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Crack Growth Testing of an Aluminum Oxynitride (AlON) for 
International Space Station Kick Panes 

 
Jonathan A. Salem 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44130 

Summary 

The mechanical properties of an aluminum oxynitride supplied as ground beams and disks were 
measured using ASTM International (formerly American Society for Testing and Materials) standard test 
methods. The slow crack growth tests were complicated by a “short” finish that increased strength scatter. 
Refining of the finish by more material removal in the second stage of grinding or the use of uniaxial 
grinding as specified in ASTM C1499 might have avoided the issue. The structural design parameters are an 
elastic modulus of E = 319 GPa, Poisson’s ratio of v = 0.26, a fracture toughness of KIvb(A) = 2.18 MPa√m, 
slow crack growth (SCG) parameter n = 36, and SCG parameter A = 1.9610–11 m/s.(MPam)n. For a 
ground finish, the Weibull parameters are a mean modulus of m = 14.0 and characteristic strength of 
 = 250.2 MPa. The 2015 vintage material exhibits similar mechanical properties to a 2010 vintage billet. 
Indentation flaws were not sensitive to the inherent crack growth mechanisms of this material and produced 
misleading results. 

Introduction 

Aluminum oxynitride (AlON) spinel is a relatively new, transparent polycrystalline ceramic, which 
can be processed into relatively large, dense components. Its hardness and high fracture toughness relative 
to other transparent materials makes AlON applicable to impact-resistant, specialty windows (Ref. 1).  

The interior panes of the International Space Station (ISS) windows are protected by borosilicate 
glass “kick” panes. Over time, the optical condition of the kick panes has degraded and replacement is 
being considered. Although the current material could be used for replacement panes, tougher materials 
have been developed. This report summarizes the mechanical testing of ALON® (Surmet Corporation), a 
relatively new, commercial AlON being considered for kick panes. This testing is being done in 
conjunction with optical and impact testing being performed at NASA Johnson Space Center, 
Kennedy Space Center, and Langley Research Center. 

Mechanical Properties 

Elastic Modulus 

The elastic modulus and Poisson’s ratio were measured using impulse excitation in accordance with 
ASTM C1259 (Ref. 2). The measured values are E = 3191 GPa and v = 0.2630.001. This is 
comparable to measurements on a 2010 vintage billet of ALON® (3141 GPa, v = 0.26) (Ref. 3). 

Fracture Toughness 

Fracture toughness was measured by using the chevron-notched beam (VB) in accordance with 
ASTM C1421 (Ref. 4). The results are summarized in Tables I and II. The measured value of KIvb(A) = 
2.190.04 MPam in dry N2 is in agreement with that measured on a 2010 vintage billet of ALON® 

(2.180.14 MPam) (Ref. 3). Several SEPB (single-edge-precracked-beam) tests were also run in lab air 
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on the 2010 material, resulting in KIpb = 2.020.04 MPam. Figure 1 shows a SEPB fracture surface that 
indicates that transgranular fracture occurs during rapid crack propagation.  

In comparison, the fracture toughness of borosilicate glass is about one-third that of ALON®, at 
0.720.04 MPam (Ref. 5). 

Strength and Slow Crack Growth 

Slow crack growth (SCG) properties were measured by using ASTM C1368 (Ref. 6). The disk test 
specimens appear to have been ground in two stages. The second stage removed the first, likely 
Blanchard, grinding stage to varying degrees, as shown in Figure 2. This resulted in a “short” finish and 
two distinct flaw populations. As a result, specimens occasionally failed from first stage scars, thereby 
leading to scatter in measured strength and a coefficient of variation (CV) of ~14 percent at each stress 
rate. A secondary factor that may have led to strength scatter is the coarse grain size. To get a better 
estimate of the SCG parameters, specimens that failed from the Blanchard-type scratches shown in 
Figure 2 were censored for the SCG data analysis. This reduced the CV at each rate to ~10 percent, 
comparable to that of the 2010 set, which exhibited a CV of ~9 percent. Resultant, censored, and unbiased 
Weibull parameters were a median modulus of m = 14.0 and characteristic strength of  = 250.2 MPa. 
As the data needed to be censored, the RBA (reduced bias adjustment of Abernethy) (Ref. 7) rather than 
the TBA (Thoman, Bain, Antle) method (Ref. 8) of ASTM C1239 (Ref. 9) was employed. However, the 
TBA method resulted in a similar mean modulus of m = 13.6. 

