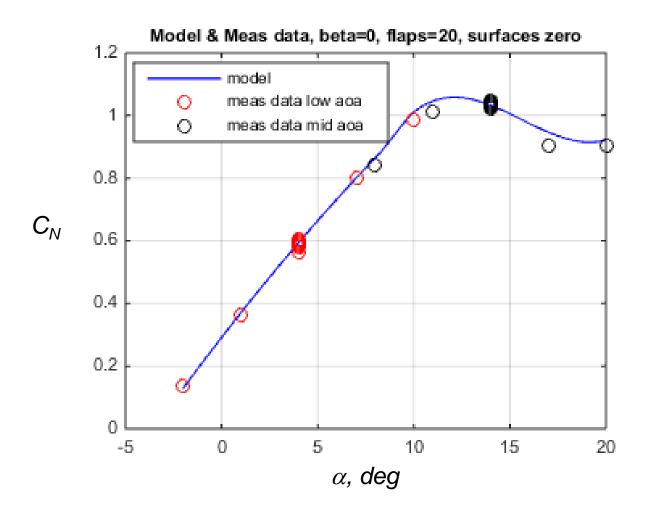
^{*}Squared factors are aliased


Some Lessons Learned:


Fewer blocks required with continuous sampling Divide optimal blocks!

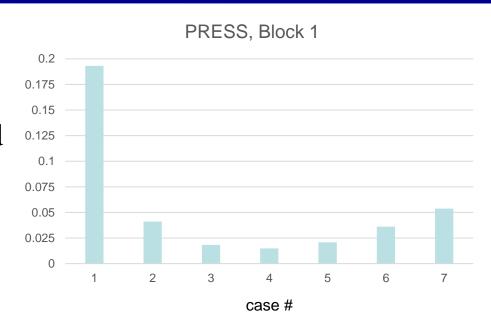
4th block provided too much data for the blended design.

Blended DOE-L2F Trajectories



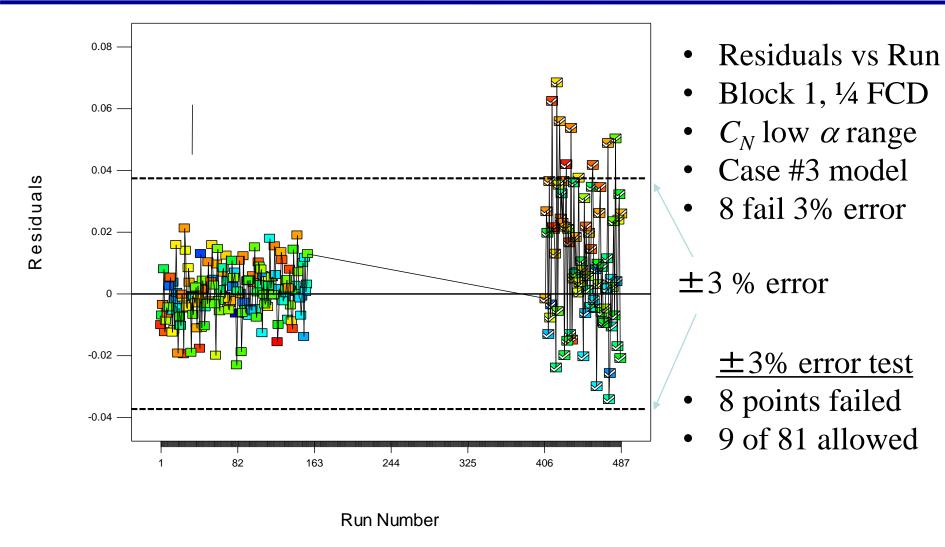
A:aoa (deg)

DOE Model (3 blocks)