The resultant stress rate curve is shown in Figure 3, and the crack velocity curves are shown in 
Figure 4 for the power and exponential functions 
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where v, a, and t are crack velocity, crack size, and time, respectively. Constants A and n are the 
material/environment dependent SCG parameters, and KI and KIc are, respectively, the Mode I stress 
intensity factor and the critical stress intensity factor or fracture toughness. The parameters are 
summarized in Tables III to IV for units common to the engineering literature and those used in 
NASGRO® (Southwest Research Institute (SWRI)). These results are similar to those from a 2010 billet 
(n = 335) (Ref. 3). In comparison to borosilicate glass (n  17; KIc  0.72 MPa√m), the higher fracture 
toughness and n value of ALON® results in much lower crack velocities at a stress intensity, as shown in 
Figure 4. For typical glasses, n  12 – 20 and KIc  0.6 – 0.8 MPa√m (Ref. 5), substantially less than that 
of ALON®. 

In addition to testing ground specimens, a series of tests were conducted by using specimens damaged 
via Vickers indentation. This consistently produced failure at the indentation, and because of the large 
grain size, this failure was typically within a single grain or two adjoining grains, as shown in Figure 5. 
This approach produced relatively little strength loss as a function of stress rate as shown in Figure 6, 
with n  86 as shown in Figure 4.  

The lack of strength loss is likely a result of poor sampling of the material microstructure by use of a 
single crack. The use of grinding samples the microstructure better by producing microcracks across the 
whole specimen surface, thereby allowing damage to evolve naturally. Indentation cracks, though large, 



NASA/TM—2017-219165 3 

are much smaller than the grains and do not effectively sample the behavior of inherent flaws or that of a 
multiplicity of grinding flaws, but instead the properties of a grain in random, rather than worst, 
orientation. An example of an inherent flaw (a region of porosity), which indentation flaws have difficult 
sampling, is shown in Figure 7. This result is in contrast to the successful use of indentations in the testing 
of glasses (Ref. 5). 

Fracture Branch Constants 

The fracture branching radii were measured on test specimens stressed at several rates. Because the 
strengths were narrowly distributed, the mirror constants were estimated pointwise from, rather than by 
curve fitting of, the function 
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where AB is the branch constant and rB is the corresponding branch radius. The resultant constants are 
tabulated in Table VI. The estimated AB values show a dependence on rate and environment. This can be 
interpreted as a dependence of AB on branch size, stored energy level, or load rate, as all are correlated or 
inversely correlated. For the combined data sets, AB = 8.11.3 MPam. 

Conclusions 

The elastic constants, fracture toughness, and slow crack growth parameters of ALON® (Surmet 
Corporation) were measured by using ASTM International (formerly American Society for Testing and 
Materials) methods. The structural design parameters are an elastic modulus of E = 319 GPa, Poisson’s 
ratio of v = 0.26, a fracture toughness of KIvb = 2.18 MPa√m, slow crack growth (SCG) parameter n = 36, 
and SCG parameter A = 1.9610–11 m/s.(MPam)–n. For a ground finish, the Weibull parameters were a 
mean modulus of m = 14.0 and characteristic strength of  = 250.2 MPa. The material exhibits similar 
mechanical properties to a 2010 vintage billet. Indentation flaws were not sensitive to the inherent crack 
growth mechanisms of this material and implied little slow crack growth. Caution should be taken when 
using indentation flaws to characterize materials with a coarse grain structure because the inherent crack 
growth behavior may not be characterized. As compared to borosilicate glass, ALON® has three times the 
fracture toughness and twice the slow crack exponent. 
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Figure 1.—Fracture surfaces. (a) Optical view of a single-edge-precracked-beam (SEPB). 

(b) Scanning electron view of a slow crack growth specimen. 