DOE Modeling Progression

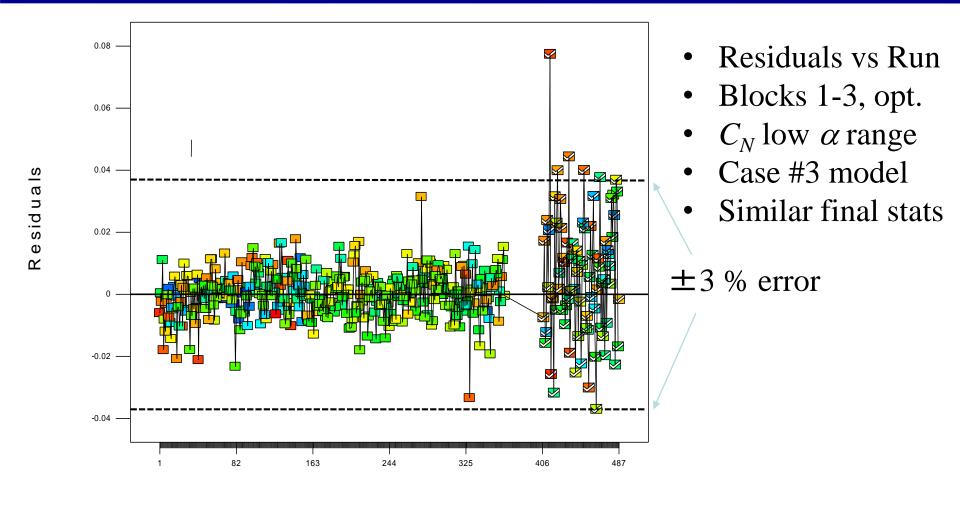
- Block 1 (FCD)
- 1st in series of sequential tests
- Case #2 error budget satisfied
- Case #3 best model is cubic
- Case #4 minimum PRESS
- Case #6 minimum Std. Dev



case #	1	2	3	4	5	6	7
block #	1	1	1	1	1	1	1
Design model	FCD	FCD	FCD	Nested FCD	I-Optimal	I-Optimal	I-Optimal
Model terms	Linear +	quadratic +	cubic +	cubic + 3FI	cubic +	cubic +	cubic +
(No.)	2FI (12)	2FI (20)	3FI (32)	(38)	3FI (68)	3FI (81)	3FI (128)
R ²	0.9931	0.9988	0.9996	0.9997	0.9995	0.9996	0.9999
Std. Dev.	0.0351	0.0149	0.0095	0.0084	0.0064	0.0060	0.0060
PRESS	0.1931	0.0411	0.0183	0.0149	0.0208	0.0362	0.0538
**e _i /C _N max %	5.68%	0.22%	0.15%	0.11%	0.12%	0.10%	0.10%

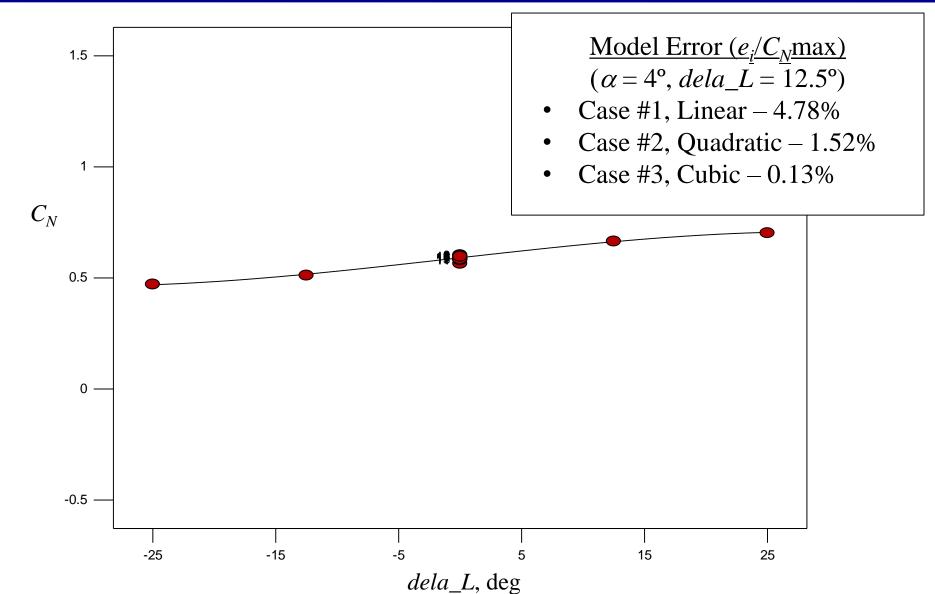
^{*}residual $e_i = C_N$ _measured - C_N _predicted, ** C_M max = 1.22