 

 

 
Figure 2.—Grinding marks in two different test specimens. (a) Frequent scratches (×7). (b) Shallow and 

infrequent scratches (×7). (c) Failure at an obvious scratch at 0.23 MPa/s (×15). (d) Failure at an obvious 
scratch at 0.0023 MPa/s (×15). 
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Figure 3.—Fracture strength as a function of stress rate for 

ground specimens. The number of specimens tested is 
given in parentheses. 

 
 

 
Figure 4.—Crack velocity of ALON® in water and 8330 borosilicate 

glass in 95 percent relative humidity as a function of stress intensity. 
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Figure 5.—Indentation cracks. 
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Figure 6.—Strength as a function of stress rate for indented ALON® 

specimens. The number of specimens tested is given in parentheses. 



NASA/TM—2017-219165 9 

 
Figure 7.—Porosity observed on fracture surfaces. 

(a) Pore with shrinkage. (b) Closeup of pore with 
shrinkage. (c) Cluster of pores. 
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TABLE I.—MEAN FRACTURE TOUGHNESS 
AND STANDARD DEVIATION IN MPa√m 

WITH THE NUMBER OF TESTS 
IN PARENTHESES 

Fracture toughness KIvb(A) (MPa√m) 
~40 percent RH N2 

2010 batch 
2.120.04 (4) 2.180.14 (5) 

2015 batch 

2.06±0.07 (5) 2.190.04 (5) 
Both batches 

2.090.06 (9) 2.180.10 (10) 

 
 
 
 

TABLE II.—MEAN FRACTURE TOUGHNESS 
AND STANDARD DEVIATION IN ksi√in.  

WITH THE NUMBER OF TESTS 
IN PARENTHESES 

Fracture toughness KIvb(A)  
(ksi√in.) 

~40 percent RH N2 
2010 batch 

1.930.04 (4) 1.980.13 (5) 
2015 batch 

1.880.06 (5) 1.990.03 (5) 
Both batches 

1.900.06 (9) 1.990.09 (10) 

 
 
 
 

TABLE III.—SLOW CRACK GROWTH PARAMETERS FOR TESTING IN WATER 

Power Law Crack Growth Parameters (water): 
1
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Vintage n1 
A1 

m/s.(MPam)-n 
A1

* 
(m/s) 

2015 36.5±5.2 1.9610–11 48.6 

2010 32.9±4.9 1.6510–11 2.17 

Exponential Law Crack Growth Parameters (water):   

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Vintage n2* 
n2 

(MPam)–1 
A2 

(m/s) 
2015 53.2 24.4 3.0510–21 
2010 61.1 28.0 1.0510–23 
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TABLE IV.—SLOW CRACK GROWTH PARAMETERS IN 
NASGRO® US UNITS FOR TESTING IN WATER 

Power Law Crack Growth Parameters (water): 
1
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in./hr.(ksiin.)–n 
A1

* 
(in./hr) 

2015 36.5±5.2 8.6610–5 6.90106 

2010 32.9±4.9 5.1710–5 3.07105 

Exponential Law Crack Growth Parameters (water):   
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Vintage n2* 
n2 

(ksiin.)–1 
A2 

(in./hr) 
2015 53.2 26.8 4.3210–16 

2010 61.1 30.8 1.4910–18 

 
 
 
 

TABLE V.—SLOW CRACK GROWTH PARAMETERS IN NASGRO® 
SI UNITS FOR TESTING IN WATER. 

Power Law Crack Growth Parameters (water): 
1
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Vintage n1 
A1 

mm/hr.(MPamm)–n 
A1

* 
(mm/hr) 

2015 36.5±5.2 1.2410–59 1.75108 

2010 32.9±4.9 3.0710–54 7.80106 

Exponential Law Crack Growth Parameters (water):   

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Vintage n2* 
n2 

(MPamm)–1 
A2 

(mm/hr) 
2015 53.2 0.770 1.1010–14 
2010 61.1 0.887 3.7810–17 

 
 
 
 

TABLE VI.—BRANCH CONSTANTS AS A FUNCTION 
OF STRESS RATE AND ENVIRONMENT 

Rate (MPa/s) AB (MPam) Environment 

118 7.5±0.6 Dry N2 

118 7.9±0.9 Water 

24 8.0±1.6 Water 

0.024 8.5±2.4 Water 

0.0024 8.6±0.9 Water 

Combined data 8.1±1.3 ----------- 

 