Validation Test, DOE Block 1



Validation tests reveal true prediction & bias errors

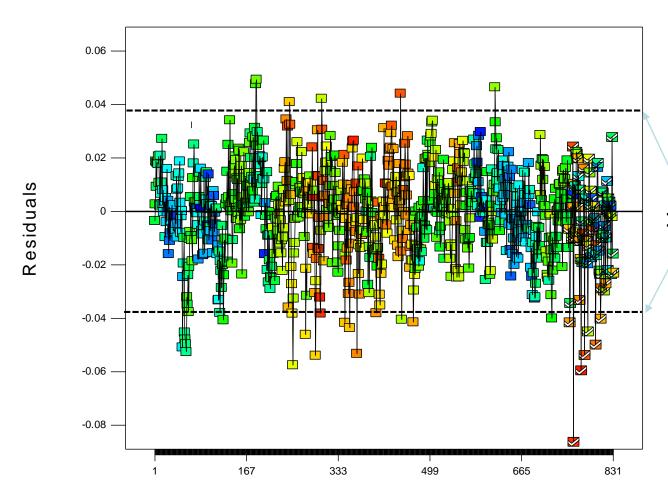
Validation Test, DOE Blocks 1-3



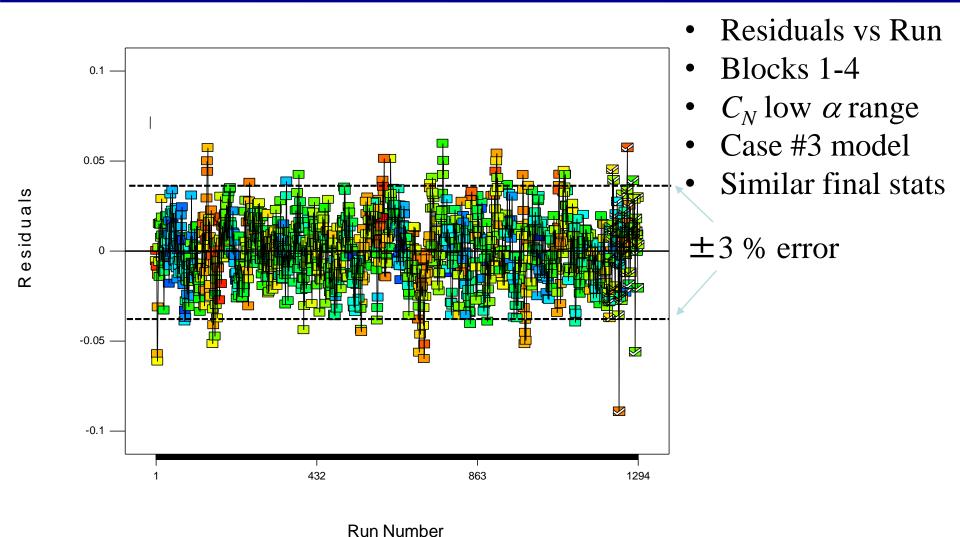
Model confirmed by validation test; 6 points fail 3% error test

Run Number


Source of Cubic Terms (DOE blocks 1-3)


L2F Test in LaRC 12-Foot Tunnel

Validation Test, L2F


- Residuals vs Run
- Block L2F
- C_N low α range
- Case #3 model
- Similar final stats
- ±3 % error

Run Number

Model confirmed by validation test; 7 points fail 3% error test

Validation Test, Blended DOE-L2F

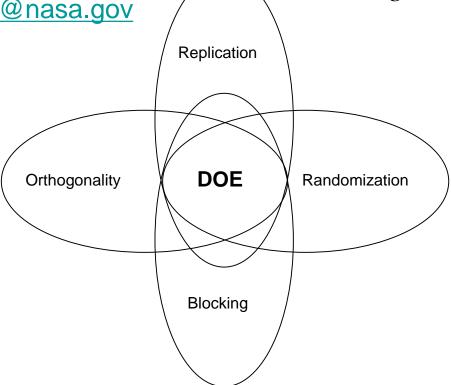
Model confirmed by validation test; 6 points fail 3% error test

Concluding Remarks

- Sequential testing & validation recommended
 - Obtain data sequentially as required
 - Apply validation test after each block of data
- Efficient test methods demonstrated
 - DOE & L2F approaches provide methods to increase efficiency
 - Blending DOE-L2F
 - Currently a "work in progress" but shows promise
 - Presents a challenge in design phase to combine LBW+HBW factors
- Future Test Refinements
 - Fewer blocks required with continuous sampling
 - Smaller optimal blocks
 - Lower sample rates for "quasi-static" tests
 - For "quasi-static" case, lower bandwidth of HBW inputs
 - Design must reflect significant data added by HBW factors

Questions?

Contact Information


– patrick.c.murphy@nasa.gov

- 757-864-4071

– jay.m.brandon@nasa.gov

- 757-864-1142

"All models are wrong, but some are useful" – George E. P. Box

